JPH0416081B2 - - Google Patents

Info

Publication number
JPH0416081B2
JPH0416081B2 JP1666384A JP1666384A JPH0416081B2 JP H0416081 B2 JPH0416081 B2 JP H0416081B2 JP 1666384 A JP1666384 A JP 1666384A JP 1666384 A JP1666384 A JP 1666384A JP H0416081 B2 JPH0416081 B2 JP H0416081B2
Authority
JP
Japan
Prior art keywords
film
polarizing
thin film
magnesium oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1666384A
Other languages
Japanese (ja)
Other versions
JPS60159705A (en
Inventor
Kazuaki Myamoto
Shigemasa Kawai
Hitoshi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1666384A priority Critical patent/JPS60159705A/en
Publication of JPS60159705A publication Critical patent/JPS60159705A/en
Publication of JPH0416081B2 publication Critical patent/JPH0416081B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は液晶表示等の用途に用いられ、とくに
耐水性、耐湿性が改良された偏光板に関するもの
である。 従来技術 最近に於いて、偏光板を使用した液晶表示が多
方面に適用され始め、例えば、自動車表示盤等の
高温、高湿の条件下での耐久性が必要とされる用
途への適用が試みられるにつれて、耐熱、耐湿性
のよりすぐれた偏光板の要求が高まつている。 そして偏光板としてはポリビニルアルコール
(以下PVAと云う)系偏光フイルムが汎用されて
いるが、該フイルムは耐湿性が悪く、特に高温多
湿の環境では偏光性能が著るしく低下する。この
原因はPVAフイルムの吸水による配向緩和が原
因するものと考えられている。このため、PVA
偏光フイルムの表面に複届折性を持たない透明な
三酢酸セルロース等のフイルムを貼り合せて該偏
光フイルムを保護することが一般に行われている
が、PVAフイルム自体の耐湿性が悪いことと、
三酢酸セルロースの耐透湿性が悪いため、十分な
保護効果が出ない。例えば、80℃、95%RHの環
境下では、上記保護層を設けていてもPVAの吸
水による配向緩和のため、変色偏光度の低下が起
り、耐湿性が十分でない。 又、このような欠点を解消するため例えば特開
昭53−12050号公報では、偏光フイルムの表面に
直接SiO2、TiO2等の酸化物層、あるいはSi3N4
の窒化物層を設けることにより、耐湿性を改善す
る方法が、又、特開昭55−114563号公報では、保
護膜としての三酢酸セルロースの表面にアンカー
層を介してSiO2、TiO2、ZrO2等酸化物層を設け
ることにより耐湿性を改善する方法が提案されて
いるが、これにより常温での耐湿性は改良されて
も、高温高湿下での変色、偏光度の低下を防止す
るには十分でなく、さらに耐熱性及び耐湿性を向
上させることが要求されている。 発明の目的 本発明は上記の如き現状にかんがみ、耐熱、耐
湿性にすぐれた偏光板を提供することを目的とし
て研究せる結果、マグネシウム酸化物の透明薄膜
層が従来より知られているSiO、SiO2層等に比べ
てとくに耐透湿性にすぐれており、これを偏光板
の保護膜に適用することにより、すぐれた性能の
偏光板が得られることを知見してなされたもので
ある。 発明の要旨、構成 本発明の要旨は、親水性高分子フイルムに偏光
素子を吸着配向せしめた偏光フイルムの少なくと
も一面に、酢酸セルロース系フイルムを接着して
なる偏光板にして、該酢酸セルロース系フイルム
は少なくとも一面にマグネシウム酸化物の透明薄
膜層が密着形成されたものであることを特徴とす
る偏光板に存する。 本発明に用いられる偏光フイルムはPVA等の
親水性高分子フイルムに、ヨウ素や二色性染料例
えばダイレクトブラツク17,19,20、ダイレクト
ブルー1,6、ダイレクトレツド28等の偏光素子
を吸着させ、吸着フイルムを延伸等して偏光素子
を配向させて偏光性を付与したものである。 又、酢酸セルロース系フイルムとしては二酢酸
セルロース、三酢酸セルロース等があるが、三酢
酸セルロースが好適に用いられる。 酢酸セルロース系フイルム表面にマグネシウム
酸化物の透明薄膜層を形成させるには、真空蒸着
法、反応蒸着法、イオンプレーテイング法又はス
パツタリング法などの蒸着法を用いることが出
来、これら蒸着法によつてマグネシウム酸化物薄
層を酢酸セルロース系フイルム表面に密着して形
成させることが出来る。 この蒸着法についてより詳しく説明するに、例
えば真空蒸着法を採取した場合は、蒸着物質とし
て酸化マグネシウム(MgO)を使い該酸化マグ
ネシウムを電子線により加熱蒸発させたり、マル
ミナルツボ又はカーボンルツボを用いて高局波誘
導加熱方式又は抵抗加熱方式で加熱蒸発させるこ
とにより、加熱処理等の後処理の不要な密着性の
良好な蒸着膜が得られる。真空蒸着は2×
10-2torr以下の圧力下で行うのが好ましい。又、
酸素ガスが導入された真空容器内でマグネシウム
を加熱蒸発させる反応蒸着法によつてもマグネシ
ウム酸化物透明膜を形成することが出来る。さら
に該透明膜はイオンプレーテイング法やスパツタ
リング法でも形成出来、その場合は蒸着粒子が高
いエネルギーを有することによつて真空蒸発法に
比して、より密着性の良好な透明薄膜層を形成す
ることが出来る。透明薄膜層は、偏光板の耐湿性
を良好なものとするためその厚みを100〜5000Å
の範囲にするのがよい。 尚、透明薄膜層の厚みが5000Åを越えても透明
性を損なうことないが、透明薄膜層内部の応力の
ため、酢酸セルロース系フイルムのカール性が問
題となつたり、亀裂や剥離が生じ易くなることが
ある。又、透明薄膜層の厚みが100Å未満となる
と、膜が島状構造となつて耐透湿性が不充分なも
のとなる恐れがある。 本発明では、酢酸セルロース系フイルムの片面
だけにマグネシウム酸化物層を設けるだけで十分
な耐透湿性を発揮するが勿論必要に応じて両面に
形成してもよい。 本発明の偏光板は前記偏光フイルムの少なくと
も一面に、前記マグネシウム酸化物の透明薄膜層
が少なくとも一面に密着形成された酢酸セルロー
ス系フイルムが接着されてなるものであるが、こ
の接着に使用する接着材料としてはウレタン系、
アクリル系及びエポキシ系接着剤等が使用出来
る。 しかして、酢酸セルロース系フイルムの片面に
だけ透明薄膜層が形成されているものを偏光フイ
ルムに接着する場合、該薄膜層を偏光フイルムに
接する様配置してもよく、又は、該薄膜層が偏光
フイルム側と反対になる様に配置しても良いが、
透明薄膜層が他物体との接触等により傷つくのを
防止する点や、該薄膜層が接着剤との接着性にす
ぐれている点で、該薄膜層を偏光フイルムに接す
る様にして接着を行うのが好ましい。 本発明偏光板は以上の通りの構成のものであ
り、これに用いられる酢酸セルロース系フイルム
の少なくとも一面に密着形成されたマグネシウム
酸化物の透明薄膜層によつて、高温高湿下におけ
るすぐれた耐湿性が付与されたものであるので、
自動車用液晶表示盤等の如く、過酷な条件下で耐
湿性が要求される用途に用いられて、すぐれた効
果を発揮し得るものである。 実施例 以下本発明の実施例にもとづいて説明する。 実施例 1 ケン化度99.8%の未延伸PVAフイルムを室温
の水で洗浄したのち、二色性染料ダイレクトブル
ー15を含む約40℃の水性染色液中を通過させて染
色し、該フイルムを80℃の熱風で乾燥した。この
フイルムを140℃で一軸方向に約4倍の乾熱延伸
を行い、続いて緊張状態を保つたまゝ170℃で5
分間加熱し、次に55℃の3重量%ホウ酸水溶液に
緊張を保つたまゝ10分間浸漬して、PVA偏光フ
イルムを用意した。 一方、厚さ80μの三酢酸セルロースフイルムに
下記の条件で、真空蒸着法で厚さ1030Åのマグネ
