JPH04159745A - Measurement apparatus for microdimension of wafer - Google Patents

Measurement apparatus for microdimension of wafer

Info

Publication number
JPH04159745A
JPH04159745A JP2284932A JP28493290A JPH04159745A JP H04159745 A JPH04159745 A JP H04159745A JP 2284932 A JP2284932 A JP 2284932A JP 28493290 A JP28493290 A JP 28493290A JP H04159745 A JPH04159745 A JP H04159745A
Authority
JP
Japan
Prior art keywords
wafer
stage
measurement
calibration mark
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2284932A
Other languages
Japanese (ja)
Inventor
Junichi Araki
順一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP2284932A priority Critical patent/JPH04159745A/en
Publication of JPH04159745A publication Critical patent/JPH04159745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable always stable measurement of microdimensions of wafers by providing the arithmetic processor with a means for adding measurement results of a calibration mark as high as a wafer provided on the wafer stage to measurement results of a wafer. CONSTITUTION:The first step is to measure a calibration mark 1 as high as a wafer 4 provided on the surface of an X-Y axis stage 2. When the absolute value of the calibration mark is L and the measurement value of this time is L, a correction is their difference DELTAL(=L-L'). The next step is to move a stage 2 in the arrow direction for measurement of the line width on the wafer 4, where the DELTAL is automatically added when an obtained value is Lw to yield Lw+DELTAL as a true value. This process can provide always stable measurement values by determining corrections of the calibration mark 1 for every wafer 4 provided on the wafer stage 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウェーハの微小寸法測定装置に関し、特に光学
方式による半導体ウェーハの微小寸法測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wafer minute dimension measuring device, and more particularly to a semiconductor wafer minute dimension measuring device using an optical method.

〔従来の技術〕[Conventional technology]

従来、光学方式によるウェーハの微小寸法測定は、第3
図に示すように光学顕微鏡を′F■カメラで取り込み、
デジタル処理を行って寸法を算出する光学顕微鏡方式と
、第4図に示すようにレーザをパターン−Lで走査させ
て寸法を出ずレー→ノ゛走査方式があった。光学顕微鏡
方式の光源はハロゲンランプ、レーザ走査方式グ)光源
はHe−Neレーザ、H’e−Cdレーザ、 A rレ
ーザ等が使用されている。
Conventionally, wafer minute dimension measurement using optical methods has been
As shown in the figure, capture the optical microscope with the 'F■ camera.
There is an optical microscope method in which dimensions are calculated by digital processing, and a laser scanning method in which dimensions are not calculated by scanning a laser in a pattern L as shown in FIG. The light source used in the optical microscope system is a halogen lamp, and the light source used in the laser scanning system is a He-Ne laser, H'e-Cd laser, Ar laser, etc.

光学系での微小寸法測定範囲は、およそ0.8μm以上
程度であり、その繰返し精度は005ノt m (3σ
)程度である。
The measurement range of minute dimensions with the optical system is about 0.8 μm or more, and its repeatability is 0.05 not m (3σ
).

従来は光源の経時的劣化により測定寸法が変化し7.0
.1μm程度のばらつきがあった。その為、定期的に構
成治具やザンプルを用いて構成を行っていた。
In the past, the measured dimensions changed due to the deterioration of the light source over time.
.. There was a variation of about 1 μm. Therefore, configuration was performed regularly using configuration jigs and samples.

r、発明か解決しようとする課題〕 この従来のウェーハの微小−q法装置では、光源の経時
的劣化の影響や光源の製造ロッI・の違いによる劣化速
度の違い及び照度のゆらぎ等の為、定期的に装置の校正
を行わないと、半導体装置の微小寸法を管理するに足り
る精度が得られながった。
r, Invention or problem to be solved] In this conventional wafer micro-q method device, due to the influence of deterioration of the light source over time, the difference in deterioration rate due to the difference in the manufacturing lot of the light source, and fluctuations in illuminance, etc. However, unless the equipment is calibrated regularly, it is not possible to obtain sufficient accuracy to manage the minute dimensions of semiconductor devices.

