JPH0416175Y2 - - Google Patents

Info

Publication number
JPH0416175Y2
JPH0416175Y2 JP13003787U JP13003787U JPH0416175Y2 JP H0416175 Y2 JPH0416175 Y2 JP H0416175Y2 JP 13003787 U JP13003787 U JP 13003787U JP 13003787 U JP13003787 U JP 13003787U JP H0416175 Y2 JPH0416175 Y2 JP H0416175Y2
Authority
JP
Japan
Prior art keywords
subsidence
plate
measurement
shaped body
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13003787U
Other languages
Japanese (ja)
Other versions
JPS6437611U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13003787U priority Critical patent/JPH0416175Y2/ja
Publication of JPS6437611U publication Critical patent/JPS6437611U/ja
Application granted granted Critical
Publication of JPH0416175Y2 publication Critical patent/JPH0416175Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、港湾工事において大規模、大水深の
捨石基礎マウンドを敷設する際の海底地盤の経時
的な沈下量と傾斜量とを容易に計測し、かつ即座
にその結果のデータを処理装置に伝達する沈下計
測用沈下板の計測装置に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention easily measures the amount of subsidence and inclination of seabed ground over time when laying large-scale, deep-water rubble foundation mounds in port construction. The present invention relates to a measurement device for a settlement plate for measuring settlement, which measures the measurement and immediately transmits the resulting data to a processing device.

〔従来技術〕[Prior art]

従来、港湾工事における防波堤等を設置するた
めに大規模、大水深の捨石基礎マウンドを敷設す
る際の海底地盤3の沈下量と傾斜量とを計測する
ためには、第4図に示すように海底地盤3にあら
かじめ沈下板2を立設しておき、その沈下板2の
上部にスタツフ5を立設し、陸上6のトランシツ
ト、レベル7からのスタツフ5の読みにより海底
地盤3のレべルを計測し、経時的にその沈下量と
傾きを算出している。
Conventionally, in order to measure the amount of subsidence and inclination of the seabed ground 3 when laying a large-scale, deep-water rubble foundation mound to install a breakwater etc. in port construction, a method was used as shown in Figure 4. A sinking plate 2 is erected in advance on the seabed ground 3, a staff 5 is erected on top of the sinking board 2, and the level of the seabed ground 3 is determined by reading the staff 5 from the transit on land 6 and level 7. The amount of subsidence and slope are calculated over time.

しかしながら、上記従来の沈下板の計測方式で
は、陸上6からのトランシツト、レベル7等によ
る計測、スタツフ5の取付け等に多大な労力がか
かり、また、スタツフ5も波浪や潮流の影響を受
ける等の欠点があり、特に近年のごとく、大水深
で、陸上6からはるかに離れた沖合に防波堤等を
構築する場合の捨石基礎マウンド1敷設時に海底
地盤3に立設した沈下板2のスタツフ5を離れた
位置の陸上6からトランシツト、レベル7で計測
した場合、その計測誤差が大きくなるという問題
があつた。
However, in the above-mentioned conventional method of measuring the settling plate, a great deal of effort is required for transit from land 6, measurement using level 7, etc., installation of the staff 5, etc., and the staff 5 is also affected by waves and currents. There is a drawback, especially in recent years, when building a breakwater or the like in deep water and far offshore from land 6, when laying the rubble foundation mound 1, it is difficult to separate the foundation 5 of the sinking plate 2 erected on the seabed 3. There was a problem in that when measurements were taken at transit level 7 from land 6 at a certain position, the measurement error became large.

〔考案の目的〕[Purpose of invention]

本考案は前記従来の問題点を解消するためにな
されたものであり、沈下計測用沈下板の沈下量と
傾斜度合とを容易に、かつ正確に計測し、しかも
即座にその結果を提供できる計測装置を提供する
ことを目的としたものである。
The present invention was made in order to solve the above-mentioned conventional problems, and is a measurement method that can easily and accurately measure the amount of settlement and the degree of inclination of a settlement plate for settlement measurement, and can provide the results immediately. The purpose is to provide equipment.

