JPH0416083B2 - - Google Patents

Info

Publication number
JPH0416083B2
JPH0416083B2 JP16099384A JP16099384A JPH0416083B2 JP H0416083 B2 JPH0416083 B2 JP H0416083B2 JP 16099384 A JP16099384 A JP 16099384A JP 16099384 A JP16099384 A JP 16099384A JP H0416083 B2 JPH0416083 B2 JP H0416083B2
Authority
JP
Japan
Prior art keywords
optical fiber
core
input end
face
measurement signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16099384A
Other languages
Japanese (ja)
Other versions
JPS6139006A (en
Inventor
Yasuji Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16099384A priority Critical patent/JPS6139006A/en
Publication of JPS6139006A publication Critical patent/JPS6139006A/en
Publication of JPH0416083B2 publication Critical patent/JPH0416083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 (イ) 発明の属する技術分野 本発明は光フアイバの伝送特性を測定するため
の光フアイバの励振方法およびその装置に関し、
より詳細には測定用信号光を光フアイバにそのコ
ア中心に一致させて入射させるための方法および
装置に関する。
[Detailed description of the invention] (a) Technical field to which the invention pertains The present invention relates to an optical fiber excitation method and device for measuring the transmission characteristics of an optical fiber,
More specifically, the present invention relates to a method and apparatus for making measurement signal light enter an optical fiber so as to be aligned with the center of the core of the optical fiber.

(ロ) 従来技術とその問題点 光フアイバの伝送特性、たとえば損失値を測定
する場合通常第3図に示すように被測定光フアイ
バ5の入射端3にレンズ2により集光された測定
用信号光1を導き光フアイバ5のコアに入射させ
る。このとき集光された測定用信号光1の光束の
中心と光フアイバ5のコア中心とが一致していな
い場合十分な光量が光フアイバのコアに入射しな
いため測定信号のS/N比(信号対雑音比)が低
下して測定精度が低下したり、被測定光フアイバ
がマルチモードフアイバである場合高次モード漏
洩モードが多く励起され光フアイバの伝送特性を
正確に測れない等の不具合を生ずる。そこで、集
光された測定用信号光の中心を被測定光フアイバ
のコア中心に一致させるべく被測定フアイバ5の
入射端部3を微動台4に固定し光フアイバの入射
端の位置を移動調節可能としている。こうして入
射端から入射された光の出射端での出射光量を測
定すべく被測定光フアイバ5の出射端6には光検
出器7が配置され、その光電変換の出力を表示器
8で読みとることができる。
(b) Prior art and its problems When measuring the transmission characteristics of an optical fiber, for example, the loss value, normally a measurement signal is focused on the input end 3 of the optical fiber 5 to be measured by a lens 2, as shown in FIG. Light 1 is guided to enter the core of optical fiber 5. If the center of the light beam of the focused measurement signal light 1 does not match the core center of the optical fiber 5, a sufficient amount of light will not enter the core of the optical fiber, so the S/N ratio of the measurement signal (signal When the optical fiber under test is a multimode fiber, many higher-order mode leakage modes are excited, causing problems such as the inability to accurately measure the transmission characteristics of the optical fiber. . Therefore, in order to align the center of the focused measurement signal light with the core center of the optical fiber to be measured, the input end 3 of the fiber to be measured 5 is fixed to the fine movement table 4, and the position of the input end of the optical fiber is moved and adjusted. It is possible. A photodetector 7 is arranged at the output end 6 of the optical fiber 5 to be measured in order to measure the amount of light emitted from the input end at the output end, and the output of the photoelectric conversion is read by a display 8. I can do it.

しかしながら上記従来の構成において被測定光
フアイバに最大励振を行おうとした場合下記の問
題点があつた。
However, in the above-mentioned conventional configuration, when trying to maximum excite the optical fiber to be measured, the following problems occurred.

