JPH04160171A - Rust preventive for bonded magnet powder - Google Patents

Rust preventive for bonded magnet powder

Info

Publication number
JPH04160171A
JPH04160171A JP28340290A JP28340290A JPH04160171A JP H04160171 A JPH04160171 A JP H04160171A JP 28340290 A JP28340290 A JP 28340290A JP 28340290 A JP28340290 A JP 28340290A JP H04160171 A JPH04160171 A JP H04160171A
Authority
JP
Japan
Prior art keywords
magnet powder
rust preventive
viscosity
bonded magnet
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28340290A
Other languages
Japanese (ja)
Other versions
JP3050325B2 (en
Inventor
Isao Kaneko
勲 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2283402A priority Critical patent/JP3050325B2/en
Publication of JPH04160171A publication Critical patent/JPH04160171A/en
Application granted granted Critical
Publication of JP3050325B2 publication Critical patent/JP3050325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To produce the rust preventive adequate for improving the corrosion resistance of a bonded magnet by preparing a soln. which consists of polyethylene(PE), etc., contg. a specific ratio of methane sulfonate and is specified in its viscosity. CONSTITUTION:The soln. which contains at least one kind among PE, polypropylene, polystyrene, methyl polyacrylate, and methyl polymethacrylate contg. 0.5 to 5.0vol.% methane sulfonate and has <=1000 centipoises viscosity at 20 deg.C is prepd. The rust preventive treatment of the bonded magnet is executed by an immersion method using this soln., by which the bonded magnet which is excellent in the rust preventiveness and satisfies the magnetic characteristics is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、ボンド磁石粉末の耐蝕性向上に好適な防錆剤
に関する。
The present invention relates to a rust preventive agent suitable for improving the corrosion resistance of bonded magnet powder.

【従来の技術】[Conventional technology]

ボンド磁石は、寸法精度が良く複雑な形状の成形や一体
成形が可能であるという特徴から電子機器部品として広
範囲に使用されている。 しかしながら、ボンド磁石粉末として、アルニコ磁石粉
末や希土類磁石粉末を用いるため錆びやすいという欠点
を有する。そのためボンド磁石粉末に対して、リン酸塩
等による化成被膜等の表面処理やJISK2246に規
定される防錆油処理等が行われている。
Bonded magnets are widely used as electronic device parts because they have good dimensional accuracy and can be molded into complex shapes or integrally molded. However, since Alnico magnet powder or rare earth magnet powder is used as the bonded magnet powder, it has the disadvantage of being susceptible to rust. For this reason, bonded magnet powder is subjected to surface treatments such as chemical conversion coatings using phosphates, etc., and antirust oil treatments specified in JIS K2246.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記防錆処理法では、磁気特性を損わず
に耐蝕性を満足させることは極めて困誼であった。そこ
で本発明の目的は、上記事情に鑑み、磁気特性を損なわ
ずに耐蝕性の優れたボンド磁石粉末を製造することが出
来る防錆剤を提供することにある。
However, with the above rust prevention treatment method, it is extremely difficult to satisfy corrosion resistance without impairing magnetic properties. SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a rust preventive agent that can produce bonded magnet powder with excellent corrosion resistance without impairing magnetic properties.

【課Uを解決するための手段】[Means to solve Section U]

本発明は、上記目的を達成するものであって、0.5〜
5.0体積%のメタン系スルホン酸塩を含有するポリエ
チレン、ポリプロピレン、ポリスチレン、ポリアクリル
酸メチルおよびポリメタクリル酸メチルのうち少なくと
も1種以上を含有する溶液からなり、その溶液の20℃
における粘度が1000センチポイズ以下であることを
特徴とするボンド磁石粉末用防錆剤である。
The present invention achieves the above object, and has a
Consists of a solution containing at least one of polyethylene, polypropylene, polystyrene, polymethyl acrylate, and polymethyl methacrylate containing 5.0% by volume of methane sulfonate, and the solution is heated at 20°C.
A rust preventive agent for bonded magnet powder characterized by having a viscosity of 1000 centipoise or less.

【作用】[Effect]

