JPH0416241A - Preparation of catalyst carrier - Google Patents

Preparation of catalyst carrier

Info

Publication number
JPH0416241A
JPH0416241A JP2120654A JP12065490A JPH0416241A JP H0416241 A JPH0416241 A JP H0416241A JP 2120654 A JP2120654 A JP 2120654A JP 12065490 A JP12065490 A JP 12065490A JP H0416241 A JPH0416241 A JP H0416241A
Authority
JP
Japan
Prior art keywords
molded body
metal
catalyst carrier
base material
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2120654A
Other languages
Japanese (ja)
Inventor
Tamio Noda
多美夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2120654A priority Critical patent/JPH0416241A/en
Publication of JPH0416241A publication Critical patent/JPH0416241A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst carrier having a good function and a desired shape by applying a fine metal powder to the substrates arranged in a retaining mold by low temp. flame spraying to form a molded body and subsequently baking the molded body in a non-oxidative atmosphere. CONSTITUTION:Substrates 4 composed of urethane rubber or nylon are arranged in a retaining mold 8 and a fine metal powder 6 composed of Pt or Pd is applied to the substrates 4 by low temp. spray coating, using carrier gas 7 such as nitrogen or argon to form a molded body. Thereafter, this molded body is baked under a non-oxidative atmosphere such as N2 gas or H2 gas. Since the catalyst carrier thus obtained can be allowed to approach the close part of the engine in exhaust piping, catalystic reaction efficiency is enhanced and the efficiency and output of the engine are also enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車のエンジン排気ガス系に設置され、該
排気ガス中に含まれるNOx、SOxを処理するために
用いられる触媒を担持するメタル担体の製造方法に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a metal supporting catalyst installed in the engine exhaust gas system of an automobile and used to treat NOx and SOx contained in the exhaust gas. The present invention relates to a method for producing a carrier.

(従来の技術) 自動車の排気ガスの規制が実施されてから10年以上が
経過するか、現在の排気ガス対策は、エンジンの改良と
触媒による排気ガスの浄化によって行われている。排気
ガス浄化用の触媒はコージオライト等のセラミックスハ
ニカムの上に白金等の貴金属触媒を担持するものか主流
を占めている。
(Prior Art) It has been more than 10 years since automobile exhaust gas regulations were implemented, and the current exhaust gas countermeasures are by improving engines and purifying exhaust gas using catalysts. The mainstream catalyst for exhaust gas purification is one in which a precious metal catalyst such as platinum is supported on a ceramic honeycomb such as cordiolite.

しかし、これらのセラミックスハニカムは強度確保のた
めに本体の壁厚が厚いため、体積を大きくして通気性を
確保する必要かあり、設置スペースが相対的に大きくな
る欠点がある。
However, since these ceramic honeycombs have thick walls to ensure strength, it is necessary to increase the volume to ensure air permeability, resulting in a relatively large installation space.

また、このハニカムは外筒に挿入支持され、エンジン排
ガス系に取付けられるか、ハニカム自体の耐熱衝撃力や
、ハニカムを支える外筒との間に振動による衝撃や、熱
膨張係数の差によって生ずる応力を吸収させるために挿
入する緩衝用ステンレスメツシュの耐熱性の制約から、
使用温度を低くせざるを得ない欠点を有する。
In addition, this honeycomb is inserted and supported in the outer cylinder and installed in the engine exhaust gas system, or the honeycomb itself has thermal shock resistance, and the stress caused by vibration shock between the honeycomb and the outer cylinder that supports it and the difference in thermal expansion coefficient. Due to the heat resistance of the buffer stainless steel mesh inserted to absorb
It has the disadvantage that the operating temperature must be lowered.

これらの欠点を改善するものとして、近年ステンレス箔
からなる金属製触媒担体が使用され始めている。これら
の金属担体は当然反応中の高温、高速の排気ガスに耐え
る耐熱耐蝕性、かつ激しい加熱、冷却サイクルに耐える
耐熱疲労特性が要求される。
In order to improve these drawbacks, metal catalyst carriers made of stainless steel foil have recently begun to be used. These metal carriers are naturally required to have heat and corrosion resistance to withstand high temperatures and high velocity exhaust gases during the reaction, and heat fatigue resistance to withstand intense heating and cooling cycles.

