JPH04163298A - Temperature control mechanism for electronic device mounted on artificial satellite and spacecraft - Google Patents
Temperature control mechanism for electronic device mounted on artificial satellite and spacecraftInfo
- Publication number
- JPH04163298A JPH04163298A JP2287194A JP28719490A JPH04163298A JP H04163298 A JPH04163298 A JP H04163298A JP 2287194 A JP2287194 A JP 2287194A JP 28719490 A JP28719490 A JP 28719490A JP H04163298 A JPH04163298 A JP H04163298A
- Authority
- JP
- Japan
- Prior art keywords
- phase change
- spacecraft
- temperature
- artificial satellite
- control mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims description 21
- 239000012782 phase change material Substances 0.000 claims abstract description 26
- 230000008018 melting Effects 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 13
- 230000007613 environmental effect Effects 0.000 claims description 10
- 239000004519 grease Substances 0.000 claims description 5
- 239000002470 thermal conductor Substances 0.000 claims description 5
- 238000010943 off-gassing Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract 4
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、人工衛星および宇宙機搭載用電子機器の電子
部品環境温度が許容範囲内に保たれるように制御する機
構に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a mechanism for controlling the environmental temperature of electronic components of electronic equipment mounted on artificial satellites and spacecraft to be maintained within a permissible range.
従来、人工衛星に搭載する電子機器の熱制御手法につい
ては、第32回宇宙科学技術連合m演会講演集(198
8)pp125−153において論じられている。この
方法は、電子機器が搭載される板の内部にヒートパイプ
を内蔵することにより、電子機器が搭載される板金体の
等温化をはかり、一方で、電子機器が搭載される板の電
子機器が搭載されない、あるいは搭載される電子機器の
少な・ 3 ・
い面に放熱面を設は宇宙空間に放熱する方式となってい
る。Conventionally, thermal control methods for electronic devices mounted on artificial satellites have been described in the 32nd Space Science and Technology Union Conference Lecture Collection (198
8) discussed on pp 125-153. In this method, by incorporating a heat pipe inside the board on which the electronic equipment is mounted, the temperature of the metal plate on which the electronic equipment is mounted is made equal, while the electronic equipment on the board on which the electronic equipment is mounted is A heat dissipation surface is installed on the small side of the electronic equipment that is not installed or is installed, and the heat is radiated into space.
第4図は従来技術における人工衛星・宇宙機載用電子機
器の熱制御機構を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing a thermal control mechanism of an electronic device mounted on an artificial satellite or spacecraft in the prior art.
11は電子機器であって、これを熱的に見れば発熱体で
あり、その発熱量は変化する。Reference numeral 11 denotes an electronic device, which is a heating element from a thermal perspective, and its calorific value changes.
2枚のアルミ板12a、12bによってアルミハニカム
13を挾みつけた形に固着し、上記2枚のアルミ板の内
の片方のアルミ板12aに電子機器11を搭載するとと
もに、他方のアルミ板12bの外側面に太陽光を反射す
る皮膜14が設けられている。そして、前記アルミハニ
カム13の中にヒートパイプ2が埋設されている。The aluminum honeycomb 13 is fixed between two aluminum plates 12a and 12b, and the electronic device 11 is mounted on one of the two aluminum plates 12a, and the electronic device 11 is mounted on the other aluminum plate 12b. A coating 14 that reflects sunlight is provided on the outer surface. A heat pipe 2 is embedded in the aluminum honeycomb 13.
電子機器11で発生した熱の1部はアルミ板12a、ア
ルミハニカム13.アルミ板12bを通って宇宙空間に
放散される。A portion of the heat generated by the electronic device 11 is transferred to the aluminum plate 12a, aluminum honeycomb 13. It passes through the aluminum plate 12b and is dissipated into space.
また、発生した熱の一部は熱伝導によりヒートパイプ2
に伝えられ、この熱によりヒートパイプの暖められた部
分にあった作動流体は気化し、ヒ・4 ・
−トパイプ内の温度の低い部分へと拡散する。この気化
した作動流体は、ヒートパイプ内、の温度の低い部分で
冷却されて液化し、ヒートパイプ内部に設けられた還流
路を通ってヒートパイプ内の発熱体によって暖められた
部分へと戻っていく。Also, some of the generated heat is transferred to the heat pipe 2 due to thermal conduction.
Due to this heat, the working fluid in the warmed part of the heat pipe is vaporized and diffused to the lower temperature part of the heat pipe. This vaporized working fluid is cooled and liquefied in the lower temperature part of the heat pipe, and returns to the part heated by the heating element in the heat pipe through the reflux path provided inside the heat pipe. go.
この動作が繰り返されることにより、ヒートパイプ全体
が等温化するとともに、高発熱密度の発熱を効率良く拡
散することが出来る。By repeating this operation, the entire heat pipe becomes isothermal, and the heat generated at a high heat generation density can be efficiently diffused.