シウム酸化物透明膜を形成した。 膜形成方式:真空蒸着法(電子銃加熱方式) 蒸発源:純度99%の酸化マグネシウム 真空度:2×10-4トール 膜厚:1030Å(水晶発振式モニターで測定) 膜形成面:フイルム片面 次に、上記で作成した蒸着フイルムのマグネシ
ウム酸化物層がPVA偏光フイルム面に接する様
にして、該PVA偏光フイルム両面に、ウレタン
系接着剤で蒸着フイルムを接着した。PVA偏光
フイルムと蒸着フイルムのマグネシウム酸化物蒸
着面との接着性は極めて良好であつた。 かくして用意した偏光板について、80℃、95%
RHの条件で500時間放置する耐湿試験を行ない、
試験前と試験後について、波長610nmにおける
単板透過率T(%)及び波長nmにおける偏光度
P(%)を測定した所、第1表に示される結果を
得た。 なお、偏光度Pは次式にもとづいて求めた。 T1:二つの偏光板を偏光軸を平行にして重ね合
せた平行透過率(λ=610nm) T2:二つの偏光板を偏光軸を直交させて重ね合
せた直交透過率(λ=610nm) 比較例 1〜3 SiO2、TiO2、ZrO2を蒸発源として用いる他は
実施例1と同様にして、三酢酸セルロースフイル
ム(厚さ80μ)の片面に各々蒸着して、該フイル
ムの片面に厚さ980ÅのSiO2薄膜(比較例1)、
厚さ1015ÅのTiO2薄膜(比較例2)及び厚さ
1080ÅのZrO2薄膜(比較例3)が設けられた三
酢酸セルロースフイルムをそれぞれ用意した。 これらの蒸着フイルムを、実施例1で用意した
のと同じPVA偏光フイルムの両面に、実施例1
と同様にして接着して、3通りの偏光板を作成し
た。 かくして用意した3通りの偏光板について、実
施例1と同様の耐湿試験を行つた所、第1表に示
される結果を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a polarizing plate that is used for applications such as liquid crystal displays, and particularly has improved water resistance and moisture resistance. PRIOR ART Recently, liquid crystal displays using polarizing plates have begun to be used in a wide variety of applications, such as automobile display panels and other applications that require durability under high temperature and high humidity conditions. As attempts have been made, the demand for polarizing plates with better heat resistance and moisture resistance is increasing. A polyvinyl alcohol (hereinafter referred to as PVA) polarizing film is widely used as a polarizing plate, but this film has poor moisture resistance, and its polarizing performance is significantly degraded especially in a high temperature and humid environment. This is thought to be due to orientation relaxation due to water absorption of the PVA film. For this reason, PVA
It is common practice to protect the polarizing film by laminating a transparent film such as cellulose triacetate, which does not have double refraction properties, on the surface of the polarizing film, but the PVA film itself has poor moisture resistance.
Cellulose triacetate has poor moisture permeability, so it does not provide sufficient protection. For example, in an environment of 80° C. and 95% RH, even if the above-mentioned protective layer is provided, the PVA absorbs water and relaxes its orientation, resulting in discoloration and a decrease in the degree of polarization, resulting in insufficient moisture resistance. In addition, in order to eliminate such drawbacks, for example, in Japanese Patent Application Laid-open No. 12050/1983, an oxide layer such as SiO 2 or TiO 2 or a nitride layer such as Si 3 N 4 is directly provided on the surface of the polarizing film. In JP-A No. 55-114563, a method of improving moisture resistance by applying an oxide layer such as SiO 2 , TiO 2 , ZrO 2 etc. to the surface of cellulose triacetate as a protective film via an anchor layer. A method has been proposed to improve moisture resistance by adding a Furthermore, it is required to improve heat resistance and moisture resistance. Purpose of the Invention In view of the above-mentioned current situation, the present invention has been carried out with the aim of providing a polarizing plate with excellent heat resistance and moisture resistance. This was done based on the knowledge that it has particularly excellent moisture permeability compared to two- layered, etc., and that by applying it to the protective film of a polarizing plate, a polarizing plate with excellent performance could be obtained. Summary and Structure of the Invention The gist of the present invention is to provide a polarizing plate in which a cellulose acetate film is adhered to at least one surface of a polarizing film in which a polarizing element is adsorbed and oriented on a hydrophilic polymer film. The present invention relates to a polarizing