第2図に示すように、一般にこの種の金属担体1は、5
〇−前後の厚さを有するステンレス平箔と、コルゲート
加工したステンレス波箔とを重ねて円筒形または楕円柱
状に巻き込みハニカム体2を形成し、これを耐熱ステン
レス製の外筒管3に挿入して後、平箔〜波箔〜外筒管を
相互にロウ付けあるいは抵抗溶接等により接合、製造さ
れる。
As shown in FIG. 2, this kind of metal carrier 1 generally has 5
〇- A stainless steel flat foil having a thickness of around 100 mm and a corrugated stainless steel corrugated foil are overlapped and rolled into a cylindrical or elliptical shape to form a honeycomb body 2, and this is inserted into an outer cylindrical tube 3 made of heat-resistant stainless steel. After that, the flat foil, corrugated foil, and outer tube are joined together by brazing, resistance welding, etc., and manufactured.

(発明が解決しようとする課題) 従来の方法では、内部担体部の金属箔が薄いため、空隙
部が軸方向に真っ直ぐな構造の担体しか製造できなかっ
た。また、製造した直管担体を曲げることは極めて困難
で内部の金属箔が破断してしまうために、曲げ管担体は
、技術的には実用化の目処が立っていない。
(Problems to be Solved by the Invention) In the conventional method, since the metal foil of the internal carrier portion is thin, only a carrier having a structure in which the void portion is straight in the axial direction can be manufactured. Furthermore, it is extremely difficult to bend the manufactured straight pipe carrier, and the metal foil inside the pipe carrier breaks, so that there is no technical prospect for practical use of bent pipe carriers.

曲げ加工に耐えるものにするためには、内部の金属箔を
厚めの金属板にする必要があり、そうなると空隙率、比
表面積が低下して触媒担体としての機能が大幅に劣化す
るという問題点がある。
In order to withstand bending, the internal metal foil must be made of a thicker metal plate, which poses the problem of lowering the porosity and specific surface area and significantly deteriorating its function as a catalyst carrier. be.

本発明はこのような従来技術の問題点を解消し、良好な
機能を有し、かつ実用化可能な所望の形状を有する触媒
担体を提供することを目的とする。
It is an object of the present invention to solve the problems of the prior art and to provide a catalyst carrier having good functionality and a desired shape that can be put to practical use.

(課題を解決するための手段) 上記目的を達成するための本発明の主旨は、(1)  
型枠内に基体を配列し、該基材に金属微粉末を低温溶射
して成形体をつくり、然る後、非酸化性雰囲気で焼成す
ることを特徴とする触媒担体の製造方法。
(Means for Solving the Problems) The gist of the present invention for achieving the above objects is (1)
1. A method for producing a catalyst carrier, which comprises arranging substrates in a mold, forming a molded body by spraying fine metal powder onto the substrate at a low temperature, and then firing in a non-oxidizing atmosphere.

(2)基材を予め金属箔に接着剤等で固定し、該基材に
金属微粉末を低4A溶射して成形体をつくり、これを型
枠で包囲する如く支持し、然る後、非酸化性雰囲気で焼
成することを特徴とする触媒担体の製造方法。
(2) A base material is fixed to a metal foil in advance with an adhesive, etc., a molded body is made by spraying a low 4A metal fine powder onto the base material, and the molded body is supported so as to be surrounded by a mold, and then, A method for producing a catalyst carrier, characterized by firing in a non-oxidizing atmosphere.

(3)型枠内に基体を層状に配置し、該基体に金属微粉
末を低温溶射して被覆し、このような金属粉末を低温溶
射した基体層を重ねて成形体を形成し、この型枠に支持
した成形体を非酸化性雰囲気で焼成することを特徴とす
る触媒担体の製造方法。
(3) A substrate is arranged in layers in a mold, the substrate is coated with fine metal powder by low-temperature spraying, and a molded body is formed by stacking the substrate layers coated with such metal powder by low-temperature spraying. A method for producing a catalyst carrier, comprising firing a molded body supported on a frame in a non-oxidizing atmosphere.

