JPH04159385A - Friction material - Google Patents

Friction material

Info

Publication number
JPH04159385A
JPH04159385A JP28511290A JP28511290A JPH04159385A JP H04159385 A JPH04159385 A JP H04159385A JP 28511290 A JP28511290 A JP 28511290A JP 28511290 A JP28511290 A JP 28511290A JP H04159385 A JPH04159385 A JP H04159385A
Authority
JP
Japan
Prior art keywords
friction
friction material
fibers
pores
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28511290A
Other languages
Japanese (ja)
Inventor
Tamotsu Hayashi
保 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP28511290A priority Critical patent/JPH04159385A/en
Publication of JPH04159385A publication Critical patent/JPH04159385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PURPOSE:To obtain a friction material capable of being improved in fading resistance while retaining the strength of matrix by mixing a base material, a binder resin, and a friction modifier so as to give pores wherein those having a specified diameter account for a specified percentage. CONSTITUTION:A friction material which contains a base material, a binder resin, and a friction modifier and in which pores having a diameter of 1000Angstrom or smaller account for at least 50vol.% of the total volume of pores. As the base material, organic fibers such as aromatic polyamide fibers, steel fibers, inorganic fibers such as glass fibers, etc., can be used. As the binder resin, thermosetting resins, such as phenolic resin and epoxy resin, can be used. As the friction modifier, graphite, cashew dust, etc., can be used. In addition, this friction material may contain a filler, such as copper powder, silica or barium sulfate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は摩擦材料に関する。この摩擦材料は自動車、産
業車両等のブレーキパッド、クラッチフェージング等に
適用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to friction materials. This friction material can be applied to brake pads, clutch fading, etc. of automobiles, industrial vehicles, etc.

[従来の技術] 従来より、摩擦材料は基材と樹脂と摩擦調整剤等とを適
宜組合わせて形成されている。この摩擦材料では、摩擦
面の高温化に伴い摩擦係数が低下するフェード現象が生
じる。
[Prior Art] Conventionally, friction materials have been formed by appropriately combining base materials, resins, friction modifiers, and the like. In this friction material, a fade phenomenon occurs in which the coefficient of friction decreases as the temperature of the friction surface increases.

ところで近年、自動車で用いられている摩擦材料の分野
では、自動車の高速化に伴い、耐フエード性の一層の向
上が要請されている。本出願人は、耐フエード性は摩擦
材料の材質に影響されることは勿論であるが、摩擦材料
中の細孔にも影響されることを知見した。そこで、本出
願人は、クラッチフェージングとして、特開昭63−6
7435号公報に開示されているように、細孔径1μm
以下の細孔を全細孔体積の50%向上に設定したものを
開発した。
In recent years, in the field of friction materials used in automobiles, there has been a demand for further improvement in fade resistance as automobiles become faster. The applicant has found that the fade resistance is not only affected by the material of the friction material, but also by the pores in the friction material. Therefore, the present applicant proposed a technique for clutch fading in Japanese Patent Application Laid-Open No. 63-6
As disclosed in Publication No. 7435, the pore size is 1 μm.
We developed the following pores that were set to increase the total pore volume by 50%.

また従来よりブレーキ用摩擦材料として、特開昭60−
151435号公報に開示されているように、熱分解す
るでんぷん、もみがら等を配合したものが開示されてい
る。このものでは、成形の際の熱処理ででんぷん、もみ
がらが熱分解するので細孔容積を高めることができる。
In addition, it has been used as a friction material for brakes since 1983.
As disclosed in Japanese Patent No. 151435, a product containing thermally decomposable starch, rice hulls, etc. is disclosed. In this product, starch and rice husks are thermally decomposed during heat treatment during molding, so the pore volume can be increased.

従って、使用の際に摩擦熱により高温となった摩擦材料
中の樹脂から発生したガスの逃げ路を細孔で確保でき、
耐フエード性の向上が期待されている。
Therefore, the pores can provide an escape route for the gas generated from the resin in the friction material that becomes hot due to frictional heat during use.
It is expected to improve fade resistance.