〔考案の構成〕[Structure of the idea]

上記の目的を達成するための本考案の沈下計測
用沈下板(以下沈下板という)は、板状体とそれ
に立設する棒状体からなり、その計測装置は、海
底地盤上にあらかじめ立設された沈下板の上に、
架台を介して沈下板の軸方向を中心に回転自在な
回転アームを設けると共に、その回転アームの両
端にそれぞれ圧力センサーを取付け、それらの圧
力センサーからの水圧データを海面の支援船等の
船上の処理装置に伝達するケーブル等の伝達手段
を設けることにより構成される。
The subsidence plate for subsidence measurement (hereinafter referred to as the subsidence plate) of the present invention to achieve the above purpose consists of a plate-shaped body and a rod-shaped body installed on the plate-shaped body, and its measuring device is installed in advance on the seabed ground. On top of the sinking board,
A rotary arm that can freely rotate around the axis of the sinking plate is provided via a mount, and pressure sensors are attached to each end of the rotary arm, and the water pressure data from these pressure sensors is transmitted to a ship such as a support vessel on the sea surface. It is constructed by providing a transmission means such as a cable for transmitting data to the processing device.

上記の構成からなる計測装置では、圧力センサ
ーからの水圧データに海水比重及び潮位を補正す
ることにより各圧力センサーの水深が得られ、こ
れらの水深データから沈下板の水深を処理装置で
算出し、また、2つの圧力センサーによる各水深
データの差と両方の圧力センサーの間隔とによつ
て沈下板の傾きが処理装置によつて算出されるよ
うになつている。
In the measuring device configured as described above, the water depth of each pressure sensor is obtained by correcting the water pressure data from the pressure sensor with seawater specific gravity and tide level, and the processing device calculates the water depth of the subsidence plate from these water depth data. Further, the inclination of the sinking plate is calculated by the processing device based on the difference between water depth data obtained by the two pressure sensors and the interval between both pressure sensors.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を説明する
が、第1図は本考案の一実施例における沈下板の
計測装置の要部側面図、第2図は第1図の圧力セ
ンサーの説明図、第3図は第1図の沈下板の計測
装置を用いて計測中の状態を示す全体概要図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of essential parts of a subsidence plate measuring device in an embodiment of the present invention, and FIG. 2 is an explanation of the pressure sensor shown in FIG. 1. FIG. 3 is an overall schematic diagram showing a state during measurement using the settling plate measuring device of FIG. 1.

まず、第3図に示すごとく、海底地盤3にあら
かじめ立設された沈下計測用の沈下板2上に、第
1図のごとく架台10を取付け、それを介して沈
下板2の軸方向Aを中心に潜水夫により回転させ
る回転アーム11を設けると共に、その回転アー
ム11の両端にそれぞれ圧力センサー12を取付
け、これらの圧力センサー12からの水圧データ
を第3図に示す支援船13等の船上の処理装置1
処理までケーブル15で伝達可能としている。
First, as shown in FIG. 3, the mount 10 is installed on the subsidence plate 2 for subsidence measurement, which has been erected in advance on the seabed ground 3, as shown in FIG. 1, and the axial direction A of the subsidence plate 2 is A rotary arm 11 is provided at the center to be rotated by a diver, and pressure sensors 12 are attached to each end of the rotary arm 11, and the water pressure data from these pressure sensors 12 is transmitted to a ship such as a support ship 13 as shown in FIG. Processing device 1
The information can be transmitted through the cable 15 until processing.

なお、上記架台10、回転アーム11、圧力セ
ンサー12及びケーブル15等からなるこの沈下
板2の計測装置の検出部は、潜水夫等により水中
の沈下板2の上部に設置されるものとする。
It is assumed that the detection section of the measuring device for the sinking plate 2, which includes the pedestal 10, the rotary arm 11, the pressure sensor 12, the cable 15, etc., is installed above the sinking plate 2 underwater by a diver or the like.

次に、上記各圧力センサー12の水深は圧力セ
ンサー12からの水圧データに、海水比重及び潮
位を補正して処理装置14で算出されるが、これ
らの水深データには波浪の影響が含まれているの
で、ある一定時間計測し、その平均化等の処理を
行なうものである。
Next, the water depth of each pressure sensor 12 is calculated by the processing device 14 by correcting the seawater specific gravity and tide level to the water pressure data from the pressure sensor 12, but these water depth data include the influence of waves. Therefore, measurements are taken over a certain period of time and processing such as averaging is performed.