(4)予め基材に触媒を担持させることを特徴とする前
記(1) 、 (2)または(3)記載の触媒担体の製
造方法である。
(4) The method for producing a catalyst carrier as described in (1), (2) or (3) above, characterized in that the catalyst is supported on the base material in advance.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は基本的には、紐状の基材に金属を低温溶射して
成形固化し、成形体をつくり、その成形体を非酸化性雰
囲気で焼成することにより、基材を液化ないし気化させ
て除去すると共に溶射金属の焼結を更に強固になるよう
にし、境界が薄く、細長い一定形状の曲った通孔か集合
した、かつその全体を包む外筒も曲管となる触媒担体の
製造方法である。
Basically, the present invention involves low-temperature thermal spraying of metal onto a string-like base material, molding and solidification, creating a molded body, and firing the molded body in a non-oxidizing atmosphere to liquefy or vaporize the base material. A method for producing a catalyst carrier in which the sintering of the sprayed metal is further strengthened, the boundary is thin, the curved through holes of a long and narrow fixed shape are gathered, and the outer cylinder surrounding the whole is also a curved pipe. It is.

本発明の方法では、溶射技術を応用して、より複雑な形
状の金属製触媒担体を製造することができる。具体的に
は、ウレタンゴムやナイロン等の樹脂を基材として用い
、成形体を想定した数量、長さ及び形状に揃える。基材
は溶射金属の成形体形状を維持するための材料であり、
焼成段階で大きな体積変化を起こさず金属の接着を破壊
しない物で、かつ、焼結反応が終了するまでに気化する
材料であれば採用できる。また、基材は可撓性を有し、
成形体(ハニカム体)の長さ方向の形状に合致するよう
、任意の曲率に変形できることが好ましい。
In the method of the present invention, a metal catalyst carrier having a more complicated shape can be manufactured by applying thermal spraying technology. Specifically, a resin such as urethane rubber or nylon is used as a base material, and the number, length, and shape of the molded product are adjusted to match the expected number. The base material is a material that maintains the shape of the sprayed metal molded object.
Any material can be used as long as it does not cause a large volume change during the sintering stage and does not destroy metal adhesion, and that evaporates before the sintering reaction is completed. In addition, the base material has flexibility,
It is preferable that it can be deformed to an arbitrary curvature so as to match the longitudinal shape of the formed body (honeycomb body).

その基材に金属を低温溶射法によってコーティングする
The base material is coated with metal by low-temperature spraying.

次に本発明に用いる低温溶射法はエアをアーク円周のス
リット部から噴射し、このエアで形成される円椎形の減
圧層内で2本の溶封(ワイヤー)を交差し、この先端部
でアークを発生させて溶封を溶融させる。そして溶融金
属は噴射低温気流内からエア気流中にバキュームされ、
低温圧力気流中で粉砕微粒子化され、そしてこの瞬時に
粒子温度は低温化され、エアと共に基材に激突付着させ
るものである。
Next, in the low-temperature spraying method used in the present invention, air is injected from a slit on the circumference of the arc, and within the cylindrical reduced pressure layer formed by this air, two melting seals (wires) are crossed, and the tip of the An arc is generated in the section to melt the seal. The molten metal is then vacuumed from within the jet cold air stream into the air stream,
The particles are pulverized into fine particles in a low-temperature pressure air stream, and the temperature of the particles is instantly lowered to make them collide with air and adhere to the base material.

溶射に際し、基材の表面が滑らか過ぎると金属の溶着効
率が低下し、また基材が熱によって変形し易い場合は溶
着によって成形した物の寸法精度が悪くなるので、必要
に応じて有機バインダー澱粉など表面の粗度を上げるか
接着率を改善する物質、熱に強い物質等を塗布しておく
と良い。塗布剤は基材と同様に金属の焼結が完了するま
でに気化消滅する材料であれば採用できる。
During thermal spraying, if the surface of the base material is too smooth, the metal welding efficiency will decrease, and if the base material is easily deformed by heat, the dimensional accuracy of the welded product will deteriorate, so if necessary, an organic binder starch is used. It is a good idea to apply a substance that increases the roughness of the surface or improves the adhesion rate, or a substance that is resistant to heat. The coating agent can be any material that evaporates and disappears by the time the metal sintering is completed, similar to the base material.

