JPH0416133B2 - - Google Patents

Info

Publication number
JPH0416133B2
JPH0416133B2 JP58216745A JP21674583A JPH0416133B2 JP H0416133 B2 JPH0416133 B2 JP H0416133B2 JP 58216745 A JP58216745 A JP 58216745A JP 21674583 A JP21674583 A JP 21674583A JP H0416133 B2 JPH0416133 B2 JP H0416133B2
Authority
JP
Japan
Prior art keywords
cooling
gas
temperature
cooked rice
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58216745A
Other languages
Japanese (ja)
Other versions
JPS60110255A (en
Inventor
Tooru Suzuki
Atsushi Yamazaki
Sadao Ikebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP58216745A priority Critical patent/JPS60110255A/en
Publication of JPS60110255A publication Critical patent/JPS60110255A/en
Publication of JPH0416133B2 publication Critical patent/JPH0416133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Description

【発明の詳細な説明】 この発明は、バラ状冷凍米飯を製造する際の予
冷にあたる米飯の冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling cooked rice, which corresponds to precooling when producing bulk frozen cooked rice.

従来、このような米飯の冷却方法としては、第
1図に示すような連続吸引冷却装置を用いる方法
がある。第1図中符号1はエンドレスベルトであ
つて、このエンドレスベルト1には通気のための
小孔が無数、全面に穿孔されている。エンドレス
ベルト1は、駆動ローラ2および従動ローラ3に
巻き掛けられて、図中矢印方向に移動するように
なつている。また、エンドレスベルト1の下側に
は、これに密着して吸引チヤンバー4が気密に設
けられている。この吸引チヤンバー4は、吸引ブ
ロワ5に連通されており、エンドレスベルト1の
小孔を経て、エンドレスベルト1の上方の気体
(空気)が吸引チヤンバー4に吸引されるように
構成されている。
Conventionally, as a method of cooling such cooked rice, there is a method using a continuous suction cooling device as shown in FIG. Reference numeral 1 in FIG. 1 is an endless belt, and this endless belt 1 has numerous small holes perforated over its entire surface for ventilation. The endless belt 1 is wound around a driving roller 2 and a driven roller 3, and moves in the direction of the arrow in the figure. Further, a suction chamber 4 is airtightly provided on the lower side of the endless belt 1 in close contact therewith. This suction chamber 4 is communicated with a suction blower 5, and is configured so that gas (air) above the endless belt 1 is sucked into the suction chamber 4 through small holes in the endless belt 1.

そして、エンドレスベルト1の従動ローラ3側
の端部に炊き上がつた米飯Aを、厚さ数cmの層状
をなすようにおき、エンドレスベルト1を移動さ
せると、米飯Aが吸引チヤンバー4上を通過して
駆動ローラ2側に移送される間に、米飯A上の空
気が米飯A層を通過してチヤンバー4に流れ、こ
れによつて米飯Aが所定の温度まで冷却される。
Then, the cooked rice A is placed on the end of the endless belt 1 on the driven roller 3 side so as to form a layer several centimeters thick, and when the endless belt 1 is moved, the cooked rice A flows over the suction chamber 4. While passing through and being transferred to the drive roller 2 side, the air above the cooked rice A passes through the cooked rice A layer and flows into the chamber 4, thereby cooling the cooked rice A to a predetermined temperature.

このような冷却方法にあつては、○イ米飯Aと気
体(空気)との接触が大きく、かつ減圧であるこ
とから米飯の水分の蒸発による潜熱をうばうた
め、著るしく冷却速度が早い。○ロ米飯層の上下方
向の温度偏差が極めて小さく、米飯層を撹拌する
必要がなく、均一に冷却できるなどの大きな利点
があるものの、一方○ハ原理的に乾燥機に近いもの
であることから、気体吸引時間を長くして十分に
冷却しようとすると、米飯の乾燥が著じるしく進
行する。○ニ米飯の冷凍のための予冷であつて、常
温より低い温度に十分に冷却することから、冷却
気体に常温より低い温度たとえば5℃程度の冷却
空気を用いると、この冷却空気を得るための冷凍
機やブロワを設置しなければならず設備が大きく
なり、運転コストも増大するなどの問題点があ
る。
In such a cooling method, since there is a large contact between the cooked rice A and the gas (air) and the pressure is reduced, the latent heat due to the evaporation of water in the cooked rice is absorbed, so the cooling rate is extremely fast. ○B) Although it has great advantages such as the temperature deviation in the vertical direction of the cooked rice layer is extremely small, there is no need to stir the cooked rice layer, and it can be cooled uniformly, ○C) On the other hand, it is similar in principle to a dryer. If an attempt is made to sufficiently cool the rice by increasing the gas suction time, the drying of the cooked rice will proceed significantly. ○This is pre-cooling for freezing cooked rice, and it is sufficiently cooled to a temperature lower than room temperature. Therefore, if cooling air at a temperature lower than room temperature, for example, about 5°C, is used as the cooling gas, it will be necessary to obtain this cooling air. There are problems in that a refrigerator and a blower must be installed, which increases the size of the equipment and increases operating costs.