plate characterized in that a transparent thin film layer of magnesium oxide is closely formed on at least one surface. The polarizing film used in the present invention is made by adsorbing polarizing elements such as iodine or dichroic dyes such as Direct Black 17, 19, 20, Direct Blue 1, 6, Direct Red 28, etc. to a hydrophilic polymer film such as PVA. , polarizing properties are imparted by orienting a polarizing element by stretching an adsorption film or the like. Cellulose acetate films include cellulose diacetate and cellulose triacetate, and cellulose triacetate is preferably used. In order to form a transparent thin film layer of magnesium oxide on the surface of a cellulose acetate film, a vapor deposition method such as a vacuum vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used. A thin layer of magnesium oxide can be formed in close contact with the surface of a cellulose acetate film. To explain this evaporation method in more detail, for example, when a vacuum evaporation method is used, magnesium oxide (MgO) is used as the evaporation material and the magnesium oxide is heated and evaporated with an electron beam, or a marminar crucible or a carbon crucible is used to evaporate the magnesium oxide. By heating and evaporating using a local wave induction heating method or a resistance heating method, a deposited film with good adhesion that does not require post-treatment such as heat treatment can be obtained. Vacuum deposition is 2x
Preferably, the reaction is carried out under a pressure of 10 −2 torr or less. or,
A transparent magnesium oxide film can also be formed by a reactive vapor deposition method in which magnesium is heated and evaporated in a vacuum vessel into which oxygen gas is introduced. Furthermore, the transparent film can also be formed by an ion plating method or a sputtering method, in which case a transparent thin film layer with better adhesion can be formed due to the high energy of the evaporated particles compared to the vacuum evaporation method. I can do it. The thickness of the transparent thin film layer is 100 to 5000 Å in order to improve the moisture resistance of the polarizing plate.
It is best to keep it within the range. In addition, even if the thickness of the transparent thin film layer exceeds 5000 Å, the transparency will not be impaired, but due to the stress inside the transparent thin film layer, the curling property of the cellulose acetate film may become a problem, and cracks and peeling may easily occur. Sometimes. Furthermore, if the thickness of the transparent thin film layer is less than 100 Å, the film may have an island-like structure, resulting in insufficient moisture permeation resistance. In the present invention, sufficient moisture permeability can be achieved by providing a magnesium oxide layer on only one side of the cellulose acetate film, but it may be formed on both sides if necessary. The polarizing plate of the present invention is formed by adhering to at least one surface of the polarizing film a cellulose acetate film on which the transparent thin film layer of magnesium oxide is closely formed, and the adhesive used for this adhesion is The material is urethane,
Acrylic and epoxy adhesives can be used. When a cellulose acetate film with a transparent thin film layer formed on only one side is adhered to a polarizing film, the thin film layer may be placed in contact with the polarizing film, or the thin film layer may be placed in contact with the polarizing film. You can place it opposite to the film side, but