また、従来より、摩擦熱により高温となった摩擦材料か
ら発生するガス量を低減するために摩擦材料に配合する
樹脂を減最したものも知られている。
Further, there have been conventionally known friction materials in which the amount of resin blended into the friction material is reduced in order to reduce the amount of gas generated from the friction material, which has become hot due to frictional heat.

[発明が解決しようとする課題] ところで、上記した各摩擦材料では細孔径が大きいので
、摩擦材料の母材強度が必ずしも充分でなく、そのため
耐摩耗性等が低下したり、更には細孔が摩耗粉を取込み
、摩擦材料自体ざらには相手材の摩耗が悪化したりする
という問題がある。
[Problems to be Solved by the Invention] By the way, each of the above friction materials has a large pore diameter, so the strength of the base material of the friction material is not necessarily sufficient, resulting in a decrease in wear resistance, etc. There is a problem that abrasion powder is taken in, which worsens the wear of not only the friction material itself but also the mating material.

また、発生ガス量を低減するために摩擦材料に配合する
樹脂を減量した摩擦材料においても、摩擦材料の母材強
度が低下するという問題がある。
Further, even in friction materials in which the amount of resin blended into the friction material is reduced in order to reduce the amount of gas generated, there is a problem in that the strength of the base material of the friction material decreases.

本発明はかかる実情に鑑み開発されたものであり、母材
強度を確保しつつ耐フエード性を向上させ得る摩擦材料
を提供することを課題とする。
The present invention was developed in view of the above circumstances, and an object of the present invention is to provide a friction material that can improve fade resistance while ensuring base material strength.

[課題を解決するための手段] 本発明者は上記課題を解決するために摩擦材料中の細孔
について鋭意研究を重ねた結果、全細孔容積に対して、
1000オングストローム以下の細孔径をもつ極細孔の
占める割合が体積%で50%以上であれば、摩擦材料の
母材強度を確保しつつ耐フエード性を向上させ得ること
を見出し、本発明を完成させたものである。
[Means for Solving the Problems] In order to solve the above problems, the present inventor has conducted extensive research on pores in friction materials, and has found that, with respect to the total pore volume,
It was discovered that if the proportion of ultra-fine pores with a pore diameter of 1000 angstroms or less is 50% or more by volume, it is possible to improve the fade resistance while ensuring the strength of the base material of the friction material, and completed the present invention. It is something that

母材強度を確保しつつ耐フエード性を向上させ得る理由
は、摩擦時に発生したガスを吸着、除去するには、10
00オングストローム以下の極細孔で充分であること、
更に、1000オングストロームを越える細孔では、摩
擦材料の母材強度の低下を招き易いこと、また1000
オングストロームを越える細孔では、水分吸着によるノ
イズ発生、振動発生の原因となり易いこと、であると推
察される。
The reason why fading resistance can be improved while maintaining the strength of the base material is that in order to adsorb and remove gas generated during friction, it is necessary to
Ultra-fine pores of 00 angstroms or less are sufficient;
Furthermore, pores exceeding 1000 angstroms tend to reduce the strength of the base material of the friction material;
It is presumed that pores larger than angstroms tend to cause noise and vibration due to water adsorption.

本発明の摩擦1は、基材と結合樹脂と摩擦調整剤とを含
み、全細孔容積に対して、1000オングストローム以
下の゛細孔径をもつ極細孔の占める割合が体積%で50
%以上であることを特徴とするものである。
Friction 1 of the present invention includes a base material, a binding resin, and a friction modifier, and the ratio of ultrafine pores with a pore diameter of 1000 angstroms or less to the total pore volume is 50% by volume.
% or more.

基材、樹脂、摩擦調整剤としては公知のものを採用でき
る。例えば、基材としては、芳香族ポリアミド繊維、レ
ーヨンWjAM等の有機繊維、スチール繊維、銅I!維
等の金属繊維、カラス繊維、ロックウール等の無機繊維
等を採用できる。結合樹脂としてはフェノール繊維、各
種変性フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂
を採用できる。
Known materials can be used as the base material, resin, and friction modifier. For example, base materials include aromatic polyamide fibers, organic fibers such as rayon WjAM, steel fibers, copper I! Metal fibers such as fibers, glass fibers, inorganic fibers such as rock wool, etc. can be used. As the bonding resin, thermosetting resins such as phenol fibers, various modified phenol resins, and epoxy resins can be used.