ところで、本来上述のような吸引冷却方法によ
れば、第2図のグラフに示すように、長時間吸引
すれば、米飯水分の蒸発によつて吸引気体の温度
(To)より2〜3℃低い温度まで冷却が可能であ
る。しかしながら、米飯の冷却温度(Tr)と吸
引気体の温度(To)との温度差(△T=Tr−
To)が約0℃より小さくなると米飯表面の乾燥
が著るしくなり、品質的に好ましくないことが見
い出された。よつて吸引気体の温度(To)と米
飯冷却温度(Tr)との温度差(△T)が約0℃
以下になるまえに吸引を停止し、冷却を停止すれ
ば、米飯の無用な乾燥を防止することができるこ
とになる。
By the way, according to the above-mentioned suction cooling method, as shown in the graph of Figure 2, if suction is carried out for a long time, the temperature of the suction gas (To) will be 2 to 3 degrees lower than the suction gas temperature (To) due to the evaporation of the cooked rice water. It is possible to cool down to a certain temperature. However, the temperature difference between the cooling temperature of cooked rice (Tr) and the temperature of the suction gas (To) (△T=Tr−
It was found that when To) is lower than about 0°C, the surface of the cooked rice becomes noticeably dry, which is unfavorable in terms of quality. Therefore, the temperature difference (△T) between the temperature of the suction gas (To) and the cooked rice cooling temperature (Tr) is approximately 0°C.
If the suction and cooling are stopped before the temperature becomes below, unnecessary drying of cooked rice can be prevented.

また、冷凍の予冷にあたるので、冷却後の米飯
は、できるだけ低温であることが望ましい。この
ためには風量を大きくするか、米飯を撹拌するか
もしくは低温気体を用いることになるが、風量を
大きくすることおよび米飯を撹拌することは米飯
の乾燥を助長し好ましくない。よつて、低温気体
を用いる方法が残される。
Furthermore, since this is pre-cooling for freezing, it is desirable that the cooked rice be as cold as possible after cooling. To achieve this, it is necessary to increase the air volume, stir the cooked rice, or use low-temperature gas, but increasing the air volume and stirring the cooked rice are undesirable because they promote drying of the cooked rice. Therefore, a method using low-temperature gas remains.

ところが、例えば、55℃の米飯を13℃(T1
の室温の空気で吸引冷却した場合(Aの方法)
と、5℃(T2)の冷却空気で吸引冷却した場合
(Bの方法)とを比較実験したところ、第3図に
示すように、米飯温度(TrA,TrB)が20〜15℃
(T3)まではどちらの気体を用いても冷却速度に
は大きな差が出ないことが確められた。この理由
は、常温の空気の温度(T1)以上の高い温度域
での米飯からの放熱は、周囲の気体への伝熱より
もむしろ水分蒸発による蒸発潜熱が支配的であ
り、吸引冷却では米飯層内で減圧になりより一層
蒸発が活発になり、冷却速度が早くなるためと考
えられる。そして、米飯温度(Tr)が常温空気
温度(T1)以下に下り米飯表面水分の蒸発が遅
くなつてくると、米飯層を通過する気体への接触
による放熱が支配的となつて来て、気体の温度に
よつて冷却速度が大きく左右される。
However, for example, rice at 55℃ is heated to 13℃ (T 1 ).
When cooling by suction with air at room temperature (method A)
A comparative experiment was conducted between the case of suction cooling with cooling air at 5°C (T 2 ) (method B), and as shown in Figure 3, the temperature of cooked rice (Tr A , Tr B ) was 20 to 15°C.
It was confirmed that up to (T 3 ) there was no significant difference in the cooling rate no matter which gas was used. The reason for this is that heat radiation from cooked rice in a high temperature range above the temperature of room temperature air (T 1 ) is dominated by latent heat of vaporization due to water evaporation rather than heat transfer to the surrounding gas, and suction cooling This is thought to be because the reduced pressure within the cooked rice layer makes evaporation more active and the cooling rate becomes faster. Then, when the temperature of cooked rice (Tr) falls below the room temperature air temperature (T 1 ) and the evaporation of the water on the surface of the cooked rice slows down, heat radiation due to contact with the gas passing through the cooked rice layer becomes dominant. The cooling rate is greatly influenced by the temperature of the gas.