人工衛星・宇宙機技術の進歩に伴い、これに搭載される
電子機器内部の部品配置も高密度化する傾向にある。こ
の電子機器内部の高密度化に伴って、その熱的な面でも
条件が厳しくなり、発熱密度が高くなるとともに発熱量
も増加する。As artificial satellite and spacecraft technology advances, the arrangement of components inside the electronic devices installed on these satellites also tends to become more dense. As the internal density of electronic devices increases, thermal conditions also become stricter, resulting in higher heat generation density and increased calorific value.
ところが、前記公知の技術(宇宙科学技術連合講演会講
演集)においては、高発熱密度で高発熱の発熱体を有す
る電子機器については、電子機器自体がすでに熱制御さ
れていることを前提としており、電子機器自体の熱制御
については配慮されておらず電子機器自体の熱制御をど
うするかという問題が残されていた。このため、高発熱
密度で、且つ高発熱の発熱体を有する将来型の人工衛星
・宇宙機搭載用電子機器の熱制御に適用出来なくなる虞
が有る。However, in the above-mentioned known technology (collection of lectures from the Space Science and Technology Alliance Conference), it is assumed that electronic devices that have heat generating elements with high heat density and high heat generation are already thermally controlled. However, no consideration was given to the thermal control of the electronic equipment itself, leaving the problem of how to control the heat of the electronic equipment itself. For this reason, there is a possibility that it will not be applicable to the thermal control of future-type artificial satellites and spacecraft-mounted electronic devices that have high heat generation density and high heat generation heat generating elements.
さらに、前記従来技術においては電子機器の発熱を放散
させて過熱を防止することについて考慮されているが、
過冷についての考慮が無い。このため、人工衛星・宇宙
機の飛翔中に、地球2月などの天体の影に入って太陽光
を受けなくなると、電子機器の環境温度が急激に低下し
て過冷する虞がある。Furthermore, in the prior art, consideration is given to preventing overheating by dissipating heat generated by electronic devices;
There is no consideration for supercooling. For this reason, if an artificial satellite or spacecraft enters the shadow of a celestial body such as the Earth in February and receives no sunlight while in flight, the environmental temperature of electronic devices may drop rapidly and become overcooled.
上に述べた加熱、過冷については、単に温度が高くなり
すぎ、低くなりすぎてはならないという問題だけでなく
、温度上昇の速度や温度下降の速度が大きすぎてはなら
ないという問題も有る。Regarding the heating and supercooling described above, there is not only the problem that the temperature must not become too high or too low, but also the problem that the speed of temperature rise and temperature fall must not be too large.
本発明は上述の事情に鑑みて為されたもので、高発熱密
度、大発熱量の電子機器の環境温度を制御して、その温
度を許容温度範囲内に保つとともに、その経時的温度変
化を許容温度変化率範囲内に収め得る、人工衛星・宇宙
機搭載用電子機器の温度制御機構を提供することを目的
とする。The present invention has been made in view of the above-mentioned circumstances, and is designed to control the environmental temperature of electronic devices with high heat density and large heat output, to maintain the temperature within the permissible temperature range, and to prevent temperature changes over time. The purpose of the present invention is to provide a temperature control mechanism for electronic equipment mounted on artificial satellites and spacecraft that can be kept within an allowable temperature change rate range.
上記の目的を達成するため、本発明の構成は、人工衛星
・宇宙機に搭載される電子機器について、電子部品およ
び2次電池を含むコンポ−ホン1〜単位を考え、この単
位の中に(イ)ヒートパイプと、(ロ)相変化物質を封
入した容器と、(ハ)電気ヒータと、を設置した。In order to achieve the above object, the configuration of the present invention is to consider the electronic equipment to be mounted on an artificial satellite or spacecraft into a compophone unit including electronic parts and a secondary battery, and to include ( A) a heat pipe, (b) a container containing a phase change substance, and (c) an electric heater were installed.
本発明を実施する場合、電子機器を構成している電子部
品の許容温度範囲を考慮に入れて、前記の相変化物質の
融点が許容温度範囲の上限近傍になるように構成するこ
とが推奨される。When carrying out the present invention, it is recommended to take into account the allowable temperature range of electronic components constituting the electronic device and configure the phase change material so that the melting point of the phase change material is near the upper limit of the allowable temperature range. Ru.
また、許容温度範囲の下限近傍の融点を有する相変化物
質を用いることも有効である。従って、これらを勘案し
て、許容温度範囲の上限近傍の融点を有する相変化物質
を封入した容器と、同じく下限近傍の融点を有する相変
化物質を封入した容器との両方を設置することが望まし
い。It is also effective to use a phase change material that has a melting point near the lower limit of the allowable temperature range. Therefore, taking these into consideration, it is desirable to install both a container filled with a phase change substance whose melting point is near the upper limit of the allowable temperature range and a container filled with a phase change substance whose melting point is also near the lower limit. .
また、電子機器を構成している電子部品は、回路基板上
に浮かせて搭載するのではなく熱キャリアを介して密着
させ、熱伝導状態を良くしておくことが望ましい。Further, it is preferable that electronic components constituting an electronic device are not mounted floating on a circuit board, but are closely attached to the circuit board via a thermal carrier to improve thermal conduction.