被測定光フアイバの出射端側での測定情報、
すなわち出射端側の表示器8の表示値にもとづ
き最大励振が得られるよう微動台4を位置調節
する必要があるが、被測定光フアイバが長い場
合(たとえば数百メートル)には表示器8の表
示値を入射端側へフイードバツクするための信
号伝送用ケーブルを併設する必要が生ずる。
Measurement information at the output end of the optical fiber under test,
In other words, it is necessary to adjust the position of the fine movement stage 4 so as to obtain the maximum excitation based on the value displayed on the display 8 on the output end side. However, if the optical fiber to be measured is long (for example, several hundred meters), It becomes necessary to provide a signal transmission cable for feeding back the displayed value to the incident end side.

第4図に示すように被測定光フアイバの入射
端面における測定用信号光11が光フアイバの
コア部10に一致せずクラツド部9等にあたつ
ている場合、測定用信号光は被測定光フアイバ
に全く励起されず、したがつて表示器8の表示
はゼロとなる。この場合微動台4をいずれの方
向に動かせば測定用信号光を光フアイバのコア
に導けるかが不明である。このような事態を防
止すべく通常は微動台4に光フアイバの位置決
め用のV溝が設けられているが、それでもたと
えばコア径が5〜10μm程度のシングルモード
光フアイバにおいてコア中心がクラツド中心に
一致せず偏つているような場合はこの対策では
不十分である。
As shown in FIG. 4, when the measurement signal light 11 at the input end face of the optical fiber to be measured does not coincide with the core part 10 of the optical fiber and hits the cladding part 9, etc., the measurement signal light 11 is The fiber is not energized at all, so the display on the display 8 is zero. In this case, it is unclear in which direction the fine movement stage 4 should be moved to guide the measurement signal light to the core of the optical fiber. To prevent this kind of situation, the fine movement table 4 is usually provided with a V-groove for positioning the optical fiber, but even so, for example, in a single mode optical fiber with a core diameter of about 5 to 10 μm, the core center may be aligned with the clad center. If the values do not match and are biased, this measure is insufficient.

被測定光フアイバが第5図に示すように複数
のコアを有する場合には表示器8をモニターし
ながら測定用信号光13をコアに励起した場
合、表示器8のモニターからは測定用信号光が
第1のコア14に励起されているのか第2のコ
ア15に励起されているのかが不明である。具
体的な例としては画素フアイバが多数溶融一体
化されたイメージフアイバや、フアイバが一列
に整列一体化されたテープフアイバおよびフア
イバアレイに含まれる個々のフアイバの伝送特
性を測定するような場合があげられる。
When the optical fiber to be measured has a plurality of cores as shown in FIG. It is unclear whether is excited by the first core 14 or the second core 15. Specific examples include image fibers in which a large number of pixel fibers are fused and integrated, tape fibers in which fibers are aligned in a line and integrated, and cases in which the transmission characteristics of individual fibers included in a fiber array are measured. It will be done.

(ハ) 発明の目的 本発明は上記従来の事情に鑑みなされたもので
あつて下記事項を達成できる光フアイバの励振方
法および装置を提供することを目的としている。
(c) Purpose of the Invention The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object of the present invention to provide an optical fiber excitation method and apparatus that can achieve the following matters.

被測定光フアイバの出射端側での測定情報を
入射端側へフイードバツクするための信号伝送
用ケーブルを設けることを不要とする。
It is not necessary to provide a signal transmission cable for feeding back measurement information on the output end side of the optical fiber to be measured to the input end side.

測定用信号光が被測定光フアイバの入射端面
にてコアに一致せずクラツドにあたつている場
合でも微動台を移動すべき方向を認識すること
ができる。
Even if the measurement signal light does not coincide with the core but hits the cladding at the incident end face of the optical fiber to be measured, the direction in which the fine movement table should be moved can be recognized.

被測定光フアイバが複数のコアを有する場
合、いずれのコアに測定用信号光が励起されて
いるかを認識することができる。
When the optical fiber to be measured has a plurality of cores, it is possible to recognize in which core the measurement signal light is excited.