摩擦調整剤としてはグラファイト、カシューダスト等を
採用できる。また本発明の摩擦材料は充填材を含むこと
ができる。充填材は例えば銅粉末、シリカ、硫酸バリウ
ムなどを採用できる。
Graphite, cashew dust, etc. can be used as the friction modifier. The friction material of the present invention can also include fillers. For example, copper powder, silica, barium sulfate, etc. can be used as the filler.

本発明の摩擦材料では、全細孔容積に対して、1000
オングストローム以下の細孔径をもつ極細孔の占める割
合が体積%で50%以上に設定されている。このように
設定するにあたっては、例えば、摩擦調整材や充填材、
例えばカシューダスト、金属粉、粒状グラファイト、5
11Mバリウム1の粒度分布の均一度を高める手段、各
材料を均一に混合する際における結合樹脂の流動性を高
める手段、ガラスS雑、ロックウールI!雑などの繊維
を充分解繊する手段等が採用できる。具体的には摩擦調
整材、充填材の粒度は例えば1〜50μとすることがで
きる。細孔容積は排気した状態で水銀を圧入する水銀圧
入法で測定できる。水銀圧入法は水銀はほとんどの物質
に対して90〜180°の接触角をもち、物質を濡らさ
ないという性質をもち、強制的に圧入されないかぎり細
孔内に侵入しないということに着目したものである。水
銀圧入法では、水銀に加える圧力は水銀が侵入しうる細
孔径と反比例の関係になる。また結合樹脂の流動性は例
えば60〜80mmとすることができる。また本発明の
摩擦材料では、摩擦材料全体に対して全細孔容積の占め
る割合(空隙率)は5〜25%にすることができる。
In the friction material of the present invention, the total pore volume is 1000
The ratio of ultra-fine pores having a pore diameter of angstroms or less is set to 50% or more by volume. When setting in this way, for example, friction adjustment materials, fillers,
For example, cashew dust, metal powder, granular graphite, 5
Means for increasing the uniformity of the particle size distribution of 11M barium 1, means for increasing the fluidity of the binding resin when uniformly mixing each material, glass S miscellaneous, rock wool I! It is possible to adopt a means for sufficiently decomposing the fibers such as miscellaneous fibers. Specifically, the particle size of the friction modifier and filler can be, for example, 1 to 50 microns. The pore volume can be measured by the mercury intrusion method, in which mercury is injected in an evacuated state. The mercury intrusion method focuses on the fact that mercury has a contact angle of 90 to 180° with most substances, has the property of not wetting the substance, and will not enter the pores unless it is forcibly injected. be. In the mercury intrusion method, the pressure applied to the mercury is inversely proportional to the pore size through which mercury can penetrate. Further, the fluidity of the bonding resin can be, for example, 60 to 80 mm. Further, in the friction material of the present invention, the ratio of the total pore volume (porosity) to the entire friction material can be 5 to 25%.

[発明の効果] 本発明の摩擦材料によれば、摩擦係数を高目に維持でき
ると共に摩耗率を低目に維持でき、これにより耐フエー
ド性を向上させ得る。また本発明の摩擦材料によれば、
全細孔容積に対して、1000オングストローム以下の
細孔径をもつ極細孔の占める割合が多いので、母材強度
の低下を抑えることができ、耐摩耗性の低下を抑えるこ
とができる。
[Effects of the Invention] According to the friction material of the present invention, it is possible to maintain a high friction coefficient and a low wear rate, thereby improving fade resistance. Furthermore, according to the friction material of the present invention,
Since the ratio of extremely fine pores having a pore diameter of 1000 angstroms or less to the total pore volume is large, it is possible to suppress a decrease in base material strength and a decrease in wear resistance.

[実施例コ 以下、実施例により具体的に説明する。[Example code] Hereinafter, this will be explained in detail using examples.