また、電子部品を筐体中に配置する場合は、該筐体を熱
の良導体で構成するとともに、これをベース部材に対し
て熱的に密着させて固定し、かつ、電子部品は、ビー1
−パイプ及び前記の容器を介して筐体の内面に熱的に密
着させて取りつけることが望ましい。In addition, when electronic components are placed in a housing, the housing is made of a good thermal conductor and is fixed in thermal contact with the base member, and the electronic components are placed in a bead 1.
- It is desirable to attach it in close thermal contact with the inner surface of the casing via the pipe and the container.
上記の、熱的に密着させる構造として溶接手段を用いる
こともできるが、溶接できない場合には、宇宙空間でア
ウトガスの少ないグリスを介して取り付けると好都合で
ある。Although welding means can be used to form the above-mentioned structure for thermally adhering, if welding is not possible, it is convenient to attach using grease with less outgassing in space.
さらに、これらの電子部品、ヒートパイプ、相変化物質
を入れた容器について、これらを一体に連設した部材と
して構成すれば、各々の間の接触熱抵抗が無くなるため
、いっそう好都合である。Furthermore, if the electronic components, heat pipe, and phase change material are placed in a container, it is even more convenient to configure them as an integrally connected member, since contact thermal resistance between each component is eliminated.
前記の構成によれば、
電子部品で発生した熱はヒートパイプによって、先ず、
温度分布を略均−・にされ、均一な熱流密度・8 ・
で伝導されて次のような効果を助長する。According to the above configuration, the heat generated in the electronic components is first transferred by the heat pipe.
The temperature distribution is made approximately equal, and the heat flow is conducted at a uniform density, promoting the following effects.
相変化物質は、先ず、該物質自体の熱容量によって温度
変化を緩和する。Phase change materials first moderate temperature changes through their own heat capacity.
温度上昇を緩和されて除々に昇温しで、許容温度の上限
近傍に達すると上記の相変化物質が融解し始め、融解潜
熱を吸収しつつ、温度を一定に保つ。The temperature rise is moderated and the temperature rises gradually, and when it reaches near the upper limit of the allowable temperature, the above-mentioned phase change material begins to melt and maintains the temperature constant while absorbing the latent heat of fusion.
また、人工衛星・宇宙機が天体の影に入って太陽熱を受
けなくなり、かつ電子部品の負荷が減少して発熱量が低
下したような場合は、前記と逆の現象を生じ、相変化物
質自体の熱容量によって温度降下が緩和され、許容温度
範囲の下限近傍に達すると凝固潜熱(前記の融解潜熱に
対応)を発生しつつ温度を一定に保つ。この温度降下防
止作用のみでは温度降下を防止し切れない場合は電気ヒ
ータに通電して保温することができる。In addition, if an artificial satellite or spacecraft enters the shadow of a celestial body and no longer receives solar heat, and the load on electronic components decreases and the amount of heat generated decreases, the opposite phenomenon occurs, and the phase change material itself The temperature drop is moderated by the heat capacity of , and when it reaches near the lower limit of the allowable temperature range, the temperature is kept constant while generating latent heat of solidification (corresponding to the latent heat of fusion described above). If this temperature drop prevention effect alone cannot prevent the temperature drop, the temperature can be maintained by energizing the electric heater.
この場合、電気ヒータによる保温が補助的に用いられる
ことは重要である。In this case, it is important that heat insulation by an electric heater is used as a supplement.
即ち、人工衛星・宇宙機が天体の影に入って、その温度
が下降しつつある状態では、この人工衛星・宇宙機に搭
載されている太陽電池が機能を停止しており、電気機器
類の消費電力は専ら2次電池に頼っている。In other words, when an artificial satellite or spacecraft is in the shadow of a celestial body and its temperature is decreasing, the solar cells installed on this satellite or spacecraft stop functioning, and electrical equipment Power consumption relies exclusively on secondary batteries.
従って、電子部品の保温が主として相変化物質の凝固潜
熱によって行われ、電気ヒータの消費電力が節減される
ことの実用効果面での意義が大きい。Therefore, it is of great practical significance that the electronic components are kept warm mainly by the latent heat of solidification of the phase change material, and the power consumption of the electric heater is reduced.
第1図(A)は本発明に係る温度制御機構の1実施例を
示す断面図である。本実施例は、本発明を通信衛星搭載
用の電力増幅器に適用した例である。FIG. 1(A) is a sectional view showing one embodiment of the temperature control mechanism according to the present invention. This embodiment is an example in which the present invention is applied to a power amplifier mounted on a communication satellite.
この電力増幅器はS中継器パネル5をベース板とし、こ
のベース板に設置されている。This power amplifier uses the S repeater panel 5 as a base plate, and is installed on this base plate.
9は、熱の良導体で構成された筐体であって、その本体
9aはベース板5に密着せしめて固定されている。9b
はその蓋である。Reference numeral 9 denotes a housing made of a good thermal conductor, and its main body 9a is fixed in close contact with the base plate 5. 9b
is the lid.
発熱体である電子部品1は、熱の良導体で構成された熱
キャリア6を介して電子回路基板7上に配置されている
。The electronic component 1, which is a heat generating body, is arranged on an electronic circuit board 7 via a thermal carrier 6 made of a good thermal conductor.