(ニ) 発明の構成 この目的のため本発明は光フアイバの伝送特性
を測定すべく集光された測定用信号光を入射端部
が位置調節可能な微動台に固定された光フアイバ
の入射端面に前記光フアイバのコア中心に一致し
て入射させる光フアイバの励振方法および装置に
おいて、前記光フアイバの出射端面に照明用光源
を配置し、前記照明用光源からの光が前記光フア
イバコアを通過して前記光フアイバの入射端面か
ら出射する光フアイバのコア像と前記測定用信号
光の前記光フアイバの入射端面における反射像と
を撮像部で受像し、前記コア像と反射像との相対
位置関係をモニター上に視覚的に表示し、前記コ
ア像と反射像とが互いに重なるよう前記微動台を
位置調節することにより前記測定用信号光を前記
光フアイバのコア中心に一致して入射させること
を特徴とする。
(d) Structure of the Invention For this purpose, the present invention provides an input end face of an optical fiber fixed to a fine movement table whose position of the input end is adjustable for receiving a focused measurement signal light in order to measure the transmission characteristics of the optical fiber. In the method and apparatus for exciting an optical fiber, the light source is arranged at the output end face of the optical fiber, and the light from the illumination light source passes through the optical fiber core. The core image of the optical fiber emitted from the input end face of the optical fiber and the reflected image of the measurement signal light at the input end face of the optical fiber are received by an imaging section, and the relative positional relationship between the core image and the reflected image is determined. is visually displayed on a monitor, and the position of the fine movement table is adjusted so that the core image and the reflected image overlap with each other, thereby making the measurement signal light coincident with the center of the core of the optical fiber. Features.

これにより、被測定光フアイバの出射端側での
測定情報を入射端側へフイードバツクするための
信号伝送用ケーブルを設けることを不要とし、測
定用信号光が被測定光フアイバの入射端面にてコ
アに一致せずクラツドにあたつている場合でも微
動台を移動すべき方向を認識することができ、か
つ被測定光フアイバが複数のコアを有する場合い
ずれのコアに測定用信号光が励起されているかを
認識することができる光フアイバの励振方法およ
び装置が提供される。
This eliminates the need to provide a signal transmission cable to feed back measurement information from the output end of the optical fiber under test to the input end, and the measurement signal light is transmitted to the core at the input end of the optical fiber under test. It is possible to recognize the direction in which the fine movement table should be moved even if the optical fiber does not match the cladding, and if the optical fiber to be measured has multiple cores, which core is excited by the measurement signal light? A method and apparatus for excitation of an optical fiber are provided that can recognize whether the fiber is present or not.