よつて、常温気体温度(T1)より2〜8℃高
い温度T3までは室温の気体(空気)を用いて冷
却し、T3以下になると低温の気体を用いて米飯
を冷却すれば、冷熱量を大幅に低減でき、しかも
同等の冷却速度で米飯を冷却できることになる この発明は上述した知見に基づいてなされたも
ので、米飯を効率よく冷却でき、しかも米飯の過
度の乾燥が防止でき、かつ、運転コストの安い米
飯の冷却方法を提供することを目的とする。
Therefore, if the cooked rice is cooled using room temperature gas (air) until the temperature T 3 which is 2 to 8 degrees Celsius higher than the room temperature gas temperature (T 1 ), and when it becomes below T 3 , the cooked rice is cooled using low temperature gas. The amount of cold energy can be significantly reduced, and the rice can be cooled at the same cooling rate.This invention was made based on the above-mentioned knowledge, and it is possible to efficiently cool the cooked rice and prevent it from becoming excessively dry. The purpose of the present invention is to provide a method for cooling cooked rice that is inexpensive to operate.

以下、この発明を詳しく説明する。 This invention will be explained in detail below.

この発明の米飯の冷却方法は、上記吸引冷却法
において、気体を順次低温の気体に切換えて複数
段にわたつて冷却するようにするとともに、各気
体による冷却過程における各気体の温度と米飯温
度との温度差が0〜10℃になつた時点で、この気
体での冷却を停止し、つぎにこの気体よりも低温
の気体で冷却するようにしたものである。
The method for cooling cooked rice of the present invention is such that, in the suction cooling method described above, the gas is sequentially switched to a low-temperature gas to cool the rice in multiple stages, and the temperature of each gas and the temperature of the cooked rice are adjusted in the cooling process by each gas. When the temperature difference reaches 0 to 10°C, cooling with this gas is stopped, and then cooling is performed with a gas at a lower temperature than this gas.

第4図はこの発明の冷却方法を実施するに好適
に用いられる冷却装置の一例を示すもので、第1
図に示したものと同一構成部分には同一符号を付
してその説明を省略する。この冷却装置にあつて
は、吸引チヤンバー4が2分され、従動ローラ3
側のチヤンバーが第1吸引チヤンバー6とされ、
駆動ローラ2側のチヤンバーが第2吸引チヤンバ
ー7とされている。そして、第2吸引チヤンバー
7の位置に相当するエンドレスベルト1と上方に
は、冷気を噴出するトンネル状のフード8が設け
られている。また、第1吸引チヤンバー6は第1
のブロワ9に、第2吸引チヤンバー7は第2のブ
ロワ10にそれぞれ連迩されている。さらに、フ
ード8は、図示しない冷凍機、ブロワなどからな
る冷却空気発生装置に接続されている。
FIG. 4 shows an example of a cooling device suitably used to carry out the cooling method of the present invention.
Components that are the same as those shown in the figures are designated by the same reference numerals, and their explanations will be omitted. In this cooling device, the suction chamber 4 is divided into two parts, and the driven roller 3
The side chamber is a first suction chamber 6,
The chamber on the drive roller 2 side is a second suction chamber 7. A tunnel-shaped hood 8 is provided above the endless belt 1, which corresponds to the position of the second suction chamber 7, and which blows out cold air. Moreover, the first suction chamber 6
The second blower 9 is connected to a second blower 10, and the second suction chamber 7 is connected to a second blower 10, respectively. Further, the hood 8 is connected to a cooling air generator including a refrigerator, a blower, etc. (not shown).