前記筐体9の底壁の内面に密着させて、ヒートパイプ2
が設置されており、かつ、
前記電子部品1の許容温度範囲の上限近傍に融点を有す
る相変化物質3aを封入した容器4aと、上記許容温度
範囲の下限近傍に融点を有する相変化物質3bを封入し
た容器4bとが、それぞれ筺体9の底壁の内面に密着さ
せて設置されている。The heat pipe 2 is placed in close contact with the inner surface of the bottom wall of the housing 9.
and a container 4a containing a phase change substance 3a having a melting point near the upper limit of the allowable temperature range of the electronic component 1, and a phase change substance 3b having a melting point near the lower limit of the allowable temperature range of the electronic component 1. The sealed containers 4b are installed in close contact with the inner surface of the bottom wall of the housing 9, respectively.
そして、前記の容器4a、4bに密着させて電気ヒータ
10が設置されている。An electric heater 10 is installed in close contact with the containers 4a and 4b.
この実施例における電子部品1は電力増幅を行う半導体
部品である。この電子部品1で発生した熱は、熱キャリ
ア6、電子回路基板7を経由して、伝導によりヒートパ
イプ2へと伝わりヒートパイプの等温化作用により、ヒ
ートパイプの軸方向へと拡散する。The electronic component 1 in this embodiment is a semiconductor component that performs power amplification. The heat generated in the electronic component 1 is transmitted to the heat pipe 2 by conduction via the heat carrier 6 and the electronic circuit board 7, and is diffused in the axial direction of the heat pipe due to the isothermal effect of the heat pipe.
ヒートパイプ全体の温度上昇により、容器4a。Due to the temperature increase of the entire heat pipe, the container 4a.
4b、及びこれらに封入された相変化物質3a。4b, and a phase change substance 3a enclosed therein.
3bに熱が伝わる。Heat is transferred to 3b.
融点に相当する温度以外においても、これらの容器や相
変化物質は相当の熱容量を有しているので、電子部品1
で発生した熱を吸収し、その温度上昇を緩和する。Even at temperatures other than the melting point, these containers and phase change materials have a considerable heat capacity, so electronic components 1
absorbs the heat generated by the system and alleviates the temperature rise.
温度上昇速度の緩和により、熱歪、熱応力の発生が防止
される。By relaxing the rate of temperature rise, generation of thermal distortion and thermal stress is prevented.
相変化物質3aの温度は徐々に上昇し、放熱量とバラン
スすると温度上昇が停止する。しかし、放熱量が充分で
なく温度上昇が続き、その融点に達した場合、相変化物
質3aが融解し始める。The temperature of the phase change material 3a gradually rises, and when it is balanced with the amount of heat radiation, the temperature rise stops. However, if the amount of heat dissipated is insufficient and the temperature continues to rise and reaches its melting point, the phase change material 3a begins to melt.
その融解中は、相変化物質3aが融解潜熱を吸収しつつ
、略一定温度を保つ。During the melting, the phase change material 3a maintains a substantially constant temperature while absorbing the latent heat of melting.
本発明の実施例において、各構成部品を密着せしめる場
合、力学的に密着させるだけでなく熱的に密着させるこ
と、即ち、伝熱抵抗の少ない状態で密着させることが必
要である。このために、溶接することもてきるが、溶接
施工が許されない場合も少なくない。このような場合は
、宇宙空間でアウトガスの少ないグリスを挾んで密着さ
せ、ネジ止めなど適宜の公知手段を併用する。In the embodiments of the present invention, when the components are brought into close contact with each other, it is necessary not only to bring them into close contact mechanically, but also to bring them into close contact thermally, that is, to bring them into close contact with each other with little heat transfer resistance. Although welding can be used for this purpose, there are many cases where welding is not allowed. In such a case, a grease with little outgassing is sandwiched in space, and an appropriate known means such as screwing is used in combination.
本発明を実施する場合、これらの構成部材を別体に構成
して溶接したり、グリスを介して接触させたりするので
なく、これらを一体の部材として構成すれば、接触熱抵
抗が無いので好都合である。When carrying out the present invention, it is advantageous to construct these components as an integral member, rather than constructing them separately and welding them or bringing them into contact through grease, since there is no contact thermal resistance. It is.
第1図(B)は、このような考えで構成した実施例の断
面図である。本例は第1図(A)の実施例における容器
4aと容器4bとを、ヒートパイプ2と一体に連設した
構成である。FIG. 1(B) is a sectional view of an embodiment constructed based on this idea. This example has a configuration in which the containers 4a and 4b in the example of FIG. 1(A) are integrally connected to the heat pipe 2.
また、電子部品1の発熱量が減少したり、中継器パネル
であるベース板5から宇宙空間への放熱量が増加したり
して装置全体が降温傾向となった場合、容器4a、4b
、及び相変化物質3a、3bの熱容量によって温度降下
速度が緩和される。In addition, if the temperature of the entire device tends to decrease due to a decrease in the amount of heat generated by the electronic components 1 or an increase in the amount of heat radiated from the base plate 5, which is a repeater panel, to outer space, the containers 4a, 4b
, and the heat capacity of the phase change materials 3a and 3b, the temperature drop rate is moderated.