低温溶射する金属の酸化を極力抑制するために、搬送ガ
スは窒素、アルゴン等の非酸化性ガスを使用する。また
、できれば遠隔操作または自動機器を用いて窒素、アル
ゴン等の中性ガスで雰囲気調整された専用室内で低温溶
射作業を完了させることが好ましい。
In order to suppress oxidation of the metal to be sprayed at low temperature as much as possible, a non-oxidizing gas such as nitrogen or argon is used as the carrier gas. Furthermore, it is preferable to complete the low-temperature thermal spraying work in a dedicated room whose atmosphere is controlled with a neutral gas such as nitrogen or argon, preferably by remote control or by using automatic equipment.

そのようにして基材表面に金属を溶着する作業は、−回
に一層の膜しか成形できないのでそれを繰り返して最終
製品となる超薄肉厚(はぼ40〜100w)の細長い管
が集合し層状に積み重なった成形体に仕上げる。この成
形体は、金属例えばステンレス等の耐熱鋼よりなる型枠
(本発明触媒担体の外筒を構成する)に固定支持され、
この型枠は筒を半割りにしたものを用いるのが製造上便
利である(以後半割り型枠に固定支持した成形体を半割
り構造体と呼ぶ)が、本発明は、これに限定されるもの
ではない。
In this process of welding metal to the surface of the base material, only one layer of film can be formed per cycle, so the process is repeated to assemble a long, thin tube with an ultra-thin wall thickness (approximately 40 to 100 w) to form the final product. Finish into a molded body stacked in layers. This molded body is fixedly supported by a mold made of metal such as heat-resistant steel such as stainless steel (constituting the outer cylinder of the catalyst carrier of the present invention),
It is convenient for manufacturing to use this formwork with a cylinder divided in half (hereinafter, the molded body fixedly supported by the half-split formwork will be referred to as a half-split structure), but the present invention is not limited to this. It's not something you can do.

前記層の境界には金属箔を入れることができ、それによ
って構造体の強度のバラツキを小さくできる。基材と溶
着金属あるいはこれと金属箔により構成された半割り構
造体をN2ガス、N2ガス、N2とN2の混合ガス、真
空等の非酸化性雰囲気下で焼成する。溶着金属あるいは
金属箔が鉄とC「の合金の場合、1400℃×2時間、
鉄とNiの合金の場合で1200℃×2時間の焼結時間
を確保することにより、超薄肉厚の細長い萱が集合した
触媒担体用素材か焼成できる。
Metal foils can be placed at the boundaries of the layers, thereby reducing variations in the strength of the structure. A half-split structure composed of the base material and the welded metal or the same and the metal foil is fired in a non-oxidizing atmosphere such as N2 gas, N2 gas, a mixed gas of N2 and N2, or vacuum. If the weld metal or metal foil is an alloy of iron and carbon, heat at 1400°C for 2 hours.
In the case of an alloy of iron and Ni, by ensuring a sintering time of 2 hours at 1200°C, it is possible to sinter a material for a catalyst carrier in which ultra-thin walled elongated grasses are assembled.

その後に、上記処理をした半割り構造体の対を溶接して
一体化することにより触媒担体か製造でる。
Thereafter, a catalyst carrier is manufactured by welding and integrating the pair of half-structures subjected to the above treatment.

次に第1図により本発明の触媒担体の製造フローの一例
を説明する。
Next, an example of the manufacturing flow of the catalyst carrier of the present invention will be explained with reference to FIG.

例えば、合成樹脂からなる紐状の基材4(第1図(a)
参照)を、半割り型枠8内に微小間隙(40〜100−
程度)をあけ型枠形状に沿って平行に接着剤で並列固定
し、ステンレス鋼を低温溶射する(第1図(b)参照)
。基材4表面に塗布する接着剤は、基材を固定する目的
と、溶射金属の溶着効率を改善する効果を持つものを使
用する。
For example, a string-like base material 4 made of synthetic resin (Fig. 1(a)
) in the half-split formwork 8 with a minute gap (40 to 100-
Open the formwork and fix it in parallel with adhesive in parallel along the shape of the formwork, and then low-temperature spraying of stainless steel is applied (see Figure 1 (b)).
. The adhesive applied to the surface of the base material 4 is used for the purpose of fixing the base material and for improving the welding efficiency of the sprayed metal.

