JPH04163321A - Production of graphite fiber - Google Patents

Production of graphite fiber

Info

Publication number
JPH04163321A
JPH04163321A JP28295890A JP28295890A JPH04163321A JP H04163321 A JPH04163321 A JP H04163321A JP 28295890 A JP28295890 A JP 28295890A JP 28295890 A JP28295890 A JP 28295890A JP H04163321 A JPH04163321 A JP H04163321A
Authority
JP
Japan
Prior art keywords
heating element
heating member
graphite
inert gas
graphite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28295890A
Other languages
Japanese (ja)
Inventor
Tatsuo Akimoto
秋本 龍夫
Seiji Tanaka
田中 清次
Yoji Matsuhisa
松久 要治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28295890A priority Critical patent/JPH04163321A/en
Publication of JPH04163321A publication Critical patent/JPH04163321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce graphite fiber in high production efficiency by introducing an inert gas into a space between a heating member made of graphite and a furnace shell enclosing the heating member in closed state interposing a space, continuously introducing a fiber into the heating member while applying a pressure of the gas to the outer circumference of the heating member and delivering the produced graphite fiber from the heating member. CONSTITUTION:The heating furnace to be used in the present process is provided with a cylindrical heating member 1 made of graphite and a furnace shell 4 enclosing the heating member 1 in closed state interposing a space. Both openings of the heating member 1 are closed with sealing materials 8 each having a through-hole 9 nearly at the center of the sealing material. A thread T is continuously introduced through the hole 9 into the heating member 1, an inert gas G is introduced through an inlet nozzle into the space between the heating member 1 and the furnace shell 4, the thread T is heated and graphitized under application of a pressure of the inert gas to the outer circumference of the heating member 1 and the produced graphite fiber is delivered through the hole 9 of the other side. A graphite fiber can be produced in high apparatus efficiency by this process.

Description

【発明の詳細な説明】 〈産業トの利用分野〉 本発明は、黒鉛繊維等の被処理物を連続的に生産効率良
く製造するための加熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a heat treatment method for continuously and efficiently manufacturing objects to be treated such as graphite fibers.

〈従来の技術〉 通常、黒鉛繊維の大まかな製造工程は、以下のとおりで
ある。
<Prior art> Generally, the rough manufacturing process of graphite fiber is as follows.

■ポリアクリロニI・リル繊維、再生セルローズ繊維、
フェノール系繊維、ピッチ系繊維等の有機重合体を空気
、または、他の酸化性ガス雰囲気中にて、200〜30
0じClで耐炎化する。
■Polyacryloni I/Lil fiber, recycled cellulose fiber,
Organic polymers such as phenolic fibers and pitch fibers are heated to 200 to 30% in air or other oxidizing gas atmosphere.
Flame resistant with 0 ml Cl.

■次いで、これを窒素、アルゴンなどの不活性ガス雰囲
気中にて800〜2000[’ C1て炭素化する。
(2) Next, this is carbonized at 800 to 2000['C1] in an inert gas atmosphere such as nitrogen or argon.

■更に、2000f ’ CI以」二で黒鉛化を行い、
弾性率を向上させる。
■Furthermore, graphitize with 2000f CI or
Improve elastic modulus.

上記、■の黒鉛化工程では、高温加熱装置として、発熱
体にカーボンあるいは、グラフアイ1−なとの黒鉛材か
らなる筒状体を用いることが多く、その空洞部内に糸条
を連続的に導出・導入して黒鉛化処理を行っている。
In the graphitization process described in (2) above, a cylindrical body made of carbon or graphite material such as Grapheye 1- is often used as the heating element as a high-temperature heating device, and the thread is continuously inserted into the hollow part of the cylindrical body. It is extracted and introduced and subjected to graphitization treatment.