(ホ) 発明の実施例 本発明に係る光フアイバ励振装置の構成例を第
1図に示す。第1図において被測定光フアイバ5
の出射端6を照明するための照明用光源17が配
置される。この照明用光源17は後述するように
取外し可能である。照明光は光フアイバの出射端
面6の全面に対し均一にあたることが望ましい。
光源17から光フアイバ5のクラツド部に入射し
た光は光フアイバ内を伝播する間に外部に漏れ出
すため、光フアイバの入射端3においてはコア部
のみが明るく観察される。光フアイバ入射端3の
コア像はレンズ2を通過し、ハーフミラー16で
反射され、結像レンズ18を経て撮像管20に受
像され、モニター21上に像22として示す如く
表示される。これとは別に、測定用信号光1の被
測定光フアイバ入射端面における反射像も同じく
レンズ2、ハーフミラー16、結像レンズ18を
経て撮像管20に受像され、モニター21上で像
23として示す如く表示される。通常の場合光フ
アイバの入射端面における反射率は3〜4%程度
である。こうしてモニター21の画面上でコア像
と反射像とを同時に観察でき、両者の相対位置関
係を認識できる。したがつてモニター21を観察
しながら入射端面3におけるコア像22が同じく
入射端面3における測定用信号光の反射像23と
モニター21上で同心に重なりあうように微動台
4を動かせば測定用信号光1の光束中心が光フア
イバ5のコア中心に一致することになり最大励振
が達成される。第1図においては光フアイバ5の
出射端6側において光検出器が図示されていない
が、光フアイバの伝送特性測定にあたつてはコア
像22が測定用信号光の反射像23に一致した
後、照明用光源17を取り除き、第3図に示され
たような光検出器7とその光電変換出力の表示器
8とを配置した状態に戻せば良い。
(E) Embodiments of the Invention An example of the configuration of an optical fiber excitation device according to the present invention is shown in FIG. In FIG. 1, the optical fiber 5 to be measured
An illumination light source 17 is arranged for illuminating the output end 6 of. This illumination light source 17 is removable as described later. It is desirable that the illumination light uniformly hits the entire surface of the output end face 6 of the optical fiber.
Since the light entering the cladding portion of the optical fiber 5 from the light source 17 leaks to the outside while propagating within the optical fiber, only the core portion is observed brightly at the input end 3 of the optical fiber. The core image of the optical fiber input end 3 passes through the lens 2, is reflected by the half mirror 16, passes through the imaging lens 18, is received by the image pickup tube 20, and is displayed as an image 22 on the monitor 21. Separately, a reflected image of the measurement signal light 1 at the input end face of the optical fiber to be measured is also received by the image pickup tube 20 via the lens 2, the half mirror 16, and the imaging lens 18, and is shown as an image 23 on the monitor 21. It will be displayed as follows. In normal cases, the reflectance at the input end face of the optical fiber is about 3 to 4%. In this way, the core image and the reflected image can be observed simultaneously on the screen of the monitor 21, and the relative positional relationship between the two can be recognized. Therefore, while observing the monitor 21, by moving the fine movement stage 4 so that the core image 22 on the input end face 3 and the reflected image 23 of the measurement signal light on the input end face 3 concentrically overlap on the monitor 21, the measurement signal The center of the beam of light 1 coincides with the center of the core of the optical fiber 5, and maximum excitation is achieved. In FIG. 1, a photodetector is not shown on the output end 6 side of the optical fiber 5, but when measuring the transmission characteristics of the optical fiber, the core image 22 coincided with the reflected image 23 of the measurement signal light. Thereafter, the illumination light source 17 may be removed, and the arrangement may be returned to the state in which the photodetector 7 and its photoelectric conversion output display 8 are arranged as shown in FIG.

なお光フアイバの入射端面におけるコア像およ
び測定用信号光の反射像は第4図および第5図に
略示したように境界が必ずしも明瞭に示されるも
のではなく、第5図にそれぞれの強度分布カーブ
を25,24で示すように像の境界は不鮮明とな
る場合が多い。したがつて測定用信号光の中心を
コア中心に一致させて最大励振を得るために、目
視によらず電気的な手段を用いることが考えられ
る。その場合には測定用信号光の被測定光フアイ
バの入射端面における拡り関数f(x、y、z)
とコアの光量分布関数g(x、y)の積f(x、
y、z)・g(x、y)が最大となるように微動台
4を動かせば正確に最大励振を得ることができ
る。ここで測定用信号光の被測定光フアイバ入射
端面における拡り関数は光フアイバ入射端の光軸
方向の位置zの関数となる。具体的な方法として
は照明用光源のスペクトルを測定用信号光と一致
しないように選択し、撮像管20で被測定光フア
イバの入射端面におけるコア像と測定用信号光の
反射像を色フイルタ等で分離し、光電変換後再度
電気的に重ね合せの処理をすることが考えられ
る。本装置に上記の電気的処理を含めた場合微動
台の移動をサーボモータ等により行うことにより
光フアイバへの自動励振が可能となる。まだ複数
のコアが一体化されたイメージフアイバ、フアイ
バアレイ等の各々のコアに対して連続して最大励
振を行い、それぞれ最大励振を行つたときの位置
情報を取り出すことにより光フアイバ端面におけ
る各々のコアの配列状態を定量的に評価すること
も可能となる。
Note that the boundaries of the core image and the reflected image of the measurement signal light at the incident end face of the optical fiber are not necessarily clearly shown as shown schematically in Figures 4 and 5, and Figure 5 shows the respective intensity distributions. The boundaries of the image often become unclear, as shown by curves 25 and 24. Therefore, in order to align the center of the measurement signal light with the core center and obtain maximum excitation, it is conceivable to use electrical means instead of visual observation. In that case, the spread function f(x, y, z) of the measurement signal light at the input end face of the optical fiber to be measured is
The product f(x, y) of the core light intensity distribution function g(x, y)
By moving the fine movement table 4 so that y, z)·g(x, y) becomes maximum, the maximum excitation can be obtained accurately. Here, the spread function of the measurement signal light at the input end face of the optical fiber to be measured is a function of the position z of the input end of the optical fiber in the optical axis direction. Specifically, the spectrum of the illumination light source is selected so as not to match that of the measurement signal light, and the core image and the reflected image of the measurement signal light at the incident end face of the optical fiber to be measured are captured using a color filter or the like using the imaging tube 20. It is conceivable to separate the two by 1 and then electrically stack them again after photoelectric conversion. When the above-mentioned electrical processing is included in this device, automatic excitation of the optical fiber becomes possible by moving the fine movement table using a servo motor or the like. Maximum excitation is performed continuously on each core of an image fiber, fiber array, etc. in which multiple cores are integrated, and by extracting position information at the time of maximum excitation, each core at the end face of the optical fiber can be determined. It also becomes possible to quantitatively evaluate the arrangement state of the cores.