本発明のボンド磁石粉末用防錆剤に防錆主剤として含ま
れるポリエチレン、ポリプロピレン、ポリスチレン、ポ
リアクリル酸メタルおよびポリメタクリル酸メチルは汎
用樹脂で安価である。また、主鎖がアルキル基からなり
疎水性を有していることから、ボンド磁石粉末表面に発
錆源であるハロゲン含有水分が付着するのを防止する効
果が大きいことが特筆される。これ以外の汎用樹脂、例
えばポリアミド樹脂やエポキシ樹脂は、基本構造に占め
る親木基の割合か大きく碗水性に劣る。よって耐蝕性が
充分でない。 次に、ボンド磁石粉末用防錆剤の添加剤であるメタン系
スルホン酸塩、例えば、C−H* S OsN a 、
 Cs H1,S O3N a、あるいは(C7H15
SO3)2 Caは、防錆成形原料の磁石と上記樹脂の
密着性を向上させる役割をもっている。しかし、その添
加量か゛0,5体槓%以下であると、樹脂とボンド磁石
粉末とのぬれ性か悪く、形成される被膜か峨密性に欠け
てしまう、逆に、5体積%以上では、被膜か厚くなり、
磁気特性か劣化する。 また、本発明の防錆剤は、20℃における粘度か100
0センチポイズ以下であることか必要である。これによ
り、磁気特性を低下させずに、耐蝕性に優れた、すなわ
ち安定で薄い防錆被膜を形成することかできる。粘度1
000センチポイズを超えると、形成される防錆被膜の
厚さが増大して耐蝕性や磁気特性が低下する。 防錆剤の20℃における粘度を1000センチボイス以
下に調整するには、溶剤としてベンゼン系有機溶媒、例
えばベンゼン、キシレン、トルエン等を適宜使用すれば
良い。 本発明の防錆剤によりボンド磁石粉末に防錆処理を施す
には種種の方法が用いられるが、より安価な浸漬法が一
般的である。
The polyethylene, polypropylene, polystyrene, metal polyacrylate, and polymethyl methacrylate contained as main rust preventive agents in the rust preventive agent for bonded magnet powder of the present invention are general-purpose resins and are inexpensive. Furthermore, since the main chain is composed of an alkyl group and has hydrophobicity, it is noteworthy that it is highly effective in preventing halogen-containing water, which is a source of rust, from adhering to the surface of the bonded magnet powder. Other general-purpose resins, such as polyamide resins and epoxy resins, have a large proportion of parent wood groups in their basic structure and are inferior in potability. Therefore, corrosion resistance is not sufficient. Next, a methane-based sulfonate, which is an additive for a rust preventive agent for bonded magnet powder, such as C-H*S OsNa,
Cs H1, S O3N a, or (C7H15
SO3)2Ca has the role of improving the adhesion between the magnet of the anticorrosive molding raw material and the resin. However, if the amount added is less than 0.5% by volume, the wettability between the resin and bonded magnet powder will be poor, and the formed film will lack density. , the coating becomes thicker,
Magnetic properties deteriorate. Furthermore, the rust preventive of the present invention has a viscosity of 100°C at 20°C.
It is necessary that it be 0 centipoise or less. Thereby, it is possible to form a stable and thin anti-corrosion coating with excellent corrosion resistance without deteriorating the magnetic properties. Viscosity 1
If it exceeds 0,000 centipoise, the thickness of the rust-preventive coating formed will increase and the corrosion resistance and magnetic properties will deteriorate. In order to adjust the viscosity of the rust preventive at 20° C. to 1000 centivoice or less, a benzene-based organic solvent such as benzene, xylene, toluene, etc. may be appropriately used as a solvent. Various methods can be used to apply rust prevention treatment to bonded magnet powder using the rust preventive agent of the present invention, but the cheaper immersion method is generally used.