このようにして徐々に降温して許容温度範囲の下限近傍
に達すると、相変化物質3bが凝固を始め、凝固潜熱を
発生しつつ略一定の温度を保つ。When the temperature gradually decreases in this manner and reaches near the lower limit of the allowable temperature range, the phase change material 3b begins to solidify and maintains a substantially constant temperature while generating latent heat of solidification.
上記の凝固潜熱だけでは温度降下の防止が充分でないと
きは、図示しない2次電池から電力を供給して電気ヒー
タ10に通電し、保温を補助する。When the latent heat of solidification is not sufficient to prevent the temperature from dropping, power is supplied from a secondary battery (not shown) to the electric heater 10 to assist in keeping it warm.
第1図(A)に示したヒートパイプ2、容器4a、4b
及び電気ヒータ10の分解斜視図を第2図に示す。Heat pipe 2, containers 4a, 4b shown in FIG. 1(A)
FIG. 2 shows an exploded perspective view of the electric heater 10.
第3図は上記と異なる実施例を示し、前記実施例におけ
る第2図に対応する斜視図である。FIG. 3 shows an embodiment different from the above, and is a perspective view corresponding to FIG. 2 of the embodiment.
前例(第2図)においては2個の容器4a。In the example (FIG. 2), there are two containers 4a.
4bの間に1本のヒートパイプ2を挾みつけて密着させ
た配置であったが、本例(第3図)においては3個の容
器4と2個のヒートパイプ2とを、それぞれ1個ずつ交
互に配列しである。これら3個の容器4の中に封入する
相変化物質の融点は任意に選定することができる。4b, one heat pipe 2 was sandwiched between the heat pipes 2 and 4b, but in this example (Fig. 3), three containers 4 and two heat pipes 2 were arranged, one each. They are arranged alternately. The melting points of the phase change substances sealed in these three containers 4 can be arbitrarily selected.
また、3個のヒートパイプ2と2個の容器4とを交互に
配列するなど、これらの構成部材の設置個数は任意に設
定し得る。この場合、温度分布の均一化(従って熱流密
度の均一化)を重視する場合はヒートパイプ2の設置個
数を増し、温度変化の抑制を重視する場合は容器4の設
置個数を増せば良い。Moreover, the number of these components installed can be set arbitrarily, such as arranging three heat pipes 2 and two containers 4 alternately. In this case, if emphasis is placed on uniformity of temperature distribution (and therefore uniformity of heat flow density), the number of installed heat pipes 2 may be increased, and when emphasis is placed on suppression of temperature changes, the number of installed containers 4 may be increased.
いずれの場合においてもヒートパイプ2と容器4とは熱
的に密着させる。第2図、第3図の実施例においては宇
宙空間でアウトガスの少ないグリスの簿層を介して相互
に押し付けてネジ止め(ネジは図示省略)して熱的に密
着させた。In either case, the heat pipe 2 and the container 4 are brought into close thermal contact. In the embodiments shown in FIGS. 2 and 3, they were pressed against each other through a layer of grease with little outgassing in space, and were fastened with screws (screws not shown) to thermally adhere to each other.
これらの実施例(第1図〜第3図)に示した温度制御機
構を人工衛星・宇宙機用の電子機器に適用すると、該電
子装置を構成している電子部品が高発熱密度であって、
その発熱量の変化が大きくても、該電子部品の環境温度
の変化速度を抑制するとともに、該環境温度を許容範囲
内に保つことができる。When the temperature control mechanisms shown in these embodiments (Figs. 1 to 3) are applied to electronic equipment for artificial satellites and spacecraft, the electronic components constituting the electronic equipment have a high heat generation density. ,
Even if the change in the amount of heat generated is large, the rate of change in the environmental temperature of the electronic component can be suppressed and the environmental temperature can be maintained within an allowable range.
また、こ九らの実施例の温度制御機構を備えた電子機器
を搭載した人工衛星・宇宙機は、この人工衛星・宇宙機
から宇宙空間への放熱量が大きく変化しても、搭載して
いる2次電池の電力消耗を節約しつつ搭載電子機器の温
度制御を容易に行い、該電子機器を許容温度範囲内に保
つとともに、その温度変化速度を抑制することができる
。In addition, an artificial satellite or spacecraft equipped with electronic equipment equipped with the temperature control mechanism of these embodiments can be used even if the amount of heat radiated from this artificial satellite or spacecraft to outer space changes significantly. It is possible to easily control the temperature of the mounted electronic device while saving power consumption of the secondary battery, keeping the electronic device within the permissible temperature range, and suppressing the rate of temperature change.
以上説明したように、本発明の温度制御機構を適用する
と、人工衛星・宇宙機器に搭載された電子機器の環境温
度を制御して許容温度範囲内に保つと共に、その温度変
化速度を抑制することが出来る。As explained above, when the temperature control mechanism of the present invention is applied, it is possible to control the environmental temperature of electronic equipment mounted on artificial satellites and space equipment to keep it within the permissible temperature range, and to suppress the rate of temperature change. I can do it.