従って、接着剤にベントナイト、アルミナ微粉末等を混
ぜる場合かある。触媒の耐熱性が極めて高い場合は最終
製品を想定して、直接触媒を接着することもできる。例
えば、PL、Pd、Co。
Therefore, bentonite, fine alumina powder, etc. may be mixed into the adhesive. If the catalyst has extremely high heat resistance, it is also possible to directly adhere the catalyst to the final product. For example, PL, Pd, Co.

Rh 、Ag30i等の遷移金属あるいはその酸化物、
またはそれらの複合酸化物を、PVA。
Transition metals such as Rh and Ag30i or their oxides,
Or their composite oxide, PVA.

CMC等の接着剤で基材表面に接着し、接着剤か固化す
る前にそれを型枠に貼り付ける。然る後、触媒担体とな
る金属を低温溶射で溶射し、成形する。
Adhere to the surface of the base material with an adhesive such as CMC, and attach it to the formwork before the adhesive hardens. After that, the metal that will become the catalyst carrier is sprayed by low-temperature spraying and shaped.

このようにして基材4にステンレス鋼5を低温溶射した
ら、半割り型枠8が埋まるまで基材層の固定、金属の低
温溶射を繰り返す(第1図(C)参照)。該型枠8の内
側には、成形体の溶着をより強固にするために金属ロウ
剤を塗布することが好ましい。
After the stainless steel 5 is low-temperature sprayed onto the base material 4 in this manner, fixing of the base material layer and low-temperature spraying of metal are repeated until the half-split formwork 8 is filled (see FIG. 1(C)). It is preferable to apply a metal brazing agent to the inside of the mold 8 in order to further strengthen the welding of the molded body.

また、予めステンレス製の箔9の上に基材4を固定して
おいてその上にステンレスを低温溶射したもの(第1図
(d)参照)を型枠内に積み重ねても良い(第1図(e
)参照)。その場合、必要に応じて゛金属ロウを接着剤
で塗布し、燐酸後の溶射金属と金属箔との接着強度を向
上させることができる。
Alternatively, the base material 4 may be fixed in advance on a stainless steel foil 9, and then stainless steel may be sprayed at a low temperature on top of the base material 4 (see FIG. 1(d)), and then stacked in the formwork (the first Figure (e
)reference). In that case, if necessary, a metal solder can be applied with an adhesive to improve the adhesive strength between the sprayed metal and the metal foil after phosphoric acid.

このようにして、成形した半割り構造体を上記雰囲気で
焼成すると、基材4は除去され、超薄肉厚の細長い管が
集合したハニカム構造の触媒担体用素材lOが焼成でき
る。これを第1図(「)に示すように対の構造体を型枠
8同士で溶接して触媒担体11を製造する。
When the half-split structure formed in this manner is fired in the above atmosphere, the base material 4 is removed, and a catalyst carrier material 1O having a honeycomb structure in which ultra-thin walled elongated tubes are assembled can be fired. As shown in FIG. 1 ( ), the paired structures are welded together using the molds 8 to produce the catalyst carrier 11 .

上記第1図には、半割り構造体を焼成後、型枠を溶接し
た場合を示したが、本発明は別の態様により、製造して
もよい。すなわち型枠の対を溶接して外筒を形成し、こ
の外筒内に支持された金属被覆した基体層を有する担体
素材を上記した雰囲気で焼成する方法でもよく、これに
よって基体を除去すると共に被覆金属層を焼結させ、除
去された基材部が通孔となるハニカム体が外筒と一体形
成される。
Although FIG. 1 above shows a case in which the formwork is welded after firing the half-split structure, the present invention may be manufactured in another embodiment. In other words, a method may be used in which a pair of molds are welded to form an outer cylinder, and a carrier material having a metal-coated base layer supported within the outer cylinder is fired in the above-mentioned atmosphere, thereby removing the base and The coated metal layer is sintered, and a honeycomb body is integrally formed with the outer cylinder, with the removed base portion serving as the through hole.