ところが、上記のカーボンあるいは、グラファイト材か
らなる発熱体は、2000[’ C1以上という高温下
で、炭素質の蒸発(昇華)が起こり、極めて短時間で減
耗、劣化してしまい、頻繁に交換作業を行う必要がある
However, the above-mentioned heating element made of carbon or graphite material undergoes evaporation (sublimation) of the carbonaceous material at high temperatures of 2000 ['C1 or more], wears out and deteriorates in an extremely short period of time, and requires frequent replacement. need to be done.

その蒸発現象は、雰囲気温度が2500f ” CIを
超えると、急速に激しくなり、3000[’ C1ては
数時間から数十時間で使用に耐えないほど減耗し、特に
、高温となる発熱体の外周中央部付近で顕著であった。
The evaporation phenomenon rapidly becomes intense when the ambient temperature exceeds 2500f'' CI, and 3000f'' CI is worn out to the extent that it cannot be used within several hours to several tens of hours. It was noticeable near the center.

そこで、発熱体の減耗劣化を抑制するため、本出願人に
よる特公昭63−63649号公報に記載の加熱装置が
提案されている。
Therefore, in order to suppress wear and tear of the heating element, a heating device described in Japanese Patent Publication No. 63-63649 by the present applicant has been proposed.

この装置は、発熱体を外囲するパイプを設け、発熱体と
バイブとの間に、不活性ガスを封入したもので、発熱体
の外周雰囲気を密封することによって、カーボン蒸気圧
を飽和させ、発熱体の蒸発を抑制するものである。
This device is equipped with a pipe that surrounds the heating element, and inert gas is sealed between the heating element and the vibrator.By sealing the atmosphere around the heating element, the carbon vapor pressure is saturated. This suppresses evaporation of the heating element.

〈発明が解決しようとする課題〉 しかしながら、上記の加熱装置を用いての加熱処理方法
では、単に、不活性ガスを封入しただけで黒鉛化処理を
行っているので、発熱体の寿命を向上させるにはまだ不
十分であった。
<Problems to be Solved by the Invention> However, in the heat treatment method using the above-mentioned heating device, the graphitization treatment is performed simply by enclosing an inert gas, so it is difficult to improve the life of the heating element. was still insufficient.

つまり、カーボンやグラファイトなどの黒鉛材は、気体
透過性を存しているため、発熱体の外周空間に封入され
た不活性ガスは時間の経過とともに、発熱体の内部空間
に浸透し、外周空間の不活性ガスが希薄になる。
In other words, graphite materials such as carbon and graphite have gas permeability, so the inert gas sealed in the outer space of the heating element permeates into the inner space of the heating element over time, causing the outer space The inert gas becomes diluted.

その結果、発熱体の外周部の蒸発、特に、蒸発が顕著に
現れる外周中央部の減耗劣化を抑制する力が弱まり、大
幅な発熱体の寿命向上が望めないという欠点がある。
As a result, the ability to suppress the evaporation of the outer periphery of the heating element, particularly the wear and tear deterioration of the central part of the outer periphery where evaporation is noticeable, is weakened, and there is a drawback that a significant improvement in the life of the heating element cannot be expected.

本発明は、このような事情に鑑みてなされたものであっ
て、加熱装置に用いられる発熱体の大幅な寿命向上を図
ることができる黒鉛繊維の製造方法を提供することを目
的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing graphite fibers that can significantly extend the life of a heating element used in a heating device.

〈課題を解決するための手段〉 上記目的を達成するにあたり、本発明者らは次の点に着
目した。
<Means for Solving the Problems> In achieving the above object, the present inventors focused on the following points.

すなわち、上記発熱体を含めた一般の物質の蒸発速度M
vは、次の0式で表される蒸気の外周雰囲気中への拡散
係数りに比例する( M v cc D・・・ステファ
ンの法則)。
That is, the evaporation rate M of general substances including the above-mentioned heating element
v is proportional to the diffusion coefficient of vapor into the surrounding atmosphere expressed by the following 0 formula (M v cc D...Stephen's law).

T3″ 1)oc  □ ・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・ ■0式において、符号T
は温度、Pは圧力である。
T3″ 1)oc □・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・ ■In formula 0, the sign T
is temperature and P is pressure.