そこで、沈下板2の水深を算出するには、第2
図のように2つの圧力センサー12による各水深
データを平均化することによつて、水深H=
H1+H2/2のごとく求められ、沈下板2の傾きθ は、2つの圧力センサー12による各水深データ
の差と、両圧力センサー12の間隔lとにより、
θ=sin-1H1+H2/lのごとく算出される。つづい て、回転アーム11を90°回転させて上記計測を
繰り返し、上記測定した方向と直交した方向の傾
きを計測する。
Therefore, in order to calculate the water depth of the subsidence plate 2, the second
As shown in the figure, by averaging each water depth data from two pressure sensors 12, water depth H=
H 1 +H 2 /2 is obtained, and the inclination θ of the sinking plate 2 is determined by the difference between the water depth data obtained by the two pressure sensors 12 and the distance l between the two pressure sensors 12.
It is calculated as θ=sin −1 H 1 +H 2 /l. Subsequently, the rotary arm 11 is rotated 90 degrees and the above measurement is repeated, and the inclination in the direction perpendicular to the direction measured above is measured.

これらの沈下板2の水深Hと傾きθの各データ
は、処理装置14の中で記憶し、経時的に計測を
繰り返すことにより、以前のデータとの差から沈
下板2の沈下量と傾斜の方向、角度等を即時に両
面またはプリンター等に出力することができ、そ
の処理装置14には、交換器、増幅器、演算装
置、出力装置及び記憶装置等が含まれている。そ
して、ある位置での計測を終了したら、潜水夫が
架台10を沈下板2から取外し、架台10より上
の部分の装置を次の計測地点に運び、その計測地
点の沈下板上に設置して同様の計測を行う。
Each data of the water depth H and the inclination θ of the subsidence plate 2 is stored in the processing device 14, and by repeating the measurement over time, the subsidence amount and inclination of the subsidence plate 2 can be determined from the difference with the previous data. The direction, angle, etc. can be immediately output on both sides or to a printer, etc., and the processing device 14 includes an exchanger, an amplifier, an arithmetic device, an output device, a storage device, etc. After completing the measurement at a certain position, the diver removes the pedestal 10 from the subsidence plate 2, carries the device above the pedestal 10 to the next measurement point, and installs it on the subsidence plate at that measurement point. Perform similar measurements.

〔考案の効果〕[Effect of idea]

以上に説明したごとく、本考案の計測装置で
は、従来のごとく陸上からのトランシツト、レベ
ル等によるスタツフの計測を行なわないので、陸
上から遠い沖合の大水深域に敷設した捨石基礎マ
ウンドの沈下量及び傾斜度合を容易に、かつ正確
に計測し、しかもその結果を即座に提供できると
いう効果がある。
As explained above, the measuring device of the present invention does not measure the staff by transit, level, etc. from land as in conventional methods, so it is possible to measure the amount of settlement of a rubble foundation mound laid in a deep water area far offshore from land. This has the advantage that the degree of inclination can be easily and accurately measured and the results can be provided immediately.