また、金属箔に基材を接着剤等で固定し、金属微粉末を
低温溶射する際、長尺の金属箔を用いこれに目的とする
担体の長さ形状に合致する如く基材を配列し、低温溶射
を行い、その後、金属箔を担体形状に合うよう、そして
層状に重ね合わせられるように所要寸法に切断し、型枠
内に積層しても良く、又、所定の曲げ形状の基材を配列
固定した長尺の金属箔に、金属微粉末を低温溶射し、そ
の長尺の金属箔を渦巻状に巻回し、この渦巻体を半分に
切断後半割りの型枠に挿入するか、前記渦巻体を筒状内
或は半割りの型枠内に挿入支持せしめても良い。
In addition, when fixing a base material to metal foil with an adhesive or the like and spraying fine metal powder at a low temperature, a long metal foil is used and the base material is arranged so as to match the length and shape of the intended carrier. , low-temperature thermal spraying is performed, and then the metal foil is cut to the required dimensions to match the shape of the carrier and layered so that it can be stacked in a formwork, or the base material can be formed into a predetermined bent shape. Fine metal powder is sprayed at a low temperature on a long metal foil arranged and fixed, the long metal foil is wound in a spiral shape, and this spiral body is cut in half and inserted into a half-split formwork, or The spiral body may be inserted and supported within a cylindrical shape or a half-split formwork.

以上説明したように、本発明は特に曲管タイプの触媒担
体を製造するのに有利であり、型枠8を曲管にしておけ
ば良い。
As explained above, the present invention is particularly advantageous for manufacturing a curved tube type catalyst carrier, and the formwork 8 may be formed into a curved tube.

なお、基材の断面形状は円、角等種々の形が考えられ、
特に限定されるものではない。
Note that the cross-sectional shape of the base material can be of various shapes such as circular, square, etc.
It is not particularly limited.

(実 施 例) 次に本発明の実施例について述べる。(Example) Next, examples of the present invention will be described.

(実施例1) 第1表に示した成分のステンレスを用い、ステンレス製
の枠(半割り状の外筒)内に接着剤PVAで固定した合
成ゴム紐に低温溶射した(第1図(b)参照)。合成ゴ
ムの固定と低温溶射を型枠が埋まるまで繰り返し、成形
体を作った(第1図(c)参照)、それを・H2雰囲気
下で1350℃×3時間焼成して超薄肉厚の細長い管が
集合した半割り構造の触媒担体用素材の対を作り、その
対を溶接して一体構造の担体を製作した。完成後の成品
寸法を第3表に、圧損測定結果を第4表に示す。
(Example 1) Using stainless steel with the components shown in Table 1, it was low-temperature sprayed onto a synthetic rubber string fixed with adhesive PVA in a stainless steel frame (half-shaped outer cylinder) (Fig. 1 (b) )reference). The fixing of synthetic rubber and low-temperature spraying were repeated until the mold was filled to create a molded body (see Figure 1 (c)), which was then baked at 1350°C for 3 hours in an H2 atmosphere to form an ultra-thin walled body. A pair of catalyst carrier materials with a half-split structure made up of long, thin tubes was made, and the pairs were welded together to create a monolithic carrier. Table 3 shows the dimensions of the completed product, and Table 4 shows the pressure loss measurement results.

(実施例2) 予め厚さ50μのステンレス箔に接着剤PVAて合成ゴ
ム紐を固定し、第2表に示した成分のステンレスを低温
溶射して、ステンレス箔にステンレスを溶射した板状1
8244体を成形した(第1図(d)参照)。予め、最
終構造を設計して製作した板状構造体を、外枠となる半
割りのステンレス管に並べてセットし、成形体を作った
(第1図(e)参照)。それをH2雰囲気下で900℃
×1時間焼成して超薄肉厚の細長い管が集合した半割り
構造の触媒担体用素材の対を作り、更に焼結強度を上げ
るために真空炉で1380℃×2時間焼成した。その対
を溶接して一体構造体を製作した。完成後の成品寸法を
第3表に、圧損測定結果を第4表に示す。
(Example 2) A synthetic rubber string was fixed in advance to a stainless steel foil with a thickness of 50 μm using PVA adhesive, and stainless steel having the components shown in Table 2 was sprayed at a low temperature.
8244 bodies were molded (see Figure 1(d)). The plate-like structure whose final structure had been designed and manufactured in advance was set side by side on a half-split stainless steel tube that would serve as an outer frame, to produce a molded body (see FIG. 1(e)). It was heated to 900℃ under H2 atmosphere.
This was fired for 1 hour to produce a pair of half-structured catalyst carrier materials in which ultra-thin elongated tubes were assembled, and further fired at 1380°C for 2 hours in a vacuum furnace to increase the sintering strength. The pair was welded to create an integral structure. Table 3 shows the dimensions of the completed product, and Table 4 shows the pressure loss measurement results.