この式から判るように、拡散係数は発熱体の温度の1.
5乗に比例し、発熱体に加わる圧力に反比例する。
As can be seen from this equation, the diffusion coefficient is 1.0% of the temperature of the heating element.
It is proportional to the fifth power and inversely proportional to the pressure applied to the heating element.

つまり、発熱体の寿命をより向上させるには、圧力を上
げることによって(温度は加熱温度に固定されている)
、拡散係数を小さくし、黒鉛粒子の蒸発速度を緩めるこ
とが有効となる。
In other words, to further improve the life of the heating element, by increasing the pressure (the temperature is fixed at the heating temperature)
It is effective to reduce the diffusion coefficient and slow down the evaporation rate of graphite particles.

したがって、本発明の黒鉛繊維の製造方法は、黒鉛材か
らなる筒状の発熱体と、前記発熱体の外周空間を密閉状
態で取り囲む炉殻とを備えた加熱炉を用い、前記発熱体
内部へ糸条を連続的に導入・導出して、黒鉛繊維を製造
する方法において、前記発熱体と炉殻との間に不活性ガ
スを流入し、前記発熱体の外周部を前記不活性ガスで加
圧しながら黒鉛繊維を製造することを特徴としている。
Therefore, the method for producing graphite fiber of the present invention uses a heating furnace equipped with a cylindrical heating element made of graphite material and a furnace shell that tightly surrounds the outer circumferential space of the heating element. In a method for manufacturing graphite fiber by continuously introducing and drawing out threads, an inert gas is flowed between the heating element and the furnace shell, and the outer periphery of the heating element is heated with the inert gas. It is characterized by producing graphite fibers while pressing.

〈作用〉 本発明の黒鉛繊維の製造方法によれば、発熱体の外周部
を不活性ガスで加圧しながら黒鉛繊維を製造しているの
で、発熱体を形成している黒鉛粒子の蒸気の拡散係数り
は上記0式により大幅に小さくなる。
<Function> According to the graphite fiber manufacturing method of the present invention, graphite fibers are manufactured while pressurizing the outer periphery of the heating element with an inert gas, so that the vapor of graphite particles forming the heating element is diffused. The coefficient is significantly reduced by the above equation 0.

したがって、M v oc Dの関係から、発熱体の蒸
発速度は遅くなり、寿命は大幅に向上する。
Therefore, from the relationship of M v oc D, the evaporation rate of the heating element is slowed down, and the life span is significantly improved.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の黒鉛繊維の製造方法が適用される加
熱炉の縦断面図である。
FIG. 1 is a longitudinal sectional view of a heating furnace to which the graphite fiber manufacturing method of the present invention is applied.

この図に示すように加熱炉は、カーボンあるいはグラフ
ァイトなどの黒鉛材で円筒状に形成された発熱体1を中
心にして、保護管3、炉殻4を同心状に配置した三重管
構造になっている。
As shown in this figure, the heating furnace has a triple tube structure in which a heat generating element 1, which is formed in a cylindrical shape from a graphite material such as carbon or graphite, is centered, a protective tube 3, and a furnace shell 4 are arranged concentrically. ing.

発熱体1の両開口部はそれぞれ封止材8によって塞がれ
ており、封止材8の略中心部には、糸条Tを発熱体l内
に導入・導出するための貫通孔9が形成されている。
Both openings of the heating element 1 are each closed by a sealing material 8, and approximately at the center of the sealing material 8 is a through hole 9 for introducing and leading out the yarn T into the heating element 1. It is formed.

また、発熱体1の両端部には、中心部よりも断面積が大
きな端子部1a、 Ibが形成されており、端子部1a
、lbの外周部には水冷電極5と、絶縁部材2とが取り
つけられている。
Further, terminal portions 1a and Ib having a larger cross-sectional area than the center portion are formed at both ends of the heating element 1.
, lb, a water-cooled electrode 5 and an insulating member 2 are attached to the outer periphery.