(ヘ) 発明の効果 以上のように本発明によれば光フアイバの伝送
特性を測定すべく集光された測定用信号光を入射
端部が位置調節可能な微動台に固定された光フア
イバの入射端面に前記光フアイバのコア中心に一
致して入射させる光フアイバの励振方法および装
置において、前記光フアイバの出射端面に照明用
光源を配置し、前記照明用光源からの光が前記光
フアイバコアを通過して前記光フアイバの入射端
面から出射する光フアイバのコア像と前記測定用
信号光の前記光フアイバの入射端面における反射
像とを撮像部で受像し、前記コア像と反射像との
相対位置関係をモニター上に視覚的に表示し、前
記コア像と反射像とが互いに重なるよう前記微動
台を位置調節することにより前記測定用信号光を
前記光フアイバのコア中心に一致して入射させる
ことを特徴とする。
(F) Effects of the Invention As described above, according to the present invention, an optical fiber fixed to a fine movement table whose incident end is adjustable for receiving a focused measurement signal light in order to measure the transmission characteristics of the optical fiber. In the excitation method and apparatus for an optical fiber, the light source is arranged on the output end surface of the optical fiber, and the light from the illumination light source illuminates the optical fiber core. An imaging unit receives a core image of the optical fiber passing through and exiting from the input end face of the optical fiber and a reflected image of the measurement signal light at the input end face of the optical fiber, and calculates the relative relationship between the core image and the reflected image. The positional relationship is visually displayed on a monitor, and the position of the fine movement table is adjusted so that the core image and the reflected image overlap with each other, so that the measurement signal light is made to coincide with the center of the core of the optical fiber. It is characterized by