次に、この冷却装置を用いて味付米飯を冷却す
る実施例について説明する。
Next, an example of cooling seasoned cooked rice using this cooling device will be described.

エンドレスベルト1は、全長12m、幅80cm、厚
味0.8mmのステンレス鋼製で、その全面にパンチ
ング法によつて径2mmの小孔が6mm間隔で穿設し
てある。第1吸引チヤンバー6および第2吸引チ
ヤンバー7は、長さ4m、幅80cm、深さ50cmであ
り、フード8は長さ4m、幅80cm、深さ20cmであ
る。また、第1および第2のブロワ9,10はい
ずれも100m3/分の吸引風量能力を有し、米飯層
通過風速は、どの位置においても1.7m/秒であ
る。
The endless belt 1 is made of stainless steel and has a total length of 12 m, a width of 80 cm, and a thickness of 0.8 mm, and has small holes of 2 mm in diameter perforated at 6 mm intervals on its entire surface by the punching method. The first suction chamber 6 and the second suction chamber 7 are 4 m long, 80 cm wide and 50 cm deep, and the hood 8 is 4 m long, 80 cm wide and 20 cm deep. Furthermore, both the first and second blowers 9 and 10 have a suction air volume capacity of 100 m 3 /min, and the air velocity passing through the cooked rice layer is 1.7 m/sec at any position.

次の配合にしたがつて、炊飯した味付米飯に、
炊き立げ直後に味付調理した具を混合したものを
用意した。
Seasoned rice cooked according to the following recipe,
Immediately after cooking, a mixture of seasoned ingredients was prepared.

精白米 43.2%(重量%以下同じ) 水 41.2% (具)タマネギ 5.2% エビ 4.5% ニンジン 1.7% ピーマン 1.4% マーガリン 1.0% 調味料 1.8% この米飯を従動ローラ3側のエンドレスベルト
1上に厚さ約4cmの層状に均して連続的に載置し
た。そして、第1吸引チヤンバー6には13℃の空
気を流し、フード8からは5℃の冷却空気を噴出
させ第2吸引チヤンバー7に流すようにした。上
記米飯の初温度(Tr0)は55℃であつた。別に、
米飯層の温度を測定する測温素子を各チヤンバー
6,7の出口付近に設け、米飯層の各チヤンバー
6,7の出口での温度を監視した。
Polished rice 43.2% (weight percentages are the same) Water 41.2% (Ingredients) Onion 5.2% Shrimp 4.5% Carrot 1.7% Green pepper 1.4% Margarine 1.0% Seasoning 1.8% This cooked rice is spread on the endless belt 1 on the driven roller 3 side in a thickness It was placed continuously in a layer of about 4 cm. Air at 13° C. was flowed into the first suction chamber 6, and cooling air at 5° C. was blown out from the hood 8 and flowed into the second suction chamber 7. The initial temperature (Tr 0 ) of the above-mentioned cooked rice was 55°C. Separately,
A temperature measuring element for measuring the temperature of the cooked rice layer was provided near the exit of each chamber 6, 7, and the temperature of the cooked rice layer at the exit of each chamber 6, 7 was monitored.

以上の条件下で冷却を行い、エンドレスベルト
1の移動速度を調節し、第1吸引チヤンバー6の
出口での米飯の温度(Tr1)が13℃よりも5℃高
い18℃となり、同時に第2チヤンバー7の出口で
の米飯温度(Tr2)が5℃よりも5℃高い10℃と
なるようにしたところ、移動速度4m/分のと
き、上記温度条件が満足されることがわかつた。
この時の米飯の冷却速度を第5図に示す。この移
動速度での米飯移送量は35Kg/分であつた。
Cooling is performed under the above conditions, the moving speed of the endless belt 1 is adjusted, and the temperature of the cooked rice at the outlet of the first suction chamber 6 (Tr 1 ) becomes 18°C, which is 5°C higher than 13°C, and at the same time When the cooked rice temperature (Tr 2 ) at the exit of the chamber 7 was set to 10°C, which is 5°C higher than 5°C, it was found that the above temperature conditions were satisfied when the moving speed was 4 m/min.
The cooling rate of the cooked rice at this time is shown in Figure 5. The amount of rice transferred at this speed was 35 kg/min.