水冷電極5は図示しない低電圧大電流の電源部に接続さ
れ、その電源部からの通電により発熱体■はジュール熱
によって発熱し、断面積の小さい(抵抗の大きい)中央
部は約2500〜3000[°C1の高温になるように
構成されている。
The water-cooled electrode 5 is connected to a low-voltage, large-current power source (not shown), and when electricity is supplied from the power source, the heating element (2) generates heat using Joule heat. [It is configured to have a high temperature of 1°C.

絶縁部+A2は保護管3と炉殻4とを、発熱体1に対し
て電気絶縁状態で固定的に支持するもので、この絶縁部
1FA2によって発熱体Iの外周面と保護管3の内周面
との間には間隙D(外周空間)が形成されている。保護
管3の外周面と炉殻4の内周面との間隙部には通気性を
有する断熱材12が介在され、発熱体1の径方向へと伝
達していく熱を遮断している。
The insulating part +A2 fixedly supports the protective tube 3 and the furnace shell 4 in an electrically insulated state with respect to the heating element 1. A gap D (outer peripheral space) is formed between the surfaces. A breathable heat insulating material 12 is interposed in the gap between the outer circumferential surface of the protective tube 3 and the inner circumferential surface of the furnace shell 4 to block heat transmitted in the radial direction of the heating element 1.

断熱材12としては、カーボンパウダーを充填したもの
や、他の軽量な断熱材、例えばフェルト状の材料を用い
てもよい。
As the heat insulating material 12, one filled with carbon powder or another lightweight heat insulating material such as a felt material may be used.

保護管3は多数の通気孔10を有する円筒状に形成され
、炉殻4は両端にフランジ部を有する円筒状に形成され
ている。
The protection tube 3 is formed into a cylindrical shape having a large number of ventilation holes 10, and the furnace shell 4 is formed into a cylindrical shape having flanges at both ends.

炉殻4の側周面部には、不活性ガスを導入するための導
入ノズル11が設げられており、導入ノズル]1は図示
を省略している加圧用の不活性ガス供給源に連通接続さ
れている。
An introduction nozzle 11 for introducing inert gas is provided on the side circumferential surface of the furnace shell 4, and the introduction nozzle 1 is connected in communication to an inert gas supply source for pressurization (not shown). has been done.

不活性ガスとしては、アルゴンガス、窒素ガス等を用い
ることができる。
As the inert gas, argon gas, nitrogen gas, etc. can be used.

このように、導入ノズル11から炉内に導入された不活
性ガスは、通気性を有する断熱材12および通気孔10
を有する保護管3を通って、発熱体1の外周面をカロ圧
するように構成されている。
In this way, the inert gas introduced into the furnace from the introduction nozzle 11 is transferred to the air-permeable heat insulating material 12 and the vent hole 10.
The outer circumferential surface of the heat generating element 1 is subjected to pressure through a protective tube 3 having a heat generating element 1.

発熱体1の外周面の雰囲気は少なくとも1(kg/ o
fl G )以上の圧力に加圧することが好ましく、2
〜1.0 (kg/ c+fl G :lの範囲がより
好ましい。
The atmosphere on the outer peripheral surface of the heating element 1 is at least 1 (kg/o
It is preferable to pressurize to a pressure equal to or higher than 2
The range of ~1.0 (kg/c+fl G :l) is more preferable.