第11図(A)は本発明に係る温度制御機構の1実施例
を示す断面図、第1図(B)は上記と異なる実施例の断
面図である。
第2図は、第1図(A)の実施例の要部を描いた分解斜
視図である。
第3図は上記と異なる実施例の要部を描いた斜視図であ
る。
第4図は従来技術の説明図である。
1・・・電子部品、 ′ 2・・・ヒートパイプ
、3a、3b・・・相変化物質、
4、’4a、4b・・・容器、 5・・・ベース板、
6・・・熱キャリア、 7・・・電子回路基板、
9・・・筐体、 9a・・・筐体の本体、
9b・・・筐体の蓋、 10・・・電気ヒータ
。FIG. 11(A) is a sectional view showing one embodiment of the temperature control mechanism according to the present invention, and FIG. 1(B) is a sectional view of an embodiment different from the above. FIG. 2 is an exploded perspective view depicting the main parts of the embodiment shown in FIG. 1(A). FIG. 3 is a perspective view depicting the main parts of an embodiment different from the above. FIG. 4 is an explanatory diagram of the prior art. 1... Electronic component, '2... Heat pipe, 3a, 3b... Phase change material, 4, '4a, 4b... Container, 5... Base plate,
6... Heat carrier, 7... Electronic circuit board,
9... Housing, 9a... Main body of the housing,
9b...Lid of the housing, 10...Electric heater.
Claims (1)
機構において、 電子部品および2次電池を含むコンポーネント単位の中
に、ヒートパイプと、相変化物質を封入した容器と、電
気ヒータとを具備していることを特徴とする、人工衛星
・宇宙機搭載用電子機器の温度制御機構。 2、前記の相変化物質は、電子部品の環境温度が許容さ
れる温度範囲の上限近傍に融点を有するものであること
を特徴とする。請求項1に記載した人工衛星・宇宙機搭
載用電子機器の温度制御機構。 3、前記の相変化物質は、電子部品の環境温度が許容さ
れる温度範囲の下限近傍に融点を有するものであること
を特徴とする、請求項1に記載した人工衛星・宇宙機搭
載用電子機器の温度制御機構。 4、前記の相変化物質は、電子部品の環境温度が許容さ
れる温度範囲の上限近傍に融点を有する相変化物質と、
電子部品の環境温度が許容される温度範囲の下限近傍に
融点を有する相変化物質との少なくとも2種類の相変化
物質とよりなり、それぞれ容器に封入されていることを
特徴とする、請求項1に記載した人工衛星・宇宙機搭載
用電子機器の温度制御機構。 5、前記の電子部品は熱の良導体で構成された熱キャリ
アを介して電子回路部品に搭載されており、上記電子部
品回路はヒートパイプおよび相変化物質を封入した容器
に密着していることを特徴とする、請求項1に記載した
人工衛星・宇宙機搭載用電子機器の温度制御機構。 6、前記の電子部品は熱の良導体で構成された筐体の中
に収納されており、 前記の電子部品はヒートパイプ、及び、相変化物質を封
入した容器を介して前記の筐体に密着せしめて支持され
ており、 上記の筐体は人工衛星・宇宙機器のベース部材に密着せ
しめて取り付けられていることを特徴とする、請求項1
に記載した人工衛星・宇宙機搭載用電子機器の温度制御
機構。 7、前記のヒートパイプ、及び相変化物質を封入した容
器は、それぞれ電子部品回路に対して、宇宙空間でアウ
トガスの少ないグリスを挾んで取り付けられていること
を特徴とする、請求項5に記載した人工衛星・宇宙機搭
載用電子機器の温度制御機構。 8、前記のヒートパイプ、及び相変化物質を封入した容
器は、連設された一体の部材であることを特徴とする、
請求項5に記載した人工衛星・宇宙機搭載用電子機器の
温度制御機構。 9、前記の電気ヒータは、相変化物質が固化を開始した
とき、若しくは固化を完了したときに通電されるもので
あることを特徴とする、請求項3に記載した人工衛星・
宇宙機載用電子機器の温度制御機構。 10、請求項1に記載した人工衛星・宇宙機搭載用電子
機器の温度制御機構を備えていることを特徴とする、人
工衛星・宇宙機搭載用電子機器。 11、請求項1に記載した人工衛星・宇宙機搭載用電子
機器の温度制御機構を備えた電子機器を搭載したことを
特徴とする、人工衛星・宇宙機。[Claims] 1. In a mechanism for controlling the temperature of electronic equipment mounted on an artificial satellite or spacecraft, a container in which a heat pipe and a phase change substance are sealed in a component unit including an electronic component and a secondary battery. A temperature control mechanism for electronic equipment mounted on an artificial satellite or spacecraft, characterized by comprising: and an electric heater. 2. The above phase change material is characterized in that it has a melting point near the upper limit of the temperature range within which the environmental temperature of the electronic component is permissible. A temperature control mechanism for an electronic device mounted on an artificial satellite or spacecraft according to claim 1. 3. The electronic device for use in an artificial satellite or spacecraft according to claim 1, wherein the phase change material has a melting point near the lower limit of a temperature range within which the environmental temperature of the electronic component is permissible. Equipment temperature control mechanism. 4. The phase change material has a melting point near the upper limit of the temperature range allowable for the environmental temperature of the electronic component;
Claim 1, characterized in that the electronic component comprises at least two types of phase change substances, a phase change substance having a melting point near the lower limit of a temperature range within which the environmental temperature of the electronic component is permissible, and each of the phase change substances is sealed in a container. Temperature control mechanism for electronic equipment mounted on artificial satellites and spacecraft described in . 5. The electronic component described above is mounted on an electronic circuit component via a heat carrier made of a good thermal conductor, and the electronic component circuit is in close contact with a heat pipe and a container containing a phase change material. A temperature control mechanism for an electronic device mounted on an artificial satellite or spacecraft according to claim 1. 6. The electronic component is housed in a casing made of a good thermal conductor, and the electronic component is tightly attached to the casing via a heat pipe and a container containing a phase change material. Claim 1, characterized in that the housing is at least supported, and the housing is attached in close contact with a base member of an artificial satellite/space device.