(実施例3) 断面が一辺の長さ3■■の正三角形の合成ゴム紐を、P
VA5%溶液に浸し、その表面に平均粒度がlOμのP
L粉末を粉体塗装機を使って噴霧し表面に固着させた。
(Example 3) A synthetic rubber cord with an equilateral triangular cross section and a side length of 3
Immersed in VA 5% solution, P with an average particle size of lOμ is placed on the surface.
L powder was sprayed using a powder coating machine and fixed on the surface.

然る後、厚さ60μのステンレス箔にPVA5%溶液を
塗って貼りつけ第2表に示した成分のステンレスを低温
溶射した。ステンレス箔に合成ゴムを貼り、その合成ゴ
ムの表面はPt粉で覆われ、更にその表面にステンレス
を溶射した板状構造体を成形した。予め、最終構造を設
計して製作した板状構造体を、外枠となる半割りのステ
ンレス管に並べてセットし、成形体を作った。それをH
2雰囲気下で900℃×1時間焼成して超薄肉厚の細長
い管が集合した半割り構造の触媒担体用素材の対を作り
、更に焼結強度を上げるために真空炉で1380℃×2
時間焼成した。その対を溶接して一体構造体を製作した
。完成後の成品寸法、圧損測定結果はほぼ実施例2と同
等で、触媒効果も実施例2にP【をめっきして製作した
ものとほぼ同等の効果を上げた。
Thereafter, a 5% PVA solution was applied to a stainless steel foil having a thickness of 60 μm, and stainless steel having the components shown in Table 2 was sprayed at a low temperature. Synthetic rubber was pasted on stainless steel foil, the surface of the synthetic rubber was covered with Pt powder, and stainless steel was further sprayed on the surface to form a plate-like structure. The final structure was designed and manufactured in advance, and the plate-like structure was set side by side in a stainless steel tube cut in half to serve as the outer frame, to create a molded body. H that
2. Sintered at 900°C for 1 hour in a vacuum furnace to create a pair of catalyst carrier materials with a half-split structure made up of ultra-thin and long tubes, and then fired at 1380°C in a vacuum furnace for 2 hours to further increase the sintering strength.
Baked for an hour. The pair was welded to create an integral structure. The dimensions of the completed product and the pressure drop measurement results were almost the same as in Example 2, and the catalytic effect was almost the same as that of Example 2 manufactured by plating with P.

(本発明の効果) 本発明により、従来のメタル担体では技術的に不可能で
あった距離まで触媒押体を排気配管内のエンジン直近部
まで近づけることができる。それにより、排気ガスの温
度かより高い状態のまま、触媒を作用させることができ
るので、触媒反応効率か上がり、エンジンの効率、出力
の向上を図ることができる。
(Effects of the Present Invention) According to the present invention, the catalyst pusher can be brought close to the engine in the exhaust pipe to a distance that was technically impossible with conventional metal carriers. As a result, the catalyst can be operated while the temperature of the exhaust gas remains higher, thereby increasing the catalytic reaction efficiency and improving engine efficiency and output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の触媒担体の製造フローを示す説明図、
第2図は従来の金属担体の説明図である。 1・・・金属担体     2・・・ハニカム体3・・
・外 筒     4・・・基 材5・・・低温溶射機
    6・・・低温溶射溶融金属7・・・搬送ガス 
    8・・・外 筒9・・・金属箔 10・・・細長い管が集合した触媒担体用素材11・・
・触媒担体
FIG. 1 is an explanatory diagram showing the manufacturing flow of the catalyst carrier of the present invention,
FIG. 2 is an explanatory diagram of a conventional metal carrier. 1... Metal carrier 2... Honeycomb body 3...
・Outer cylinder 4...Base material 5...Low temperature spraying machine 6...Low temperature spraying molten metal 7...Carrier gas
8...Outer tube 9...Metal foil 10...Catalyst carrier material 11 made up of elongated tubes...
・Catalyst carrier

Claims (4)