これにより光フアイバの入射端における光フア
イバのコア像と測定用信号光による光フアイバの
入射端面における反射像とをモニター上に両者の
相対位置関係が分るよう視覚的に表示し、両者が
互いに重なるよう光フアイバの入射端部を固定す
る微動台を位置調節し光フアイバの最大励振を達
成できる。したがつて、被測定光フアイバの出射
端側での測定情報を入射端側へフイードバツクす
るための信号伝送用ケーブルを設けることを不要
とし、測定用信号光が被測定光フアイバの入射端
面にてコアに一致せずクラツドにあたつている場
合でも微動台を移動すべき方向を認識することが
でき、かつ被測定光フアイバが複数のコアを有す
る場合いずれのコアに測定用信号光が励起されて
いるかを認識することができる光フアイバの励振
方法および装置が提供される。
This visually displays the core image of the optical fiber at the input end of the optical fiber and the reflected image of the measurement signal light at the input end face of the optical fiber on the monitor so that the relative positional relationship between the two can be seen. Maximum excitation of the optical fibers can be achieved by adjusting the position of the fine movement table that fixes the input ends of the optical fibers so that they overlap. Therefore, it is not necessary to provide a signal transmission cable for feeding back measurement information from the output end of the optical fiber under test to the input end, and the measurement signal light is transmitted to the input end of the optical fiber under test. It is possible to recognize the direction in which the fine movement table should be moved even when the fiber does not match the core and hits the cladding, and when the optical fiber to be measured has multiple cores, the measurement signal light is excited in any of the cores. A method and apparatus for excitation of an optical fiber are provided that can recognize whether the optical fiber is moving or not.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光フアイバ励振装置の構
成を示す概要図、第2図は光フアイバの入射端面
におけるコアの光量分布関数及び測定用信号光の
拡り関数を示す図、第3図は従来の光フアイバ励
振装置の構成を示す概要図、第4図および第5図
はそれぞれ光フアイバの入射端面と測定用信号光
の位置関数を示す図。 1……測定用信号光、3……光フアイバの入射
端面、4……微動台、5……光フアイバ、6……
光フアイバの出射端面、17……照明用光源、2
0……撮像部、21……モニター。
FIG. 1 is a schematic diagram showing the configuration of the optical fiber excitation device according to the present invention, FIG. 2 is a diagram showing the light intensity distribution function of the core and the spread function of the measurement signal light at the input end face of the optical fiber, and FIG. 3 is a diagram showing the spread function of the measurement signal light. FIG. 4 is a schematic diagram showing the configuration of a conventional optical fiber excitation device, and FIGS. 4 and 5 are diagrams showing the position function of the input end face of the optical fiber and the measurement signal light, respectively. DESCRIPTION OF SYMBOLS 1...Measurement signal light, 3...Incidence end face of optical fiber, 4...Fine movement table, 5...Optical fiber, 6...
Output end face of optical fiber, 17...Light source for illumination, 2
0...imaging section, 21...monitor.

Claims (1)

【特許請求の範囲】 1 光フアイバの伝送特性を測定すべく集光され
た測定用信号光を入射端部が位置調節可能な微動
台に固定された光フアイバの入射端面に前記光フ
アイバのコア中心に一致して入射させる光フアイ
バの励振方法において、前記光フアイバの出射端
面に照明用光源を配置し、前記照明用光源からの
光が前記光フアイバコアを通過して前記光フアイ
バの入射端面から出射する光フアイバのコア像と
前記測定用信号光の前記光フアイバの入射端面に
おける反射像とを撮像部で受像し、前記コア像と
反射像との相対位置関係をモニター上に視覚的に
表示し、前記コア像と反射像とが互いに重なるよ
う前記微動台を位置調節することにより前記測定
用信号光を前記光フアイバのコア中心に一致して
入射させることを特徴とする光フアイバの励振方
法。 2 光フアイバの伝送特性を測定するための測定
用信号光を光フアイバの入射端面に集光するよう
導く装置と、前記測定用信号光の光束中心と前記
光フアイバの入射端面における前記光フアイバの
コア中心とを一致させるための前記光フアイバの
入射端部を固定する位置調節可能な微動台とを含
む光フアイバ励振装置において、前記光フアイバ
の出射端面に取外し可能に配置された照明用光源
と、前記照明用光源からの光が前記光フアイバの
コアを通過して前記光フアイバの入射端面から出
射する光フアイバのコア像と前記測定用信号光の
前記光フアイバの入射端面における反射像とを受
光する撮像部と、前記撮像部により受像された前
記コア像と反射像との相対位置関係を視覚的に表
示するモニターとを備えたことを特徴とする光フ
アイバの励振装置。
[Scope of Claims] 1. In order to measure the transmission characteristics of the optical fiber, the focused measurement signal light is applied to the core of the optical fiber on the input end face of the optical fiber, the input end of which is fixed to a fine movement table whose position is adjustable. In the excitation method of an optical fiber in which the light is incident centrally, an illumination light source is disposed on the output end face of the optical fiber, and the light from the illumination light source passes through the optical fiber core and exits from the input end face of the optical fiber. An imaging section receives a core image of the emitted optical fiber and a reflected image of the measurement signal light at the incident end face of the optical fiber, and visually displays the relative positional relationship between the core image and the reflected image on a monitor. A method for excitation of an optical fiber, characterized in that the measurement signal light is incident on the core center of the optical fiber by adjusting the position of the fine movement table so that the core image and the reflected image overlap with each other. . 2. A device for guiding a measurement signal light for measuring the transmission characteristics of an optical fiber so as to condense it on an input end face of the optical fiber, and a device that guides the measurement signal light to be focused on the input end face of the optical fiber, and An optical fiber excitation device including a position-adjustable fine movement stage for fixing the input end of the optical fiber to align the input end with the core center, an illumination light source removably disposed on the output end of the optical fiber; , a core image of the optical fiber in which light from the illumination light source passes through the core of the optical fiber and exits from the input end face of the optical fiber, and a reflected image of the measurement signal light at the input end face of the optical fiber. 1. An optical fiber excitation device comprising: an imaging section that receives light; and a monitor that visually displays a relative positional relationship between the core image and the reflected image received by the imaging section.
JP16099384A 1984-07-31 1984-07-31 Method and apparatus for exciting optical fiber Granted JPS6139006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16099384A JPS6139006A (en) 1984-07-31 1984-07-31 Method and apparatus for exciting optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16099384A JPS6139006A (en) 1984-07-31 1984-07-31 Method and apparatus for exciting optical fiber