Temperature control mechanism for electronic equipment mounted on artificial satellites and spacecraft described in . 7. The heat pipe and the container enclosing the phase change substance are each attached to the electronic component circuit by sandwiching grease with little outgassing in space. Temperature control mechanism for electronic equipment mounted on artificial satellites and spacecraft. 8. The heat pipe and the container enclosing the phase change substance are continuous integral members,
A temperature control mechanism for an electronic device mounted on an artificial satellite or spacecraft according to claim 5. 9. The artificial satellite according to claim 3, wherein the electric heater is energized when the phase change material starts solidifying or completes solidifying.
Temperature control mechanism for spacecraft electronic equipment. 10. An electronic device mounted on an artificial satellite or spacecraft, comprising the temperature control mechanism for the electronic device mounted on an artificial satellite or spacecraft according to claim 1. 11. An artificial satellite or spacecraft, characterized in that it is equipped with an electronic device equipped with a temperature control mechanism for the electronic device mounted on an artificial satellite or spacecraft according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2287194A JP2588633B2 (en) | 1990-10-26 | 1990-10-26 | Temperature control mechanism for electronic equipment mounted on satellites and spacecraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2287194A JP2588633B2 (en) | 1990-10-26 | 1990-10-26 | Temperature control mechanism for electronic equipment mounted on satellites and spacecraft |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04163298A true JPH04163298A (en) | 1992-06-08 |
JP2588633B2 JP2588633B2 (en) | 1997-03-05 |
Family
ID=17714292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2287194A Expired - Lifetime JP2588633B2 (en) | 1990-10-26 | 1990-10-26 | Temperature control mechanism for electronic equipment mounted on satellites and spacecraft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2588633B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994028698A1 (en) * | 1993-06-02 | 1994-12-08 | Actionenergy Limited | Apparatus for controlling temperature |
WO2010078218A3 (en) * | 2008-12-31 | 2010-08-26 | Spectrasensors, Inc. | Analytical equipment enclosure incorporation phase changing materials |
JP2010266171A (en) * | 2009-05-18 | 2010-11-25 | Mitsubishi Electric Corp | Heat pipe panel |
CN103448925A (en) * | 2013-08-08 | 2013-12-18 | 上海卫星工程研究所 | High-precision temperature control device for star sensors for satellites |
CN107328279A (en) * | 2017-05-16 | 2017-11-07 | 上海卫星工程研究所 | The phase transformation heat pipe of high-reliability high heat-transfer performance |
JP2018511523A (en) * | 2015-03-30 | 2018-04-26 | ワールドビュー・サテライツ・リミテッド | Passive thermal system with coupled heat pipe and phase change material and satellite incorporating it |
JP2019020017A (en) * | 2017-07-13 | 2019-02-07 | 国立研究開発法人宇宙航空研究開発機構 | Insert device, sandwich panel where insert device is embedded, and heat storage unit |
US10225953B2 (en) | 2014-10-31 | 2019-03-05 | Thermal Corp. | Vehicle thermal management system |
JP2020161840A (en) * | 2020-06-22 | 2020-10-01 | Necプラットフォームズ株式会社 | Heat dissipation structure |
CN113401370A (en) * | 2021-07-23 | 2021-09-17 | 上海卫星工程研究所 | Body-mounted solar shell and double-satellite combined heat control system |
CN113911400A (en) * | 2021-11-02 | 2022-01-11 | 之江实验室 | Heat storage device of micro-nano satellite system |
WO2024004355A1 (en) * | 2022-06-30 | 2024-01-04 | パナソニックホールディングス株式会社 | Heat control structure and artificial satellite equipped with heat control structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1170208B1 (en) | 2000-07-07 | 2005-04-27 | Nec Corporation | Thermal control method and device |
TWI483099B (en) * | 2012-06-08 | 2015-05-01 | Foxconn Tech Co Ltd | Phase change type heat dissipating device |
CN114537717B (en) * | 2022-03-17 | 2024-07-02 | 齐鲁空天信息研究院 | Thermal control system for load of small satellite |
-
1990
- 1990-10-26 JP JP2287194A patent/JP2588633B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2287090A (en) * | 1993-06-02 | 1995-09-06 | Actionenergy Ltd | Apparatus for controlling temperature |
GB2287090B (en) * | 1993-06-02 | 1995-11-01 | Actionenergy Ltd | Apparatus for controlling temperature |