【特許請求の範囲】[Claims] (1)型枠内に基体を配列し、該基材に金属微粉末を低
温溶射して成形体をつくり、然る後、非酸化性雰囲気で
焼成することを特徴とする触媒担体の製造方法。
(1) A method for producing a catalyst carrier, which comprises arranging substrates in a mold, forming a molded body by low-temperature thermal spraying of fine metal powder onto the substrate, and then firing in a non-oxidizing atmosphere. .
(2)基材を予め金属箔に固定し、該基材に金属微粉末
を低温溶射して成形体をつくり、これを型枠で包囲する
如く支持し、然る後、非酸化性雰囲気で焼成することを
特徴とする触媒担体の製造方法。
(2) A base material is fixed in advance to metal foil, a molded body is made by low-temperature spraying of metal fine powder onto the base material, and the molded body is supported so as to be surrounded by a mold, and then placed in a non-oxidizing atmosphere. A method for producing a catalyst carrier, which comprises firing.
(3)型枠内に基体を層状に配置し、該基体に金属微粉
末を低温溶射して被覆し、このような金属粉末を低温溶
射した基体層を重ねて成形体を形成し、この型枠に支持
した成形体を非酸化性雰囲気で焼成することを特徴とす
る触媒担体の製造方法。
(3) A substrate is arranged in layers in a mold, the substrate is coated with fine metal powder by low-temperature spraying, and a molded body is formed by stacking the substrate layers coated with such metal powder by low-temperature spraying. A method for producing a catalyst carrier, comprising firing a molded body supported on a frame in a non-oxidizing atmosphere.
(4)予め基材に触媒を担持させることを特徴とする請
求項1,2または3記載の触媒担体の製造方法。
(4) The method for producing a catalyst carrier according to claim 1, 2 or 3, characterized in that the catalyst is supported on the base material in advance.
JP2120654A 1990-05-10 1990-05-10 Preparation of catalyst carrier Pending JPH0416241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120654A JPH0416241A (en) 1990-05-10 1990-05-10 Preparation of catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120654A JPH0416241A (en) 1990-05-10 1990-05-10 Preparation of catalyst carrier

Publications (1)

Publication Number Publication Date
JPH0416241A true JPH0416241A (en) 1992-01-21

Family

ID=14791584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120654A Pending JPH0416241A (en) 1990-05-10 1990-05-10 Preparation of catalyst carrier

Country Status (1)

Country Link
JP (1) JPH0416241A (en)

Similar Documents

Publication Publication Date Title
KR0168990B1 (en) Exhaust gas cleaning metal carrier and method of maufacturing the same
JP2931362B2 (en) Resistance control type heater and catalytic converter
JP2901759B2 (en) Manufacturing method of catalytic converter
JP2919987B2 (en) Resistance adjustment type heater
KR920009120B1 (en) Matallic carrier base for carrying exhaust gas purifying catalyst
JPH04301168A (en) Manufacture of combustion chamber wall particularly for rocket engine and combustion chamber obtained through said method
JPH04280087A (en) Honeycomb heater
JPH05144549A (en) Heater unit
JPH04241715A (en) Resistance adjusting type heater
RU2271864C2 (en) Method of preparing catalyst-containing solid product and device for applying supporting porous material onto inside or outside metallic surface of a hollow body
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
JPH0235940A (en) Carrier body for catalytic reactor
JP3976789B2 (en) Method for manufacturing metal honeycomb body
JPH0416241A (en) Preparation of catalyst carrier
US20220410136A1 (en) Honeycomb structure, exhaust gas purification catalyst, and exhaust gas purification system
JPH03275147A (en) Production of catalyst carrier
JPS62237945A (en) Plate-shaped catalyst
JPH0372954A (en) Preparation of catalyst carrier
JP2885830B2 (en) Metal supporting matrix for supporting exhaust gas purifying catalyst
WO1994025206A1 (en) Corrosion resistant porous body and production process
JP3315742B2 (en) Manufacturing method of metal carrier
JPH02194843A (en) Manufacture of metallic carrier for catalyst of automobile
RU2032463C1 (en) Carrier of catalyst for purification of exhaust gases of internal combustion engines and method for its preparation
JPH01203042A (en) Production of catalyst converter for purifying exhaust gas and catalyst converter
JPH03288525A (en) Honeycomb heater and catalyst converter