(実施例1) 第1表に示すように芳香族ポリアミド繊維(「ケブラー
」デュポン社製>10重量部、スチール繊維5重量部、
銅繊N10重量部、ガラス繊維10重量部、結合樹脂と
してフェノール樹脂(PR311住友デュレズ株式会社
製、フロー60mm)10重量部、微粉グラファイト8
重量部、カシューダスト(FF1085  東北化工株
式会社製、100メツシユ>10重量部、銅粉3重量部
、シリカ3重量部、無機充填材として硫酸バリウム31
重量部とした。この場合、第2表に示すようにフェノー
ル樹脂はレジンフロー60mmのものを用い、カシュー
ダストは粒度−100メツシユのものを用いた。また銅
粉の粒度は20〜50μm、シリカの粒度は1〜5μm
、硫酸バリウムの粒度は1〜5μmである。混合条件は
、アイリッヒミキサーを用い、ポリアミド繊維、ガラス
繊維を30分間解繊した後、他の材料を加え、15分間
均一に混合した。そしてこの混合物を金型に投入し、面
圧力400に9/r:M、温度170″Cで15分間加
熱加圧成形して成形体を得た。この成形体を更に220
℃で8時間熱処理し、放冷後研磨して実施例1の摩擦材
料を得た。
(Example 1) As shown in Table 1, aromatic polyamide fiber (Kevlar manufactured by DuPont > 10 parts by weight, steel fiber 5 parts by weight,
10 parts by weight of copper fiber N, 10 parts by weight of glass fiber, 10 parts by weight of phenolic resin (PR311 manufactured by Sumitomo Durez Co., Ltd., flow 60 mm) as a binding resin, 8 parts by weight of fine graphite
Parts by weight, cashew dust (FF1085 manufactured by Tohoku Kako Co., Ltd., 100 mesh > 10 parts by weight, 3 parts by weight of copper powder, 3 parts by weight of silica, 31 parts by weight of barium sulfate as an inorganic filler)
Parts by weight. In this case, as shown in Table 2, the phenol resin used had a resin flow of 60 mm, and the cashew dust had a particle size of -100 mesh. In addition, the particle size of copper powder is 20 to 50 μm, and the particle size of silica is 1 to 5 μm.
, the particle size of barium sulfate is 1-5 μm. The mixing conditions were as follows: After the polyamide fibers and glass fibers were defibrated for 30 minutes using an Eirich mixer, other materials were added and uniformly mixed for 15 minutes. Then, this mixture was put into a mold and heated and pressed at a surface pressure of 400 to 9/r:M and a temperature of 170''C for 15 minutes to obtain a molded body.
The friction material of Example 1 was obtained by heat treatment at ℃ for 8 hours, cooling and polishing.

得られた摩擦材料についてポロシメータ(株式会社島津
製作所製「ポアサイザ9310J、測定方式:水銀圧入
方式、細孔直径測定範囲:約500μm〜60オングス
トロームの細孔分布)により、摩擦材料全体に対して全
細孔容積の占める割合を測定した。更に、上記ポロシメ
ータにより、全細孔容積に対して、細孔径1000オン
グストローム以下の極細孔の占める割合を測定した。な
おポロシメータで測定するにあたり、試料を装備したセ
ルを排気し、その状態で水銀を圧入して行なった。
The obtained friction material was measured using a porosimeter ("Poresizer 9310J" manufactured by Shimadzu Corporation, measurement method: mercury intrusion method, pore diameter measurement range: pore distribution of approximately 500 μm to 60 angstroms). The proportion occupied by the pore volume was measured.Furthermore, the proportion occupied by ultra-fine pores with a pore diameter of 1000 angstroms or less with respect to the total pore volume was measured using the above-mentioned porosimeter.In addition, when measuring with the porosimeter, the cell equipped with the sample was used. was evacuated, and mercury was injected under pressure.

測定結果は第1表に示されており、摩擦材料全体に対し
て全細孔容積の占める割合は15%であった。また、全
細孔容積に対して、細孔径1000オングストローム以
下の極細孔の占める割合は62%であった。
The measurement results are shown in Table 1, and the ratio of the total pore volume to the entire friction material was 15%. Furthermore, the ratio of ultra-fine pores with a pore diameter of 1000 angstroms or less to the total pore volume was 62%.