【実施例】【Example】

以下に、本発明を実施例により説明する。 ボンド磁石用合金粉末は、以下に記述する方法で作成し
た。Nd−Fe−Co−B系合金の鋳塊を高周波溶解後
、周速度40m/秒で回転する銅ロール面に圧力0.5
kg/cm”で吹き付けて急冷し、幅2 m m、厚さ
20μmのリボンを得た。 このリボンを真空中750℃で10分間加熱し、常温ま
で冷却した後、35メツシユ(JIS)以下まで粉砕し
た粉末(以下、磁石粉木工と略す)を得た。 磁石粉木工の組成は原子%で、Nd12.5%、Co5
.5%、B5.0%、残部Feであった。 一方、JIS  C2502に規定された永久磁石材料
として、Co 24重量%、Ni 14重量%、A98
′!jL量%、Cu3重量%、残部Feの組成を有し、
MCA  4415  の仕様を満足させるアルニコ磁
石を用意した後、このアルニコ磁石を粉砕して、篩分け
する事にて、粒径が35メツシユ以下の磁石粉末(以下
、磁石粉末2と称す)を得た。 天l目11 ポリエチレン(PE)のペレット状物を適量の80℃キ
シレンに溶解した。但し、20℃における粘度が100
0センチポイズ以下、すなわち本実施例の場合820セ
ンチポイズになるように調整した。これにメタン系スル
ホン酸塩としてc4He SO3Naを適量、すなわち
本実a例の場合1.0体積%添加し、混合した80”C
の溶液中に、上記磁石粉末lを30分間浸漬し、その後
磁石粉末lをろ別し、80℃の真空オーブン中にて1時
間乾燥した。 ここで得た防錆処理済み磁石粉木工の100gに対しエ
ポキシ樹脂および硬化剤からなるバインダー2gを混合
し、面圧力5 t / c m ’で圧縮成形し、12
0℃で1時間加熱することにより、幅5mm、長さl 
Omm、高さ6mmの硬化物を得た。この硬化物を50
kOeの磁場中で着磁してボンド磁石とした(ボンド磁
石1と称す)。 なお、粘度測定には較正?l! (J I 5Z880
9 )で較正したB型回転粘度計を用いた。 ここで得られた防錆処理済み磁石粉末1及びボンド磁石
に対して以下の試験を行った。 (1)耐蝕性試験:常温、濃度1重量%の塩化ナトリウ
ム水溶液に10分間浸漬し、ろ別温度度80℃相対湿度
90%の恒温恒湿槽中で200時間暴露し、試験試料の
発錆状態を目視確認した。 (2)磁気特性二ボンド磁石1をチオフィー型自記磁束
計にて最大エネルギー積を測定した。 以上の結果を防錆添加剤含有量及び防錆剤粘度と共に第
1表に示す。 K1■ユ メタン系スルホン酸塩として、C,H,SO。 Naを3.0体積%添加した他は、実施例1と同機にし
て、磁石粉末1を処理した。但し、溶液の20℃におけ
る粘度が502センチボイスであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 K臣皿旦 メタン系スルホン酸塩として、C4H−S OsNaを
5.0体積%添加した他は、実施例1と同様にして、磁
石粉末1を処理した。但し、溶液の20℃における粘度
か315センチボイスであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 え良■1 ポリエチレン(PE)の代わりにポリスチレン(PS)
を使用し、メタン系スルボン酸塩として、C4H* S
 Os N aを2.0体積%添加した他は、実施例1
と同様にして、磁石粉末1を処理しな。 但し、溶液の20’Cにおける粘度か315センチボイ
スであった。 ここで得な防錆処理済み磁石粉末1がら実施例1と同様
にして、ボンド磁石1を得て、試験しな。 K良1 ポリエチレン(PE)の代わりにポリスチレン(PS)
を使用し、メタン系スルボン酸塩として、C4He S
O3Naを4.0体積%添加した他は、実施例1と同機
にして、磁石粉末1を処理しな。 但し、溶液の20”Cにおける粘度が675センチボイ
スであった。 ここで得た防錆処理済み磁石粉末1がら実施例1と同様
にして、ボンド磁石1を得て、試験した。 K臣■玉 ポリエチレン(PE)の代わりにポリプロピレン(PP
)を使用し、メタン系スルボン酸塩としてC4He S
O3Naを1.0体積%添加した他は、実施例1と同様
にして、磁石粉末1を処理した。但し、溶液の20℃に
おける粘度か300センチボイスであった。 ここで得た防錆処理済み磁石粉末1がら実施例1と同様
にして、ボンド磁石1を得て、試験した。 K臣■ユ ポリエチレン(PE)の代わりにポリアクリル敢メチル
(PMAA)を使用し、メタン系スルボン酸塩としてC
4He so、Naをi、o体積%添加した他は、実施
例1と同様にして、磁石粉末1を処理した。但し、溶液
の20”Cにおける粘度が300センチボイスであった
。 ここで得た防錆処理済み磁石粉末1がら実施例1と同様
にして、ボンド磁石1を得て、試験した。 i臣上上 ポリエチレン(PE)の代わりにポリメタクリル酸メチ
ル(PMMA)を使用し、メタン系スルホン酸塩として
、C4H9SO3Naを2.0体積%添加した他は、実
施例1と同様にして、磁石粉末1を処理した。但し、溶
液の20℃における粘度が280センチボイスであった
。 ここで得た防錆処理済み磁石粉末1から実施例1と同機
にして、ボンド磁石1を得て、試験した。 衷亙■ユ ポリエチレン(PE)の代わりにポリメタクリル酸メチ
ル(PMMA)を使用し、メタン系スルホン酸塩として
C4He SO3Naを4.0体積%添加した他は、実
施例1と同様にして、磁石粉末1を処理しな、但し、溶
液の20℃における粘度が720センチボイスであった
。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石lを得て、試験した。 L飲■ユ メタン系スルホン酸塩として、C4HI SO3Naを
0.2体積%添加した他は、実施例1と同様にして、磁
石粉末1を処理しな、なお、溶液の20℃における粘度
は820センチボイスであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験しな。 L敗旦ユ メタン系スルホン酸塩として、C4He S 03Na
を7゜5体積%添加した他は、実施例1と同様にして、
磁石粉末1を処理した。なお、溶液の20℃における粘
度は505センチボイスであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 ル鮫旦ユ メタン系スルホン酸塩として、C4H,So。 Naを2.0体積%添加した他は、実施例1と同様にし
て、磁石粉末1を処理した。但し、溶液の20℃におけ
る粘度か1500センチポイズであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 止l自iま ポリエチレン(PR)の代わりにポリエチレン(PE)
を使用し、メタン系スルホン酸塩として、C4He S
Os Naを2.0体積%添加した他は、実施例1と同
様にして、磁石粉末1を処理した。 但し、溶液の20℃における粘度が1500センチポイ
ズであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 L置皿5 ポリエチレン(PE)の代わりにポリメタクリル酸メチ
ル(PMMA)を使用し、メタン系スルホン酸塩として
、C4He SOs Naを7.5体積%添加した他は
、実施例1と同様にして、磁石粉末1を処理した。なお
、溶液の20℃における粘度が720センチポイズであ
った。 ここで得た防錆処理済み磁石粉末lから実施例1と同様
にして、ボンド磁石1を得て、試験した。 匿致且互 防錆剤としてナイロン12を使用した他は、実施例1と
同様にして、磁石粉末1を処理した。なお、ナイロン1
2の20℃における粘度が410センチポイズであった
。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 L毀ヱユ 防錆剤としてノボラック型−液性エポキシ樹脂を使用し
た他は、実施例1と同様にして、磁石粉末1を処理した
。なお、エポキシ樹脂の20℃における粘度か410セ
ンチボイスであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 L秋伍溢 ポリエチレン(PE)の代わりにエポキシを使用し、メ
タン系スルホン酸塩として、C4H,5OiNaを2.
0体積%添加した他は、実施例1と同様にして、磁石粉
末1を処理した。なお、溶液の20℃における粘度が4
10センチボイスであった。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ポンド磁石1を得て、試験した。 従漣口11 磁石粉末1に対して、60℃、pH3,5のリン酸亜鉛
水溶液中に15分間浸漬、ろ別し、80℃の真空オーブ
ン中で乾燥する処理を行なったこと以外は、実施例1と
同様にして、磁石粉末1を処理した。なお、リン酸亜鉛
水溶液の20℃における粘度が155センチボイスであ
った。 ここで得た防錆処理済み磁石粉末1から実施例1と同様
にして、ボンド磁石1を得て、試験した。 1嵐±1 防錆処理剤として、常温の防錆剤(JIS  K224
6に規定されている溶剤希釈形さび止め油3種)を使用
した他は、実施例1と同様にして、磁石粉末1を処理し
た。なお、防錆剤の20℃における粘度か382センチ