US6109337A (en) * | 1993-06-02 | 2000-08-29 | Actionenergy Limited | Apparatus for controlling temperature |
WO1994028698A1 (en) * | 1993-06-02 | 1994-12-08 | Actionenergy Limited | Apparatus for controlling temperature |
WO2010078218A3 (en) * | 2008-12-31 | 2010-08-26 | Spectrasensors, Inc. | Analytical equipment enclosure incorporation phase changing materials |
US8154728B2 (en) | 2008-12-31 | 2012-04-10 | Spectrasensors, Inc. | Analytical equipment enclosure incorporating phase changing materials |
JP2010266171A (en) * | 2009-05-18 | 2010-11-25 | Mitsubishi Electric Corp | Heat pipe panel |
CN103448925A (en) * | 2013-08-08 | 2013-12-18 | 上海卫星工程研究所 | High-precision temperature control device for star sensors for satellites |
US10225953B2 (en) | 2014-10-31 | 2019-03-05 | Thermal Corp. | Vehicle thermal management system |
US10932392B2 (en) | 2014-10-31 | 2021-02-23 | Aavid Thermal Corp. | Vehicle thermal management system |
JP2018511523A (en) * | 2015-03-30 | 2018-04-26 | ワールドビュー・サテライツ・リミテッド | Passive thermal system with coupled heat pipe and phase change material and satellite incorporating it |
CN107328279A (en) * | 2017-05-16 | 2017-11-07 | 上海卫星工程研究所 | The phase transformation heat pipe of high-reliability high heat-transfer performance |
JP2019020017A (en) * | 2017-07-13 | 2019-02-07 | 国立研究開発法人宇宙航空研究開発機構 | Insert device, sandwich panel where insert device is embedded, and heat storage unit |
JP2020161840A (en) * | 2020-06-22 | 2020-10-01 | Necプラットフォームズ株式会社 | Heat dissipation structure |
CN113401370A (en) * | 2021-07-23 | 2021-09-17 | 上海卫星工程研究所 | Body-mounted solar shell and double-satellite combined heat control system |
CN113911400A (en) * | 2021-11-02 | 2022-01-11 | 之江实验室 | Heat storage device of micro-nano satellite system |
CN113911400B (en) * | 2021-11-02 | 2022-12-09 | 之江实验室 | Heat storage device of micro/nano satellite system |
WO2024004355A1 (en) * | 2022-06-30 | 2024-01-04 | パナソニックホールディングス株式会社 | Heat control structure and artificial satellite equipped with heat control structure |
Also Published As
Publication number | Publication date |
---|---|
JP2588633B2 (en) | 1997-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04163298A (en) | Temperature control mechanism for electronic device mounted on artificial satellite and spacecraft | |
US10793297B2 (en) | Passive thermal system comprising combined heat pipe and phase change material and satellites incorporating same | |
US5325913A (en) | Module cooling system | |
Pal et al. | Application of phase change materials to thermal control of electronic modules: a computational study | |
CA1321886C (en) | Space suit cooling apparatus | |
US3328642A (en) | Temperature control means utilizing a heat reservoir containing meltable material | |
US3532158A (en) | Thermal control structure | |
JPH04230962A (en) | High-temperature storage battery | |
US5467814A (en) | Graphite/epoxy heat sink/mounting for common pressure vessel | |
CN104466305A (en) | Outer bearing cylinder aircraft storage battery thermal control device | |
WO2000068630A1 (en) | Thermal control system for spacecraft | |
US20170038114A1 (en) | Transport Container for Transporting Temperature-Sensitive Transport Goods | |
Elshaer et al. | Heat energy storage module for thermal management of small satellites in low earth orbit thermal conditions | |
JPH04163299A (en) | Heat control mechanism for electronic device mounted on artificial satellite and spacecraft | |
KIRKPATRICK et al. | Advanced thermal control flight experiment | |
Bulut et al. | Battery thermal design conception of Turkish satellite | |
CN214199799U (en) | Heat dissipation assembly for cabin and spacecraft | |
JP2020522664A (en) | Active crystallization control of phase change material heat storage system | |
Zhang | Investigation of Gallium Phase Change Material Heat Sink for CubeSat Thermal Management | |
Bienert | Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment | |
Ramu et al. | Analytical Thermal Modeling of Deployed and Body Mount Solar Panel and Its Comparison with Numerical Approaches for Small Satellite | |
JP2004198036A (en) | Cooling device | |
Walker et al. | The impact of the lunar thermal environment on the design of telescopes for lunar surface operation | |
KR20000051265A (en) | Device for heatpipe using phase change material | |
CN115460866A (en) | Alternating thermal environment temperature-adjusting composite structure based on solid-solid temperature-crossing phase change |