この場合の冷却効率を検討すると、次の通りと
なる。
When considering the cooling efficiency in this case, it is as follows.

米飯が奪われる熱量をQ1とすると、 Q1=W・C・(tin−tout) で示され、W=35Kg/分、C=0.68kcal/Kg℃
(tin−tout)=55−10=45℃であるので、 Q1=35×0.68.×45=1.071kcal/分となる。
If the amount of heat taken away from cooked rice is Q1 , it is expressed as Q1 = W・C・(tin−tout), W=35Kg/min, C=0.68kcal/Kg℃
Since (tin-tout) = 55-10 = 45°C, Q 1 = 35 x 0.68. x 45 = 1.071 kcal/min.

また、冷熱発生量Q2は100m2/分の13℃の乾燥
空気を5℃に冷却するに必要な熱量となるので、 Q2=〔273/273+13×100×1.29〕 ×0.24×(13−5)=2128kcal/分 となる。
In addition, the amount of cold heat generated Q 2 is the amount of heat required to cool dry air at 13°C to 5°C at 100 m 2 /min, so Q 2 = [273/273 + 13 × 100 × 1.29] × 0.24 × (13 − 5)=2128kcal/min.

したがつて、見かけの冷熱利用効率は、Q1/Q2= 0.5で約50%となる。 Therefore, the apparent cold energy utilization efficiency is approximately 50% at Q 1 /Q 2 = 0.5.

一方、たとえば最初から5℃の空気で冷却する
従来法では、Q2は2倍の4256kcal/分となるが、
上述のようにQ1は変らないので、冷熱利用効率
は1/2となる。
On the other hand, for example, in the conventional method of cooling with air at 5℃ from the beginning, Q 2 is twice as high as 4256kcal/min.
As mentioned above, Q 1 does not change, so the cooling energy utilization efficiency becomes 1/2.

また、以上のようにして冷却した米飯と自然放
冷した米飯とを目視にてその外観等を比較したと
ころ、表面乾燥によるパサツキはほとんど見られ
ず、米飯表面のテリにも差がなかつた。さらに、
食味、食感について比較するため、両者を電子レ
ンジで再加熱して試食したところ、両者には何ん
ら差が認められなかつた。このことから、この発
明の冷却方法による品質劣化がないことが確めら
れた。
In addition, when we visually compared the appearance of the cooked rice cooled as described above and the cooked rice that had been left to cool naturally, we found that there was almost no dryness due to surface dryness, and there was no difference in the texture of the surface of the cooked rice. moreover,
In order to compare the taste and texture, both were reheated in a microwave oven and tasted, and no difference was observed between the two. From this, it was confirmed that there was no quality deterioration due to the cooling method of the present invention.

なお、上記実施例にあつては最初に常温の空気
を用い、ついで5℃の空気を用いて二段にわたつ
て冷却しているが、これに限られることなく、米
飯よりも低温の気体を用いて、三段以上にわたつ
て冷却することができる。また、連続的に米飯を
移送し、チヤンバーを2分して連続的に冷却して
いるが、移行ベルトを固定して、1つのチヤンバ
ーから順次低温の気体を切り換えて吹き出すよう
なバツチ式で冷却しても同様の作用効果が得られ
る。さらに、エンドレスベルト1の移動速度を変
えて、吸引気体の温度と米飯温度との温度差を5
℃となるようにしたが、この温度差は一例を示し
たものにすぎず、その冷却効率、冷気の効果的利
用の面から10℃を上限とし、また乾燥の点より吸
引気体に水分を同伴せしめることにより0℃を下
限とすることが可能である。そして、またエンド
レスベルト1の移動速度を変えず吸引気体の吸引
風量を変えてもよく、また各吸引チヤンバー6,
7の長さあるいは米飯層の厚みを変えて上記温度
条件を満足するようにしてもよい。さらに、上記
例で冷却用の常温空気およびこれより低温の気体
に予じめ水分を添加しておくことにより、乾燥を
より低減することが可能であることは勿論であ
る。
Note that in the above example, air at room temperature is first used and then air at 5°C is used for cooling in two stages, but the invention is not limited to this. can be used for cooling in three or more stages. In addition, the rice is continuously transferred and cooled continuously by dividing the chamber into two chambers, but the transfer belt is fixed and cooling is performed in batches by switching and blowing low-temperature gas sequentially from one chamber. The same effect can be obtained even if the same effect is obtained. Furthermore, by changing the moving speed of the endless belt 1, the temperature difference between the temperature of the suction gas and the temperature of the cooked rice is reduced by 5.
℃, but this temperature difference is just an example; from the standpoint of cooling efficiency and effective use of cold air, the upper limit is set at 10℃, and from the viewpoint of drying, it is recommended to bring moisture into the suction gas. By increasing the temperature, it is possible to set the lower limit to 0°C. Furthermore, the suction air volume of the suction gas may be changed without changing the moving speed of the endless belt 1, and each suction chamber 6,
The length of the rice layer 7 or the thickness of the cooked rice layer may be changed to satisfy the above temperature conditions. Furthermore, in the above example, it is of course possible to further reduce drying by adding moisture to the room-temperature air for cooling and the gas at a lower temperature than this in advance.