発熱体lの外周面の雰囲気加圧の具体的な手段としては
、保護管3の外周面と炉殻4の内周面との間隙部の圧力
を自動調節できるよう、炉殻4の側周面部にノズル12
を設け、該ノズル12に圧力の上限値および下限値が任
意に設定できる圧力調節計13と、ノズル14に雰囲気
自動排出弁I5を取りイ]ける。圧力調節計13と雰囲
気自動排出弁15とは電気的に結ばれており、圧力調節
計13で設定した上限値に雰囲気圧力が達すると、雰囲
気自動排出弁15が開き、圧力調節計13で設定した下
限値まで大気に自動的に放出し、常に一定の圧力範囲内
に雰囲気圧力が保持できるようになっている。
As a specific means for pressurizing the atmosphere on the outer peripheral surface of the heating element 1, the pressure in the gap between the outer peripheral surface of the protection tube 3 and the inner peripheral surface of the furnace shell 4 can be automatically adjusted. Nozzle 12 on the surface
The nozzle 12 is equipped with a pressure regulator 13 that can arbitrarily set the upper and lower limits of pressure, and the nozzle 14 is equipped with an automatic atmosphere discharge valve I5. The pressure regulator 13 and the automatic atmosphere discharge valve 15 are electrically connected, and when the atmospheric pressure reaches the upper limit set by the pressure regulator 13, the automatic atmosphere discharge valve 15 opens, and the automatic atmosphere discharge valve 15 opens. The pressure is automatically released to the atmosphere up to the lower limit value set, so that the atmospheric pressure can always be maintained within a certain pressure range.

また、図示しない供給手段により、発熱体1内へほぼ常
圧の不活性ガスGを供給し、黒鉛繊維を製造中に、常に
封止材8の貫通孔9から不活性ガスGを少量漏洩させる
のが好ましい。
Further, an inert gas G at approximately normal pressure is supplied into the heating element 1 by a supply means (not shown), and a small amount of the inert gas G is always leaked from the through hole 9 of the sealing material 8 during the production of graphite fibers. is preferable.

また、炉殻4の両端面には、ゴムパツキン6を介して水
冷電極5の一部が取り付けられており、さらに、水冷電
極5と端子部1a、 lbとの間にはOリング7が設け
られている。これにより、導入ノズル11から導入され
た不活性ガスが外部へ漏洩するのを防いだ構造となって
いる。
Further, a part of the water-cooled electrode 5 is attached to both end faces of the furnace shell 4 via rubber gaskets 6, and an O-ring 7 is provided between the water-cooled electrode 5 and the terminal portions 1a and lb. ing. This provides a structure that prevents the inert gas introduced from the introduction nozzle 11 from leaking to the outside.

上述した加熱炉を用いての黒鉛繊維の製造方法は、以下
のとおりである。
The method for producing graphite fiber using the heating furnace described above is as follows.

発熱体1・\の通電を行い、発熱体1の中央部を250
0〜3000[°C1まで加熱する。貫通孔9から炭素
化繊維を発熱体1の内部に連続的に導入して、黒鉛化処
理を行う。
energize the heating element 1.\, and set the central part of the heating element 1
Heat to 0-3000 [°C1. Carbonized fibers are continuously introduced into the heating element 1 through the through holes 9 to perform graphitization treatment.

このとき、導入ノズル11から不活性ガスを炉内に導入
しつづけ、発熱体1の外周面を加圧する。
At this time, inert gas is continued to be introduced into the furnace from the introduction nozzle 11, and the outer peripheral surface of the heating element 1 is pressurized.

前述のように、上記のような高温下では、発熱体1を構
成している黒鉛材の蒸発(昇華)が起き、外周雰囲気中
へと拡散していくが、発熱体1の外周面は不活性ガスに
よって加圧されているので、その拡散係数は低い値とな
り(前述の■弐参照)、拡散係数に比例する発熱体1の
蒸発速度は極めて遅くなる。
As mentioned above, under the above-mentioned high temperatures, the graphite material constituting the heating element 1 evaporates (sublimates) and diffuses into the surrounding atmosphere, but the outer peripheral surface of the heating element 1 remains intact. Since it is pressurized by the active gas, its diffusion coefficient has a low value (see (2) above), and the evaporation rate of the heating element 1, which is proportional to the diffusion coefficient, becomes extremely slow.

この発熱体1の寿命と、不活性ガス圧との関係を求めた
実験データを以下に紹介する。
Experimental data for determining the relationship between the life of the heating element 1 and the inert gas pressure will be introduced below.