また、その間の変化には追従できないし、校正中に装置
を使用出来ないといっな問題点があった。
Further, there are problems in that it is not possible to follow changes during that time, and the device cannot be used during calibration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の微小寸法測定装置は、ウェーハステージに載置
された被測定用のウェーハに光線束を照射してその画像
を検出して演算処理部により計測してウェーハ表面の微
小寸法を測定するウェーハの微小寸法測定装置において
、前記ウェーハステージに設けられた前記ウェーハと同
じ高さの校正用マークと、該構成用マークの測定結果を
前記ウェーハの測定結果に加算する加算手段を前記演算
処理部に設けて構成されている。
The micro-dimension measurement device of the present invention irradiates a wafer to be measured placed on a wafer stage with a beam of light, detects the image, and measures the micro-dimensions of the wafer surface using an arithmetic processing unit. In the micro-dimensional measuring device, the arithmetic processing unit includes a calibration mark provided on the wafer stage and having the same height as the wafer, and an addition means for adding the measurement result of the configuration mark to the measurement result of the wafer. It is set up and configured.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の模式図て、光学顕微鏡
方式について示す。本実施例は、顕微鏡像をカメラ11
0て取り込み、画像処理部11]でデジタル処理され線
幅の値を測定する。
FIG. 1 is a schematic diagram of a first embodiment of the present invention, and shows an optical microscope system. In this embodiment, the camera 11
0, digitally processed by the image processing unit 11], and the line width value is measured.

次に補正方法について述べる。Next, the correction method will be described.

まず最初に>C−Y軸つェーハステージ102の表面に
設けたウェーハ104と同じ高さの構成用マーク101
の測定を行う。構成用マークの絶対値をり、この時の測
定値をL′とした時、この差△L(=L−L′)を補正
値とする。次にステージ102が矢印の方向に移動し、
ウェーハ104−トの線幅を測定する。ここで得られた
値がt、 wのとき自動的にΔ■−を加算し、L、v−
1−ΔLを真の値として得ることができる。
First, a configuration mark 101 at the same height as the wafer 104 provided on the surface of the >C-Y axis wafer stage 102.
Perform measurements. When the absolute value of the constituent mark is calculated and the measured value at this time is L', this difference ΔL (=L-L') is taken as the correction value. Next, the stage 102 moves in the direction of the arrow,
Measure the line width of the wafer 104-t. When the values obtained here are t, w, Δ■- is automatically added and L, v-
1-ΔL can be obtained as the true value.

また、第2図は本発明の第2の実施例の模式図で、レー
ザ走査方式について示す。本実施例はレーザスボッ1〜
ビームを線幅上で走査させ、その反射光を検出して値を
出ず方法である。
Further, FIG. 2 is a schematic diagram of a second embodiment of the present invention, and shows a laser scanning method. In this example, the laser robot 1~
This method scans a beam over the line width and detects the reflected light to produce a value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、校正用マークをウェーハ
ステージ上に設けて、ウェーハ毎に補正値を求める事で
常に安定した測定値を得る事が出来るという効果を有す
る。
As explained above, the present invention has the advantage that stable measurement values can always be obtained by providing calibration marks on the wafer stage and determining correction values for each wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の模式図、第2図は本発
明の第2の実施例の模式図、第3図、第4図はそれぞれ
従来のウェーハの微小寸法測定装置の模式図である。 ]・・・校正用マーク、2・・・X−Y軸つェーハステ
ージ、3・・・Z軸つェーハステージ、4・・・ウェー
ハ、105・・・#2レンズ、]06・・・#2ミラー
、107・・・#1ミラー、108・・・#ルンズ、]
09・・・ハロゲンランプ、110・・・カメラ、11
1・・・画像処理部、112・・・メモリ、113・・
・システムコンピュータ、205・・・散乱光集光ミラ
ー、206・・・#ルンズ、207・・・#3ミラー、
208・・・#4ミラー、209・・・#5ミラー、2
10・・・#1ミラー、211・・・#2ミラー、21
2・・・#2レンズ、2]3・・・レーザ光源、214
・・・駆動部、2]5・・・ディテクタ、2]−6・・
・マルチプレクサ、217・・・A−D変換器、2]8
・・・コンピュータ。
FIG. 1 is a schematic diagram of a first embodiment of the present invention, FIG. 2 is a schematic diagram of a second embodiment of the present invention, and FIGS. It is a schematic diagram. ]...Calibration mark, 2...X-Y axis wafer stage, 3...Z-axis wafer stage, 4...wafer, 105...#2 lens, ]06...# 2 Mirror, 107...#1 Mirror, 108...#Luns,]
09...Halogen lamp, 110...Camera, 11
1... Image processing section, 112... Memory, 113...
- System computer, 205...Scattered light condensing mirror, 206...#Luns, 207...#3 mirror,
208...#4 mirror, 209...#5 mirror, 2
10...#1 mirror, 211...#2 mirror, 21
2... #2 lens, 2] 3... Laser light source, 214
...Driver, 2]5...Detector, 2]-6...
・Multiplexer, 217...A-D converter, 2]8
···Computer.