ボイスであった。 ここで得な防錆処理済み磁石粉末1から実施例1と同機
にして、ポンド磁石1を得て、試験した。 実施例1〜9、比較例1〜8、従来例1〜2の試験結果
を防錆主剤、添加剤含有量及び防錆剤粘度と共に第1表
に示す、実施例1〜9、比較例1〜8、従来例1〜2を
比較すれば、本発明の防錆剤か極めて優れた耐蝕性を有
していることがわかる。 火菫應口」ヒニ1至 実施例1〜9と同様にして、ポリエチレン(PE)、ポ
リプロピレン(PP) 、ポリスチレン(PS)、ポリ
アクリル酸メチル(PMAA)あるいはポリメタクリル
酸メチル(PMMA)をキシレンに溶解し、20℃にお
ける粘度が1000センチポイズ以下になるように調整
し、これに添加剤のメタン系スルホン酸塩として、C9
H,、SO,Naを適量添加し、混合した溶液を使って
、磁石粉末1を処理及び試験した。 L鞍匠エユエ上 比較例1〜8と同様にして、ポリエチレン(PE)、ポ
リスチレン(PS)、ポリアクリル酸メチル(PMAA
)、ポリメタクリル酸メチル(PMMA)、ナイロン1
2あるいはエポキシ樹脂を使って、磁石粉末1を処理及
び試験した。添加剤のメタン系スルホン酸塩として、C
s H,、So。 Naを適量(零を含む、)添加した。 実施例10〜15および比較例9〜15の試験結果を防
錆主剤、添加剤含有量及び防錆剤粘度と共に第2表に示
す、実施例10〜15と比較例9〜15を比較すれば、
本発明の防錆剤が極めて優れた耐蝕性を有していること
がわかる。 11匠上立二lユ 実施例1〜9と同様にして、ポリエチレン(PElポリ
プロピレン(PP)、ポリスチレン(PS)、ポリアク
リル酸メチル(PMAA)あるいはポリメタ−クリル酸
メチル(PMMA)をキシレンに溶解し、20℃におけ
る粘度が1000センチボイス以下になるように調整し
、これに添加剤のメタン系スルホン酸塩として(C7H
,,5O3)zCaを適量添加し、混合した溶液を使っ
て、磁石粉末1を処理及び試験した。 止11LLLユ」」。 比較例1〜8と同機にして、ポリプロピレン(PP)、
ポリエチレン(PE)、ポリスチレン(PS)、ポリア
クリル酸メチル(PMAA)、ポリメタクリル酸メチル
(PMMA)、ナイロン12及びエポキシのいずれかを
使って、磁石粉末1を処理及び試験した。添加剤のメタ
ン系スルボン6塩として(C7H1!1SO3)2 C
aを適量(零を含む、)添加した。 実施例16〜22および比較例16〜21の試験結果を
防錆主剤、添加剤含有量及び#5錆剤粘度と共に第3表
に示す、実施例16〜22と比較例16〜21を比較す
れば、本発明の防錆剤が極めて優れた耐蝕性を有してい
ることかわがる。 K1匠1ユニユニ 磁石粉末2を使って、実施例1と同機に防錆処理し、防
錆処理済み磁石粉末2の10otに対して、バインター
としてナイロン12を7.5gの割合で混合した後、こ
の混合物を250 ’Cで15分間混合し、18kOe
の磁場中で240’Cにて射出成型し、幅5噛、長さ1
0Ilfl、高さ5111ml+の成型体を製作し、5
0kOeの磁場中で着磁して、ボンド磁石とした(以下
、ボンド磁石2と称す)。 ボンド磁石2を使用して、実施例1〜つと同様に試験し
た。 て試験した。 良え五旦ニュ ボンド磁石2を使用して、従来例1〜2と同様に試験し
た。 実I!1例23〜29、比較例22〜28および従来例
3〜4の試験結果を防錆主剤、添加側含有i及び防錆剤
粘度と共に第4表に示す、実施例23〜29と比較例2
2〜28を比較すれば、本発明の防錆剤か極めて優れた
耐蝕性を有していることかわかる。 例30〜33 ボンド磁石2を使用して、実施例10〜15と同様に試
験した。 上  中受 例 29〜3 2 ボンド磁石2を使用して、比較例9〜15と同機に試験
した。 実施例30〜33および比較例29〜32の試験結果を
防錆主剤、添加剤含有量及び防錆剤粘度と共に第5表に
示す、実施例30〜33と比較例29〜32を比較すれ
ば、本発明の防錆剤か極めて優れた耐蝕性を有している
ことがわかる。 K1匠1豆ニ上上 ボンド磁石2を使用して、実施例16〜22と同様に試
験した。 反肱匠ユユニ旦ユ ボンド磁石2を使用して、比較例16〜21と同様に試
験した。 実施例34〜38および比較例33〜37の試験結果を
防錆主剤、添加剤含有量及び防錆剤粘度と共に第6表に
示す、実施例34〜38と比較例33〜37を比較すれ
は、本発明の防錆剤が極めて優れた耐蝕性を有している
ことかわかる、以上の実施例に示すように、本発明の実
施により入手された製品は、優れた耐蝕性を示すと共に
、磁気特性としての最大エネルギー積は従来より高い数
値を示しており、その他の磁気特性に対しても何等の劣
化現象を認められなかった。 (この頁以下余白)
The present invention will be explained below using examples. The alloy powder for bonded magnets was created by the method described below. After high-frequency melting of a Nd-Fe-Co-B alloy ingot, a pressure of 0.5 is applied to the surface of a copper roll rotating at a circumferential speed of 40 m/s.
kg/cm'' and quenched to obtain a ribbon with a width of 2 mm and a thickness of 20 μm. This ribbon was heated in a vacuum at 750°C for 10 minutes, cooled to room temperature, and then heated to 35 mesh (JIS) or less. A pulverized powder (hereinafter abbreviated as magnet powder woodworking) was obtained. The composition of magnet powder woodworking is in atomic %, Nd 12.5%, Co5
.. 5%, B 5.0%, and the balance Fe. On the other hand, permanent magnet materials specified in JIS C2502 include 24% by weight of Co, 14% by weight of Ni, and A98.
′! jL amount%, Cu3wt%, balance Fe,
After preparing an alnico magnet that satisfies the specifications of MCA 4415, this alnico magnet was crushed and sieved to obtain a magnet powder with a particle size of 35 mesh or less (hereinafter referred to as magnet powder 2). . Top 11 Polyethylene (PE) pellets were dissolved in an appropriate amount of 80°C xylene. However, the viscosity at 20°C is 100
It was adjusted to be 0 centipoise or less, that is, 820 centipoise in the case of this example. To this, an appropriate amount of c4He SO3Na as a methane-based sulfonate was added, that is, 1.0% by volume in the case of this Example A, and the mixed 80"C
The magnet powder 1 was immersed in the solution for 30 minutes, and then the magnet powder 1 was filtered off and dried in a vacuum oven at 80° C. for 1 hour. 2 g of a binder consisting of an epoxy resin and a curing agent was mixed with 100 g of the rust-preventing treated magnetic powder woodwork obtained here, and compression molded at a surface pressure of 5 t/cm'.
By heating at 0℃ for 1 hour, it becomes 5mm wide and 1mm long.
A cured product with a thickness of 0 mm and a height of 6 mm was obtained. 50% of this cured product