更に、ブレーキダイナモ試験機を用い、得られ第1表 第2表 た摩擦材料について耐フエード性試験を行い、最少摩擦
係数、摩耗率を測定した。摩擦係数を測定する際の試験
条件はJASO−C406−82(ブレーキ型式:PD
51S、ロータ厚さ:18mm、イナーシv : 4.
OK5F−m−s2) に従って行った。摩耗率を測定
する際の試験条件はJASo−C427−83(ブレー
キ型式:PD51S、ロータ厚さ: 1 Bmm、イナ
ーシv:3.5Kfl・m−52)に従って行った。
Furthermore, using a brake dynamo tester, the obtained friction materials shown in Tables 1 and 2 were subjected to a fade resistance test, and the minimum friction coefficient and wear rate were measured. The test conditions for measuring the friction coefficient are JASO-C406-82 (Brake model: PD
51S, rotor thickness: 18mm, inertia v: 4.
OK5F-m-s2). The test conditions for measuring the wear rate were in accordance with JASo-C427-83 (brake model: PD51S, rotor thickness: 1 Bmm, inertia v: 3.5Kfl·m-52).

試験結果は第1表に示すように、最少摩擦係数は0.2
4であり、100℃における摩耗率は1゜1であり、2
00℃における摩耗率は2.3であった。
As shown in Table 1, the test results show that the minimum friction coefficient is 0.2.
4, the wear rate at 100°C is 1°1, and 2
The wear rate at 00°C was 2.3.

(実施例2) 実施例2にかかる摩擦材料は基本的には実施例1と同様
の条件で製造した。但し、スチール繊維を廃止し、銅m
雑を15重量部と増加させた。
(Example 2) The friction material according to Example 2 was basically manufactured under the same conditions as in Example 1. However, steel fiber has been abolished and copper m
The amount of miscellaneous substances was increased to 15 parts by weight.

実施例2では、第1表に示すように摩擦材料全体に対し
て細孔容積の占める割合は12%であった。また、全細
孔容積に対して、細孔径1000オングストローム以下
の極細孔の占める割合は58%であった。
In Example 2, as shown in Table 1, the pore volume accounted for 12% of the total friction material. Further, the ratio of ultra-fine pores with a pore diameter of 1000 angstroms or less to the total pore volume was 58%.

そして実施例2の摩擦材料についても、実施例1と同様
に耐フエード性試験を行った。試験結果は第1表に示す
ようであり、最少摩擦係数は0゜22であり、100℃
における摩耗率は1.2であり、200℃における摩耗
率は2.2であった。
The friction material of Example 2 was also subjected to a fade resistance test in the same manner as in Example 1. The test results are shown in Table 1, and the minimum friction coefficient is 0°22, and at 100°C
The wear rate at 200° C. was 1.2, and the wear rate at 200° C. was 2.2.

(比較例1) 比較例1にかかる摩擦材料は基本的には実施例1と同様
の条件で製造した。但し次の点が異なる。
(Comparative Example 1) A friction material according to Comparative Example 1 was basically manufactured under the same conditions as in Example 1. However, the following points are different.

即ち第2表に示すように、フェノール樹脂のレジンフロ
ーは2Qmmとし、カシューダストは+100メツシユ
のものを用いた。また混合条件は、全部の材料をアイリ
ッヒミキサーにて15分間均一に混合した。
That is, as shown in Table 2, the resin flow of the phenol resin was 2Qmm, and the cashew dust used was +100 mesh. As for the mixing conditions, all the materials were uniformly mixed for 15 minutes using an Eirich mixer.

比較例1では、第1表に示すように摩擦材料全体に対し
て細孔容積の占める割合は18%であった。また、全細
孔容積に対して、細孔径1000オングストローム以下
の極細孔の占める割合は42%であった。
In Comparative Example 1, as shown in Table 1, the pore volume accounted for 18% of the total friction material. Furthermore, the ratio of ultra-fine pores with a pore diameter of 1000 angstroms or less to the total pore volume was 42%.