Claims (1)

【特許請求の範囲】[Claims] ウェーハステージに載置された被測定用のウェーハに光
線束を照射してその画像を検出して演算処理部により計
測してウェーハ表面の微小寸法を測定するウェーハの微
小寸法測定装置において、前記ウェーハステージに設け
られた前記ウェーハと同じ高さの校正用マークと、該構
成用マークの測定結果を前記ウェーハの測定結果に加算
する加算手段を前記演算処理部に設けたことを特徴とす
るウェーハの微小信号測定回路。
In a wafer micro-dimension measuring device that measures the micro-dimensions of the wafer surface by irradiating a wafer to be measured placed on a wafer stage with a beam of light, detecting the image, and measuring the image by a processing unit, the wafer A wafer characterized in that the arithmetic processing unit is provided with a calibration mark provided on a stage and having the same height as the wafer, and an addition means for adding the measurement results of the configuration mark to the measurement results of the wafer. Small signal measurement circuit.
JP2284932A 1990-10-23 1990-10-23 Measurement apparatus for microdimension of wafer Pending JPH04159745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284932A JPH04159745A (en) 1990-10-23 1990-10-23 Measurement apparatus for microdimension of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284932A JPH04159745A (en) 1990-10-23 1990-10-23 Measurement apparatus for microdimension of wafer

Publications (1)

Publication Number Publication Date
JPH04159745A true JPH04159745A (en) 1992-06-02

Family

ID=17684928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284932A Pending JPH04159745A (en) 1990-10-23 1990-10-23 Measurement apparatus for microdimension of wafer

Country Status (1)

Country Link
JP (1) JPH04159745A (en)

Similar Documents

Publication Publication Date Title
US10359370B2 (en) Template substrate for use in adjusting focus offset for defect detection
JPS6127682B2 (en)
JPH0419545B2 (en)
JP2000021923A (en) Bonding method and device thereof
TWI534558B (en) Detection device, exposure apparatus, and device manufacturing method using same
KR20160110122A (en) Inspection apparatus and inspection method
JP6431786B2 (en) Line width error acquisition method, line width error acquisition apparatus, and inspection system
KR20160093021A (en) Device and method for positioning a photolithography mask by means of a contactless optical method
JPH0743245B2 (en) Alignment device
JP2007115801A (en) Mark position measuring device, mark position measuring method, exposure device, and exposure method
JPH04159745A (en) Measurement apparatus for microdimension of wafer
US20050112853A1 (en) System and method for non-destructive implantation characterization of quiescent material
JP3050498B2 (en) Adjustment method of position shift amount measuring optical system and position shift amount measurement apparatus
JP3118786B2 (en) Overlay accuracy measuring machine
JPH01292206A (en) Surface condition measuring apparatus for object
JPH06310397A (en) Measuring device for exposure image plane of projection aligner
JPH0430175B2 (en)
JPS58168905A (en) Optical measuring system of displacement
JPH0328810B2 (en)
JPS61262609A (en) Dimension measuring instrument
JPH05136034A (en) Drift amount measuring method in electron beam exposure
JP2000021767A (en) Method and apparatus for observing position
JPS60249323A (en) Reducing projection exposure unit
JP2005300172A (en) Method and device for position measurement, exposure method using this position measuring method, exposure device provided with this position measuring device, position measuring program for performing this position measuring method and recording medium memorized with this position measuring program
JPH01293518A (en) Aligner having device for detecting variation of height of substrate