It was magnetized in a magnetic field of kOe to form a bonded magnet (referred to as bonded magnet 1). Also, is there any calibration required for viscosity measurement? l! (J I 5Z880
A B-type rotational viscometer calibrated according to 9) was used. The following tests were conducted on the antirust-treated magnet powder 1 and the bonded magnets obtained here. (1) Corrosion resistance test: The test sample was immersed in a sodium chloride aqueous solution with a concentration of 1% by weight at room temperature for 10 minutes, filtered, and exposed for 200 hours in a constant temperature and humidity chamber at a temperature of 80°C and a relative humidity of 90%. The condition was visually confirmed. (2) Magnetic properties The maximum energy product of the two-bond magnet 1 was measured using a Thioffee-type self-recording flux meter. The above results are shown in Table 1 along with the rust preventive additive content and rust preventive viscosity. K1■ Yumethane sulfonate: C, H, SO. Magnet powder 1 was processed using the same machine as in Example 1, except that 3.0% by volume of Na was added. However, the viscosity of the solution at 20° C. was 502 centibois. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Magnet powder 1 was treated in the same manner as in Example 1, except that 5.0% by volume of C4H-S OsNa was added as the methane-based sulfonate. However, the viscosity of the solution at 20° C. was 315 cmVoice. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Era■1 Polystyrene (PS) instead of polyethylene (PE)
using C4H*S as a methane-based sulfonate.
Example 1 except that 2.0% by volume of Os Na was added.
Treat magnet powder 1 in the same manner as above. However, the viscosity of the solution at 20'C was 315 cmVoice. Here, a bonded magnet 1 was obtained in the same manner as in Example 1 from the rust-preventing treated magnet powder 1 and tested. Kyo1 Polystyrene (PS) instead of polyethylene (PE)
and as a methane-based sulfonate, C4HeS
The same machine as Example 1 was used except that 4.0% by volume of O3Na was added, and the magnet powder 1 was not processed. However, the viscosity of the solution at 20"C was 675 centimeters. Bonded magnet 1 was obtained in the same manner as in Example 1 from the anti-rust magnet powder 1 obtained here, and tested. Polypropylene (PP) instead of polyethylene (PE)
) and C4HeS as the methane-based sulfonate.
Magnet powder 1 was treated in the same manner as in Example 1, except that 1.0% by volume of O3Na was added. However, the viscosity of the solution at 20° C. was 300 cmVoice. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Komi ■Using polyacrylic acid methyl (PMAA) instead of polyethylene (PE), C as a methane-based sulfonate.
Magnet powder 1 was treated in the same manner as in Example 1, except that 4He so, Na was added in an amount of i, o volume %. However, the viscosity of the solution at 20"C was 300 centimeters. Bonded magnet 1 was obtained and tested in the same manner as in Example 1 from the anti-rust magnet powder 1 obtained here. Magnet powder 1 was prepared in the same manner as in Example 1, except that polymethyl methacrylate (PMMA) was used instead of the upper polyethylene (PE) and 2.0% by volume of C4H9SO3Na was added as the methane-based sulfonate. However, the viscosity of the solution at 20° C. was 280 centibois. Bonded magnet 1 was obtained from the rust-preventing treated magnet powder 1 obtained here using the same machine as in Example 1, and tested. Magnet powder was prepared in the same manner as in Example 1, except that polymethyl methacrylate (PMMA) was used instead of polyethylene (PE) and 4.0% by volume of C4HeSO3Na was added as the methane-based sulfonate. However, the viscosity of the solution at 20° C. was 720 centibois. Bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Magnet powder 1 was treated in the same manner as in Example 1, except that 0.2% by volume of C4HISO3Na was added as a methane-based sulfonate.The viscosity of the solution at 20°C was The bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. 03Na