第2図はその実験データをグラフにしたもので、不活性
ガスとしてアルゴンガスを使用し、発熱体1内部の温度
を3000[’ C]に設定した場合の発熱体1の寿命
と不活性ガス圧との関係を示している。
Figure 2 is a graph of the experimental data, showing the life of the heating element 1 and the inert gas when argon gas is used as the inert gas and the temperature inside the heating element 1 is set to 3000 [' C]. It shows the relationship with pressure.

なお、発熱体1としては外径50mm、内径30mm。Note that the heating element 1 has an outer diameter of 50 mm and an inner diameter of 30 mm.

発熱長(中心部長さ) 650 mmの円筒状のグラフ
ァイト材を用い、発熱体1の温度は、発熱体1の長手方
向中心位置にグラファイト類のブロックを置き、その赤
熱した色を軸方向の−・端に設置した2色温度計で測定
し、制御した。
Using a cylindrical graphite material with a heat generation length (center length) of 650 mm, the temperature of the heat generation element 1 is determined by placing a graphite block at the longitudinal center position of the heat generation element 1, and changing its red-hot color to - in the axial direction. - Measured and controlled with a two-color thermometer installed at the end.

この実験結果によると、大気圧では37時間(1,5日
間)で、発熱体1の外周中央部付近が第3図に示すよう
テーバ状に減耗劣化し寿命となった。
According to the experimental results, in 37 hours (1.5 days) at atmospheric pressure, the vicinity of the center of the outer periphery of the heating element 1 deteriorated in a tapered shape as shown in FIG. 3 and reached the end of its life.

一方、発熱体1の外周面を加圧した場合、圧力3 (k
g/cntG)では288時間(12日間)で寿命を迎
え、4.5  (kg/c+1lG)では252時間(
10,5日間)で寿命となり、大気圧に比べ、7〜8倍
の非常に大幅な寿命延長となった。
On the other hand, when the outer peripheral surface of the heating element 1 is pressurized, the pressure 3 (k
g/cntG) reaches its lifespan in 288 hours (12 days), and at 4.5 (kg/c+1lG) it reaches its lifespan in 252 hours (
The life span was reached in 10.5 days), which was a very significant life extension of 7 to 8 times compared to atmospheric pressure.

〈発明の効果〉 以上の説明から明らかなように、本発明の黒鉛繊維の製
造方法によれば、発熱体の外周部を不活性ガスで加圧し
ながら、被処理物である糸条を発熱体内に挿通して黒鉛
繊維を製造するようにしたので、発熱体の蒸発速度を極
力抑えることができ、発熱体の大幅な寿命向上を図るこ
とができる。
<Effects of the Invention> As is clear from the above description, according to the method for producing graphite fiber of the present invention, the yarn as the object to be treated is placed inside the heating element while pressurizing the outer circumference of the heating element with an inert gas. Since the graphite fiber is manufactured by inserting the graphite fiber into the heat generating element, the evaporation rate of the heating element can be suppressed as much as possible, and the life of the heating element can be greatly extended.

また、発熱体内部は、殆ど常圧であるため、封止材の貫
通孔が十分大きくでき、貫通孔での毛羽詰まりによる糸
切れ等の発生がない。
Furthermore, since the inside of the heating element is at almost normal pressure, the through-hole of the sealing material can be made sufficiently large, and there is no occurrence of thread breakage due to fuzz clogging in the through-hole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の第1実施例に係り、第1
図は本発明の黒鉛繊維の製造方法が適用される加熱炉の
縦断面図、第2図は実験結果を表したグラフ、第3図は
発熱体の減耗劣化の様子を示した断面図である。 1・・・発熱体    4・・・炉殻 T・・・糸条   G・・・不活性ガス出願人 東 し
 株 式 会 社 代理人 弁理士 杉 谷   勉
Figures 1 to 3 relate to the first embodiment of the present invention.
The figure is a longitudinal sectional view of a heating furnace to which the graphite fiber manufacturing method of the present invention is applied, FIG. 2 is a graph showing the experimental results, and FIG. 3 is a sectional view showing the state of wear and tear of the heating element. . 1... Heating element 4... Furnace shell T... Thread G... Inert gas Applicant Azuma Shi Co., Ltd. Company agent Patent attorney Tsutomu Sugitani