以上説明したように、この発明の米飯の冷却方
法は、吸引冷却方法において、気体を順次低温の
気体に切換えて複数段にわたつて冷却するように
するとともに、各気体による冷却過程における各
気体の温度と米飯温度との温度差が0〜10℃にな
つた時点で、この気体での冷却を停止し、つぎに
この気体よりも低温の気体で冷却するようにした
ものであるので、米飯の冷却に伴う過度の乾燥が
未然に防止され、かつ所要冷熱量が半減でき、冷
却コストの大きな削減が可能であるなどのすぐれ
た利点を有し、特に米飯のバラ状冷凍の予冷とし
て有効である。
As explained above, in the method of cooling cooked rice of the present invention, in the suction cooling method, the gas is sequentially switched to low-temperature gas to perform cooling in multiple stages, and the cooling process of each gas is When the temperature difference between the temperature and the cooked rice temperature reaches 0 to 10 degrees Celsius, cooling with this gas is stopped, and then cooling is performed with a gas at a lower temperature than this gas. It has excellent advantages such as preventing excessive drying due to cooling, halving the required amount of cooling heat, and greatly reducing cooling costs, and is particularly effective as a pre-cooling method for freezing cooked rice in bulk. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の連続吸引冷却装置を示す概略構
成図、第2図は連続吸引冷却方法による米飯の冷
却状態と吸引気体温度を示すグラフ、第3図はこ
の発明の冷却方法の原理を示すグラフ、第4図は
この発明の冷却方法に用いられる連続吸引冷却装
置の一例を示す概略構成図、第5図はこの発明の
冷却方法の実施例における米飯の温度変化を示す
グラフである。 1……エンドレスベルト、2……駆動ローラ、
3……従動ローラ、6……第1吸引チヤンバー、
7……第2吸引チヤンバー、8……フード、9…
…第1のブロワ、10……第2のブロワ、A……
米飯。
Fig. 1 is a schematic configuration diagram showing a conventional continuous suction cooling device, Fig. 2 is a graph showing the cooling state of cooked rice and suction gas temperature by the continuous suction cooling method, and Fig. 3 shows the principle of the cooling method of the present invention. FIG. 4 is a schematic configuration diagram showing an example of a continuous suction cooling device used in the cooling method of the present invention, and FIG. 5 is a graph showing temperature changes of cooked rice in an embodiment of the cooling method of the present invention. 1... Endless belt, 2... Drive roller,
3...Followed roller, 6...First suction chamber,
7...Second suction chamber, 8...Hood, 9...
...First blower, 10...Second blower, A...
Rice.