Same as Example 1 except that 7.5% by volume of was added.
Magnet powder 1 was processed. The viscosity of the solution at 20° C. was 505 centivoices. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. C4H,So as a methane-based sulfonate. Magnet powder 1 was treated in the same manner as in Example 1, except that 2.0% by volume of Na was added. However, the viscosity of the solution at 20°C was 1500 centipoise. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Polyethylene (PE) instead of polyethylene (PR)
and as a methane sulfonate, C4HeS
Magnet powder 1 was treated in the same manner as in Example 1, except that 2.0% by volume of Os Na was added. However, the viscosity of the solution at 20°C was 1500 centipoise. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. L plate 5 Same as Example 1 except that polymethyl methacrylate (PMMA) was used instead of polyethylene (PE) and 7.5% by volume of C4He SOs Na was added as the methane sulfonate. , magnet powder 1 was processed. The viscosity of the solution at 20° C. was 720 centipoise. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Magnet powder 1 was treated in the same manner as in Example 1, except that nylon 12 was used as a concealing and mutually rust-preventing agent. In addition, nylon 1
The viscosity of No. 2 at 20° C. was 410 centipoise. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Magnet powder 1 was treated in the same manner as in Example 1, except that a novolak-type liquid epoxy resin was used as the rust preventive agent. The viscosity of the epoxy resin at 20° C. was 410 cmVoice. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Epoxy was used instead of polyethylene (PE), and C4H,5OiNa was added as a methane sulfonate.
Magnet powder 1 was treated in the same manner as in Example 1, except that 0% by volume was added. Note that the viscosity of the solution at 20°C is 4
It was a 10cm voice. A pound magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. Shurenguchi 11 Magnet powder 1 was immersed in a zinc phosphate aqueous solution at 60°C and pH 3.5 for 15 minutes, filtered, and dried in a vacuum oven at 80°C. Magnet powder 1 was treated in the same manner as in Example 1. Note that the viscosity of the aqueous zinc phosphate solution at 20° C. was 155 centivoices. A bonded magnet 1 was obtained from the anticorrosion-treated magnet powder 1 obtained here in the same manner as in Example 1, and tested. 1 storm ±1 As a rust preventive treatment agent, use a normal temperature rust preventive agent (JIS K224
Magnet powder 1 was treated in the same manner as in Example 1, except that three kinds of solvent-diluted rust preventive oils specified in Section 6) were used. The viscosity of the rust preventive agent at 20°C was 382 centimeters. Here, a pound magnet 1 was obtained using the same machine as in Example 1 from the rust-preventing treated magnet powder 1, and was tested. The test results of Examples 1 to 9, Comparative Examples 1 to 8, and Conventional Examples 1 to 2 are shown in Table 1 along with the rust preventive main agent, additive content, and rust preventive viscosity. Examples 1 to 9, Comparative Example 1 ~8. Comparing Conventional Examples 1 and 2, it can be seen that the rust preventive of the present invention has extremely excellent corrosion resistance. In the same manner as in Examples 1 to 9, polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl acrylate (PMAA) or polymethyl methacrylate (PMMA) was mixed with xylene. The viscosity at 20°C was adjusted to 1000 centipoise or less, and C9 was added as an additive methane sulfonate.
Magnet powder 1 was processed and tested using a solution in which appropriate amounts of H, SO, and Na were added and mixed. L Kurasho Eyue In the same manner as in Comparative Examples 1 to 8, polyethylene (PE), polystyrene (PS), polymethyl acrylate (PMAA)
), polymethyl methacrylate (PMMA), nylon 1
Magnet powder 1 was processed and tested using 2 or epoxy resin. As an additive methane sulfonate, C