特に本考案の装置は、圧力センサーのみで沈下
量と傾斜度合との両方を計測できるので、装置自
体がコンパクトになり、かつ構造が簡単になり、
それだけ安価に構成できるという利点がある。
In particular, the device of this invention can measure both the amount of subsidence and the degree of inclination using only a pressure sensor, so the device itself is compact and has a simple structure.
This has the advantage that it can be constructed at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例における沈下板の計
測装置の要部側面図、第2図は第1図の圧力セン
サーの説明図、第3図は第1図の沈下板の計測装
置を用いて計測中の状態を示す全体概要図、第4
図は従来の計測装置の概要図である。 1……捨石基礎マウンド、2……沈下板、3…
…海底地盤、10……架台、11……回転アー
ム、12……圧力センサー、13……支援船、1
4……処理装置、15……ケーブル、A……軸方
向。
Fig. 1 is a side view of the main parts of the subsidence plate measuring device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the pressure sensor shown in Fig. 1, and Fig. 3 is the subsidence plate measuring device shown in Fig. 1. Overall schematic diagram showing the state during measurement using the 4th
The figure is a schematic diagram of a conventional measuring device. 1...Rubble foundation mound, 2...Settlement board, 3...
...Seafloor ground, 10... Frame, 11... Rotating arm, 12... Pressure sensor, 13... Support ship, 1
4... Processing device, 15... Cable, A... Axial direction.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 板状体とそれに立設する棒状体からなる沈下計
測用沈下板を海底地盤上に載置し、沈下計測用沈
下板の棒状体の上に、架台を介して沈下板の軸方
向を中心に回転自在な回転アームを設けると共
に、その回転アームの端部に圧力センサーを取付
け、それらの圧力センサーからの水圧データを海
面の船上の処理装置に伝達する手段を設けた海底
地盤の沈下計測用沈下板の計測装置。
A settlement plate for subsidence measurement consisting of a plate-shaped body and a rod-shaped body erected thereon is placed on the seabed ground, and the subsidence plate is placed on the rod-shaped body of the subsidence measurement plate via a mount, centered in the axial direction of the subsidence plate. Subsidence for measuring the subsidence of submarine ground, which is equipped with a rotatable rotating arm, a pressure sensor attached to the end of the rotating arm, and a means for transmitting water pressure data from those pressure sensors to a processing device on board a ship on the sea surface. Board measuring device.
JP13003787U 1987-08-28 1987-08-28 Expired JPH0416175Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13003787U JPH0416175Y2 (en) 1987-08-28 1987-08-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13003787U JPH0416175Y2 (en) 1987-08-28 1987-08-28

Publications (2)

Publication Number Publication Date
JPS6437611U JPS6437611U (en) 1989-03-07
JPH0416175Y2 true JPH0416175Y2 (en) 1992-04-10

Family

ID=31384843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13003787U Expired JPH0416175Y2 (en) 1987-08-28 1987-08-28

Country Status (1)

Country Link
JP (1) JPH0416175Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763749B2 (en) * 2015-11-05 2020-09-30 セイコーインスツル株式会社 Mobile control system and mobile

Also Published As

Publication number Publication date
JPS6437611U (en) 1989-03-07

Similar Documents

Publication Publication Date Title
CA1208428A (en) Method for determining the position of a marine seismic receiver cable
CN110208812A (en) Unmanned vehicles seabed dimensional topography detection device and method partly latent
CN111350214B (en) Multi-beam underwater steel pipe pile position measuring method
US6700835B1 (en) System for subsea diverless metrology and hard-pipe connection of pipelines
CN104613906B (en) Reservoir area deep water water-depth measurement method based on ray traling
CN109059746A (en) A kind of bathymetric surveying method based on accurate POS
Yang et al. Geometric calibration of multibeam bathymetric data using an improved sound velocity model and laser tie points for BoMMS
Godin The calibration of shallow water multibeam echo-sounding systems
Dartnell et al. Sea-floor Images and Data from Multibeam Surveys in San Francisco Bay, Southern California, Hawaii, the Gulf of Mexico, and Lake Tahoe, California--Nevada
CN117008177B (en) Seabed control point three-dimensional coordinate calibration method based on integrated platform
JPH10123247A (en) Real-time underwater execution control method
JPH0416175Y2 (en)
CN205311857U (en) On -board formula drinking water measuring device's sonar installation mechanism
JP2004271326A (en) Seabed behavior measurement system
JPH0421059Y2 (en)
US4335520A (en) Survey spar system for precision offshore seafloor surveys
CN114966754A (en) Dam deepwater environment integrated precise positioning device and method
Society for Underwater Technology (SUT) et al. The bathymetric swathe sounding system
JP2001343237A (en) Depth-measuring method and device
JP3022643B2 (en) Underwater reference point surveying method and underwater reference point surveying device
Jardine Some problems in plotting the mean surface level of the North Sea and the Irish Sea during the last 15,000 years
Pettigrew et al. Acoustic Doppler current profiling from moored subsurface floats
Holt The application of the fusion positioning system to marine archaeology
Van Cauwenberghe Multibeam echosounder technology: a time series analysis of sandbank movement
Collar Near-surface current measurement from a surface following data buoy (DB1)—I: An intercomparison of records from data buoy current meters and near-surface drifting float displacements