Claims (1)

【特許請求の範囲】 1 通気性の載飯板上に米飯を載せて米飯層の上
部の気体を載飯板下方に吸引し、米飯層中に気体
を通過させて米飯を冷却するに際して、 上記気体を順次低温の気体に切換えて複数段に
わたつて冷却するようにするとともに、各気体に
よる冷却過程における各気体の温度と米飯温度と
の温度差が0〜10℃になつた時点で、この気体で
の冷却を停止し、つぎに、この気体よりも低温の
気体で冷却するようにしたことを特徴とする米飯
の冷却方法。 2 上記載飯板をエンドレスベルトを用いて移送
可能とし、米飯を連続的に移送するとともに米飯
の移送につれて順次気体を切換えるようにしたこ
とを特徴とする特許請求の範囲第1項記載の米飯
の冷却方法。 3 最初の気体に常温の空気を用いることを特徴
とする特許請求の範囲第1項または第2項に記載
の米飯の冷却方法。
[Scope of Claims] 1. When placing cooked rice on a breathable rice plate and sucking the gas above the cooked rice layer below the rice plate to cool the cooked rice by passing the gas through the cooked rice layer, the above-mentioned method is implemented. The gas is sequentially switched to a low-temperature gas to perform cooling in multiple stages, and when the temperature difference between the temperature of each gas and the temperature of cooked rice in the cooling process by each gas reaches 0 to 10 degrees Celsius, A method for cooling cooked rice, characterized in that cooling with gas is stopped, and then cooling is performed with gas at a lower temperature than this gas. 2. The rice plate according to claim 1, characterized in that the rice plate described above is transportable using an endless belt, the rice is transported continuously, and the gas is sequentially switched as the rice is transported. Cooling method. 3. The method for cooling cooked rice according to claim 1 or 2, characterized in that air at room temperature is used as the initial gas.
JP58216745A 1983-11-17 1983-11-17 Method for cooling cooked rice Granted JPS60110255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216745A JPS60110255A (en) 1983-11-17 1983-11-17 Method for cooling cooked rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216745A JPS60110255A (en) 1983-11-17 1983-11-17 Method for cooling cooked rice

Publications (2)

Publication Number Publication Date
JPS60110255A JPS60110255A (en) 1985-06-15
JPH0416133B2 true JPH0416133B2 (en) 1992-03-23

Family

ID=16693261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216745A Granted JPS60110255A (en) 1983-11-17 1983-11-17 Method for cooling cooked rice

Country Status (1)

Country Link
JP (1) JPS60110255A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374459A (en) * 1986-09-17 1988-04-04 Nitsukuu Kogyo Kk Cooling of boiled rice
JPH01163993U (en) * 1988-04-25 1989-11-15
JP2006014658A (en) * 2004-07-01 2006-01-19 Miura Co Ltd Rice ball production system, rice ball production method and vacuum cooling machine to be used for the system and the method
JP5801568B2 (en) * 2011-02-28 2015-10-28 不二精機株式会社 Cooked rice cooling method and cooked rice cooling device

Also Published As

Publication number Publication date
JPS60110255A (en) 1985-06-15

Similar Documents

Publication Publication Date Title
US4403479A (en) Quick freezing system
US3531946A (en) Cryogenic-mechanical refrigeration apparatus
EP0024159B1 (en) Cryogenic freezer
US3277580A (en) Method and apparatus for drying
CA2021805C (en) Helical conveyor freezer
CA2086551C (en) Combination cryogenic and mechanical freezer apparatus
US3298188A (en) Method and apparatus for freezing food products
US3345828A (en) Parallel flow cryogenic freezer
JPH02126071A (en) Refrigerating mechanism
JPS58180120A (en) Apparatus for heat treatment of food
US4103507A (en) High speed freezing system
US4157650A (en) Cryogenic rapid food cooling machine
CN107197927A (en) The boat-carrying continuous process of the continuous dry-making method of dried of boat-carrying of krill and its peeled shrimp that shells
JPH0416133B2 (en)
US6531172B2 (en) Method for treating an item during travel of the item along a treating trough
US3466756A (en) Method for dehydrating materials
JPH10267444A (en) Freezing method and device
EP0143811B1 (en) Impingement thermal treatment apparatus with collector plate
CN108669526A (en) A kind of energy saving bean sheet jelly production line
US3458941A (en) Freeze drying apparatus and process
US3224220A (en) Combined radiant and convection cooling system
JPS5915029Y2 (en) High frequency heating device
US6023852A (en) Drying apparatus for coated objects
JPH067128A (en) Apparatus for continuously treating food
US20210392909A1 (en) Contact drum freezer system for automated and/or mechanized food process lines, and products produced thereby