s H,, So. Appropriate amounts (including zero) of Na were added. The test results of Examples 10 to 15 and Comparative Examples 9 to 15 are shown in Table 2 along with the rust preventive main agent, additive content, and rust preventive viscosity. Comparing Examples 10 to 15 and Comparative Examples 9 to 15, ,
It can be seen that the rust preventive of the present invention has extremely excellent corrosion resistance. 11 In the same manner as in Examples 1 to 9, polyethylene (PE, polypropylene (PP), polystyrene (PS), polymethyl acrylate (PMAA) or polymethyl methacrylate (PMMA) was dissolved in xylene. The viscosity at 20°C was adjusted to below 1000 centivoices, and added as an additive, methane sulfonate (C7H).
,,5O3)zCa was added in an appropriate amount and a mixed solution was used to process and test magnet powder 1. Stop 11 LLL Yu.” Using the same machine as Comparative Examples 1 to 8, polypropylene (PP),
Magnet powder 1 was processed and tested using either polyethylene (PE), polystyrene (PS), polymethyl acrylate (PMAA), polymethyl methacrylate (PMMA), nylon 12, and epoxy. As an additive methane sulfone 6 salt (C7H1!1SO3)2C
An appropriate amount (including zero) of a was added. The test results of Examples 16 to 22 and Comparative Examples 16 to 21 are shown in Table 3 together with the rust preventive main agent, additive content and #5 rust agent viscosity. For example, it can be seen that the rust preventive of the present invention has extremely excellent corrosion resistance. Using K1 Takumi Uni Uni magnet powder 2, the same machine as in Example 1 was subjected to rust prevention treatment, and 7.5 g of nylon 12 was mixed as a binder to 10 ot of rust prevention treated magnet powder 2. This mixture was mixed for 15 minutes at 250'C and 18kOe
Injection molded at 240'C in a magnetic field, width 5 mm, length 1
0Ilfl, a molded body with a height of 5111ml+ was produced, and 5
It was magnetized in a magnetic field of 0 kOe to form a bonded magnet (hereinafter referred to as bonded magnet 2). Tests were conducted in the same manner as in Examples 1 to 2 using Bonded Magnet 2. It was tested. Tests were conducted in the same manner as in Conventional Examples 1 and 2 using the New Bond Magnet 2. Real I! The test results of Examples 23 to 29, Comparative Examples 22 to 28, and Conventional Examples 3 to 4 are shown in Table 4 along with the rust preventive main agent, additive side content i, and rust preventive viscosity. Examples 23 to 29 and Comparative Example 2
Comparing No. 2 to No. 28, it can be seen that the rust preventive of the present invention has extremely excellent corrosion resistance. Examples 30-33 Bonded magnet 2 was used and tested in the same manner as Examples 10-15. Upper Middle Receiver Examples 29-3 2 Using bonded magnet 2, the same machine as Comparative Examples 9-15 was tested. The test results of Examples 30 to 33 and Comparative Examples 29 to 32 are shown in Table 5 along with the rust preventive main agent, additive content, and rust preventive viscosity. Comparing Examples 30 to 33 and Comparative Examples 29 to 32, It can be seen that the rust preventive of the present invention has extremely excellent corrosion resistance. Tests were conducted in the same manner as in Examples 16 to 22 using K1 Takumi Mamenijo Bonded Magnet 2. Tests were conducted in the same manner as in Comparative Examples 16 to 21 using the Anti-Sho Yuuni Dan Yubond Magnet 2. The test results of Examples 34 to 38 and Comparative Examples 33 to 37 are shown in Table 6 along with the rust preventive main agent, additive content and rust preventive viscosity. It can be seen that the rust inhibitor of the present invention has extremely excellent corrosion resistance.As shown in the above examples, the products obtained by implementing the present invention exhibit excellent corrosion resistance, and The maximum energy product as a magnetic property was higher than conventional values, and no deterioration phenomenon was observed in other magnetic properties. (Margins below this page)