Publications (2)

Publication Number Publication Date
JPS6139006A JPS6139006A (en) 1986-02-25
JPH0416083B2 true JPH0416083B2 (en) 1992-03-23

Family

ID=15726532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16099384A Granted JPS6139006A (en) 1984-07-31 1984-07-31 Method and apparatus for exciting optical fiber

Country Status (1)

Country Link
JP (1) JPS6139006A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1276451C (en) * 1986-02-27 1990-11-20 Neal Henry Thorsten Techniques and apparatus for aligning a light emitter within its package
JP2602653B2 (en) * 1987-06-01 1997-04-23 日本航空電子工業株式会社 Optical fiber alignment machine
EP0421929B1 (en) * 1989-10-03 1994-02-23 Ciba-Geigy Ag Apparatus for coupling light energy of laser beam into an optical fibre and method for aligning and monitoring the position of the termination of the optical fibre

Also Published As

Publication number Publication date
JPS6139006A (en) 1986-02-25

Similar Documents

Publication Publication Date Title
EP0383244A1 (en) Fiber optic scatterometer
US5399866A (en) Optical system for detection of signal in fluorescent immunoassay
US4779978A (en) Method of measuring the refractive index profile of optical fibers
JP2002541474A (en) Optical fiber characteristics measurement device
US6816244B2 (en) Determining optical fiber types
GB2168804A (en) Apparatus for measuring transmission characteristics of an optical fibre
EP1848983A1 (en) Fluorescence correlation microscopy with real-time alignment readout
JPH0522860B2 (en)
JPH0416083B2 (en)
TW457159B (en) Laser apparatus
EP1065489B1 (en) Apparatus for optical time domain reflectometry on multi-mode optical fibers, a light source section thereof, and a process for producing the light source section
CN108593625A (en) A kind of all -fiber confocal Raman spectra measurement method based on energy back
CN1295242A (en) Device for detecting small light spot of objective lens of optical disc
JPH049284B2 (en)
US6778277B2 (en) Apparatus and method to measure film motion in a film gate
JP2817283B2 (en) Characteristic measuring device for cable with optical connector
EP4151966A1 (en) Apparatus and method for recording spectrally resolved images of a sample
GB1596757A (en) Apparatus for and method of measuring the optical properties of an optical fibre while it is being drawn
JPH0658289B2 (en) Optical fiber measurement method
JP2001264259A (en) Sheet inspecting device
Olshansky et al. Measurement of differential mode attenuation in graded-index fiber optical waveguides
JPS59114432A (en) Method of measuring cutoff wavelength of primary and higher mode of optical fiber
JP2903748B2 (en) Shape measurement method by laser microscope
JP3051327B2 (en) Measurement method of polarization-maintaining plane of polarization-maintaining optical fiber on optical connector
JPS63311139A (en) Characteristic measuring apparatus for optical fiber