Claims (1)

【特許請求の範囲】[Claims] (1)黒鉛材からなる筒状の発熱体と、前記発熱体の外
周空間を密閉状態で取り囲む炉殻とを備えた加熱炉を用
い、前記発熱体内部へ糸条を連続的に導入・導出して、
黒鉛繊維を製造する方法において、 前記発熱体と炉殻との間に不活性ガスを流入し、前記発
熱体の外周部を前記不活性ガスで加圧しながら黒鉛繊維
を製造することを特徴とする黒鉛繊維の製造方法。
(1) Using a heating furnace equipped with a cylindrical heating element made of graphite material and a furnace shell that tightly surrounds the outer peripheral space of the heating element, threads are continuously introduced and guided into the interior of the heating element. do,
The method for producing graphite fibers is characterized in that an inert gas is introduced between the heating element and the furnace shell, and the graphite fibers are produced while pressurizing the outer periphery of the heating element with the inert gas. Method for producing graphite fiber.
JP28295890A 1990-10-19 1990-10-19 Production of graphite fiber Pending JPH04163321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28295890A JPH04163321A (en) 1990-10-19 1990-10-19 Production of graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28295890A JPH04163321A (en) 1990-10-19 1990-10-19 Production of graphite fiber

Publications (1)

Publication Number Publication Date
JPH04163321A true JPH04163321A (en) 1992-06-08

Family

ID=17659331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28295890A Pending JPH04163321A (en) 1990-10-19 1990-10-19 Production of graphite fiber

Country Status (1)

Country Link
JP (1) JPH04163321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197176A1 (en) * 2018-04-09 2019-10-17 Eisenmann Se Furnace
RU2795433C2 (en) * 2018-04-09 2023-05-03 Уанджун Гмбх Furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197176A1 (en) * 2018-04-09 2019-10-17 Eisenmann Se Furnace
CN112689689A (en) * 2018-04-09 2021-04-20 万俊有限责任公司 Furnace with a heat exchanger
RU2795433C2 (en) * 2018-04-09 2023-05-03 Уанджун Гмбх Furnace

Similar Documents

Publication Publication Date Title
US3791658A (en) Packings for pumps, valves, and the like
JPH04163321A (en) Production of graphite fiber
JP5379959B2 (en) Rotary kiln sealing device
GB2177485A (en) Gas purging device
JPS6311448B2 (en)
JP3287029B2 (en) heating furnace
KR20010014425A (en) Flexible graphite composite
JPH07248193A (en) Electric resistance heated type furnace
JPH06108317A (en) Production of graphitized fiber and apparatus for production
JPH02175923A (en) Apparatus for producing graphite fiber
JPS63152415A (en) Apparatus for producing carbon fiber
JPS5828980A (en) Induction heating furnace
JP4125580B2 (en) Gas supply nozzle
JP3287615B2 (en) Optical fiber drawing method
JPH1072291A (en) Crucible for silicon single crystal pulling-up device
JPH07218145A (en) Heating furnace
JPH06280117A (en) Heating furnace for graphite fiber production
KR20120022173A (en) Vacuum heat treatment apparatus
JPS54131031A (en) Manufacturing device for graphite fibers
JPH02153834A (en) Dehydration calcining furnace
JPH02182891A (en) Carbon electrode for melt purification electrolysis, preheating thereof and cathode for melt purification electrolysis
JP4221820B2 (en) Oxidizing gas blowing pipe
JPS5953718A (en) Preparation of graphite fiber
JPS54132495A (en) Manufacture of artificial graphite product
JPS58106384A (en) Heating furnace