Adhesion is carried out by placing the thin film layer in contact with the polarizing film in order to prevent the transparent thin film layer from being damaged by contact with other objects, etc., and because the thin film layer has excellent adhesion with adhesives. is preferable. The polarizing plate of the present invention has the structure as described above, and has excellent moisture resistance under high temperature and high humidity conditions due to the transparent thin film layer of magnesium oxide closely formed on at least one surface of the cellulose acetate film used therein. Because it has been given a gender,
It can be used in applications that require moisture resistance under harsh conditions, such as liquid crystal display panels for automobiles, and can exhibit excellent effects. EXAMPLES The present invention will be described below based on examples. Example 1 An unstretched PVA film with a degree of saponification of 99.8% was washed with water at room temperature and then dyed by passing it through an aqueous dyeing solution at about 40°C containing dichroic dye Direct Blue 15. Dry with hot air at ℃. This film was dry-heat stretched approximately 4 times in the uniaxial direction at 140°C, and then stretched at 170°C for 5 times while maintaining tension.
The film was heated for 1 minute, and then immersed in a 3% by weight boric acid aqueous solution at 55°C for 10 minutes while maintaining tension to prepare a PVA polarizing film. On the other hand, a magnesium oxide transparent film with a thickness of 1030 Å was formed on a cellulose triacetate film with a thickness of 80 μm using a vacuum evaporation method under the following conditions. Film formation method: Vacuum deposition method (electron gun heating method) Evaporation source: Magnesium oxide with 99% purity Vacuum degree: 2 × 10 -4 Torr Film thickness: 1030 Å (measured with a crystal oscillation monitor) Film formation surface: One side of the film Next Next, the vapor-deposited film was adhered to both surfaces of the PVA polarizing film with a urethane adhesive so that the magnesium oxide layer of the vapor-deposited film prepared above was in contact with the PVA polarizing film surface. The adhesion between the PVA polarizing film and the magnesium oxide vapor-deposited surface of the vapor-deposited film was extremely good. Regarding the polarizing plate prepared in this way, 80℃, 95%
A moisture resistance test was conducted under RH conditions for 500 hours.
Before and after the test, the single plate transmittance T (%) at a wavelength of 610 nm and the degree of polarization P (%) at a wavelength of nm were measured, and the results shown in Table 1 were obtained. Note that the degree of polarization P was determined based on the following formula. T 1 : Parallel transmittance (λ = 610 nm) of two polarizing plates stacked with their polarization axes parallel to each other T 2 : Orthogonal transmittance (λ = 610 nm) of two polarizing plates stacked with their polarization axes perpendicular to each other Comparative Examples 1 to 3 In the same manner as in Example 1 except that SiO 2 , TiO 2 , and ZrO 2 were used as evaporation sources, they were each vapor-deposited on one side of a cellulose triacetate film (thickness: 80 μm), and then deposited on one side of the film. SiO 2 thin film with a thickness of 980 Å (Comparative Example 1),
TiO 2 thin film with a thickness of 1015 Å (comparative example 2) and thickness
Cellulose triacetate films each provided with a 1080 Å ZrO 2 thin film (Comparative Example 3) were prepared. These vapor-deposited films were coated on both sides of the same PVA polarizing film prepared in Example 1.
Three types of polarizing plates were created by bonding in the same manner as above. The three types of polarizing plates thus prepared were subjected to the same moisture resistance test as in Example 1, and the results shown in Table 1 were obtained. 【table】