【発明の効果】【Effect of the invention】

以上から明らがなように、本発明は浸漬法という安価な
方法で耐蝕性に優れ、しかも磁気特性も満足するボンド
磁石を製造するのに好適な防錆剤を提供することができ
る。
As is clear from the above, the present invention can provide a rust preventive agent suitable for producing bonded magnets that have excellent corrosion resistance and also have satisfactory magnetic properties using the immersion method, which is an inexpensive method.

Claims (1)

【特許請求の範囲】[Claims]  0.5〜5.0体積%のメタン系スルホン酸塩を含有
するポリエチレン、ポリプロピレン、ポリスチレン、ポ
リアクリル酸メチルおよびポリメタクリル酸メチルのう
ち少なくとも1種以上を含有する溶液からなり、該溶液
の20℃における粘度が1000センチポイズ以下であ
ることを特徴とするボンド磁石粉末用防錆剤。
Consisting of a solution containing at least one of polyethylene, polypropylene, polystyrene, polymethyl acrylate, and polymethyl methacrylate containing 0.5 to 5.0 volume % of methane sulfonate; A rust preventive agent for bonded magnet powder, characterized in that the viscosity at °C is 1000 centipoise or less.
JP2283402A 1990-10-23 1990-10-23 Rust inhibitor for bonded magnet powder Expired - Lifetime JP3050325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283402A JP3050325B2 (en) 1990-10-23 1990-10-23 Rust inhibitor for bonded magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283402A JP3050325B2 (en) 1990-10-23 1990-10-23 Rust inhibitor for bonded magnet powder

Publications (2)

Publication Number Publication Date
JPH04160171A true JPH04160171A (en) 1992-06-03
JP3050325B2 JP3050325B2 (en) 2000-06-12

Family

ID=17665062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283402A Expired - Lifetime JP3050325B2 (en) 1990-10-23 1990-10-23 Rust inhibitor for bonded magnet powder

Country Status (1)

Country Link
JP (1) JP3050325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114999807A (en) * 2022-06-29 2022-09-02 矿冶科技集团有限公司 Preservative for flexible neodymium-iron-boron magnet and method for surface preservative treatment of flexible neodymium-iron-boron magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114999807A (en) * 2022-06-29 2022-09-02 矿冶科技集团有限公司 Preservative for flexible neodymium-iron-boron magnet and method for surface preservative treatment of flexible neodymium-iron-boron magnet
CN114999807B (en) * 2022-06-29 2023-12-01 矿冶科技集团有限公司 Preservative for flexible neodymium-iron-boron magnet and method for surface preservative treatment of flexible neodymium-iron-boron magnet

Also Published As

Publication number Publication date
JP3050325B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
CN105838195B (en) A kind of water corrosion-resistant epoxy paint and preparation method thereof containing graphene oxide
US3046262A (en) Accelerated anaerobic curing compositions
JP4357527B2 (en) Nitrogen-containing polymer for metal surface treatment
JPS6015466A (en) Water-resistant aluminum particle, manufacture and coating thereof
KR101865092B1 (en) Anti-corrosion water-soluble paint and varnish composition
JPH01149869A (en) Corrosion preventing composition
CN105238230A (en) Anticorrosive and wear-resistant coating containing aqueous epoxy resin, and preparation method thereof
CA1159589A (en) Water-based coating compositions
JPH04160171A (en) Rust preventive for bonded magnet powder
JPS5853962A (en) Improved storage-stable silicone resin-base coating agent and method of coating acryl resin plastic and polycarbonate
EP0212852A2 (en) Two-component epoxy base adhesive composition
Matsuda et al. Investigation of under film corrosion using pH sensitive microcapsules
WO2004041875A1 (en) Adhesion promoters, film hardeners, and water resistance modifiers for adhesives
JPH04160170A (en) Rust preventive for bonded magnet
JPS6317976A (en) Zinc-rich paint composition
WO2003041093A1 (en) Rare-earth permanent magnet having corrosion-resistant coating, process for producing the same, and treating liquid for forming corrosion-resistant coating
JPS58109568A (en) Corrosion-resistant paint composition
JPH02132165A (en) Corrosion-resistant coating compound composition
JPH02228362A (en) Surface-treating agent for preventing blocking of product mainly comprising bituminous material
JPS6357474B2 (en)
CA2011521A1 (en) Sprayable coating substances for noise-suppression
JPS61133277A (en) Coating composition for forming thin rustproof film on plated wire
CN118086883A (en) Phosphating method for metal parts
Chen et al. Research on the modification of water-borne inorganic zinc-rich coatings and its performances
CN105315729A (en) Manufacturing and applications of water-based inorganic silicon-phosphorus resin zinc-rich antirust coating material