Claims (1)

【特許請求の範囲】 1 親水性高分子フイルムに偏光素子を吸着配向
せしめた偏光フイルムの少なくとも一面に、酢酸
セルロース系フイルムを接着してなる偏光板にし
て、該酢酸セルロース系フイルムは少なくとも一
面にマグネシウム酸化物の透明薄膜層が密着形成
されたものであることを特徴とする偏光板。 2 親水性高分子フイルムがポリビニルアルコー
ル系フイルムである特許請求の範囲第1項記載の
偏光板。
[Scope of Claims] 1. A polarizing plate in which a cellulose acetate film is adhered to at least one surface of a polarizing film in which a polarizing element is adsorbed and oriented on a hydrophilic polymer film, and the cellulose acetate film is attached to at least one surface of the polarizing film. A polarizing plate characterized in that a transparent thin film layer of magnesium oxide is closely formed. 2. The polarizing plate according to claim 1, wherein the hydrophilic polymer film is a polyvinyl alcohol film.
JP1666384A 1984-01-30 1984-01-30 Polarizing plate Granted JPS60159705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1666384A JPS60159705A (en) 1984-01-30 1984-01-30 Polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1666384A JPS60159705A (en) 1984-01-30 1984-01-30 Polarizing plate

Publications (2)

Publication Number Publication Date
JPS60159705A JPS60159705A (en) 1985-08-21
JPH0416081B2 true JPH0416081B2 (en) 1992-03-23

Family

ID=11922566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1666384A Granted JPS60159705A (en) 1984-01-30 1984-01-30 Polarizing plate

Country Status (1)

Country Link
JP (1) JPS60159705A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374655B1 (en) * 1988-12-23 1993-09-15 Bayer Ag Light-polarising films or foils containing stilbene pigments
CN104311853B (en) * 2011-03-29 2018-05-25 可乐丽股份有限公司 Polymer film of polyvinyl alcohol and its manufacturing method

Also Published As

Publication number Publication date
JPS60159705A (en) 1985-08-21

Similar Documents

Publication Publication Date Title
JP2007102179A (en) Highly durable polarizing plate and liquid crystal display device
JPS6289907A (en) Transparent conductive film united with polarizing film
US5705267A (en) Thermostable polarizers
JP2000081514A (en) Optical member, cell substrate and liquid crystal display device
JPH0416081B2 (en)
JPH0535402B2 (en)
WO2023013416A1 (en) Optical layered body
JP3680709B2 (en) Manufacturing method of polarizing film
JP2702170B2 (en) Polarizing film
JP3211590B2 (en) Polarizer
JP3428295B2 (en) Polarizing plate protective film and polarizing plate
JPH09272169A (en) Optical laminated body
JP3616854B2 (en) Polarizing element, manufacturing method thereof, and liquid crystal display device
JPH10339869A (en) Base film for display element
JPH10138382A (en) Optical laminate
JPH06130225A (en) Polarizing plate
JP3888710B2 (en) Optical laminate
JPH0434481Y2 (en)
JPS5955418A (en) Reflective polarization plate
JP2779413B2 (en) Manufacturing method of polarizing plate
KR20190026708A (en) Polarizing plate and liquid crystal comprising the same display
JPS6179645A (en) Transparent laminated conductive film
JPH10193493A (en) Optical laminate
JPH0552003B2 (en)
JPS6261203A (en) Transparent conductive film