そして実施例1と同様に性能試験を行った。試験結果は
第1表に示すように、最少摩擦係数は0゜21であり、
100℃におtブる摩耗率は1.9であり、200℃に
おける摩耗率は3.4であった。
Then, a performance test was conducted in the same manner as in Example 1. As shown in Table 1, the test results show that the minimum friction coefficient is 0°21.
The wear rate at 100°C was 1.9, and the wear rate at 200°C was 3.4.

(比較例2) 比較例2にかかる摩擦材料は基本的には実施例2と同様
の条件で製造した。但し次の点が異なる。
(Comparative Example 2) A friction material according to Comparative Example 2 was basically manufactured under the same conditions as in Example 2. However, the following points are different.

即ち第2表に示すように、フェノール樹脂のレジンフロ
ーは20mmとし、カシューダストは+100メツシユ
のものを用いた。また混合条件は、全部の材料をアイリ
ッヒミキサーにて15分間均一に混合した。
That is, as shown in Table 2, the resin flow of the phenol resin was 20 mm, and the cashew dust used was +100 mesh. As for the mixing conditions, all the materials were uniformly mixed for 15 minutes using an Eirich mixer.

比較例2では、第1表に示すように摩擦材料全体に対し
て細孔容積の占める割合は15%であつた。また、全細
孔容積に対して、細孔径1000オングストローム以下
の極細孔の割合は39%であった。
In Comparative Example 2, as shown in Table 1, the pore volume accounted for 15% of the total friction material. Furthermore, the ratio of ultra-fine pores with a pore diameter of 1000 angstroms or less to the total pore volume was 39%.

そして実施例1と同様に性能試験を行った。試験結果は
第1表に示すように、最少摩擦係数は0゜18であり、
100℃における摩耗率は2.1であり、200 ’C
にあける摩耗率は3.8であった。
Then, a performance test was conducted in the same manner as in Example 1. As shown in Table 1, the test results show that the minimum friction coefficient is 0°18.
The wear rate at 100'C is 2.1, and at 200'C
The wear rate per year was 3.8.

(評価) 以上説明したように実施例1、実施例2では、全細孔容
積に対して、1000オングストローム以下の細孔径を
もつ極細孔の占める割合が体積%で50%以上に設定さ
れている。かかる実施例1、実施例2では比較例に比べ
て、高い摩擦係数を示し、また、摩耗率も比較例に比べ
て低く、耐フエード性に優れていることがわかる。
(Evaluation) As explained above, in Examples 1 and 2, the ratio of ultra-small pores with a pore diameter of 1000 angstroms or less to the total pore volume is set to 50% or more in volume %. . It can be seen that Examples 1 and 2 exhibit higher friction coefficients than the Comparative Examples, have lower wear rates than the Comparative Examples, and have excellent fade resistance.

特許出願人 アイシン化工株式会社Patent applicant: Aisin Kako Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)基材と結合樹脂と摩擦調整剤とを含み、全細孔容
積に対して、1000オングストローム以下の細孔径を
もつ極細孔の占める割合が体積%で50%以上であるこ
とを特徴とする摩擦材料。
(1) It contains a base material, a binding resin, and a friction modifier, and is characterized in that the ratio of ultrafine pores with a pore diameter of 1000 angstroms or less to the total pore volume is 50% or more by volume. friction material.
JP28511290A 1990-10-22 1990-10-22 Friction material Pending JPH04159385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28511290A JPH04159385A (en) 1990-10-22 1990-10-22 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28511290A JPH04159385A (en) 1990-10-22 1990-10-22 Friction material

Publications (1)

Publication Number Publication Date
JPH04159385A true JPH04159385A (en) 1992-06-02

Family

ID=17687274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28511290A Pending JPH04159385A (en) 1990-10-22 1990-10-22 Friction material

Country Status (1)

Country Link
JP (1) JPH04159385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069946A (en) * 1992-06-26 1994-01-18 Aisin Chem Co Ltd Friction material
US6455145B1 (en) 1998-03-17 2002-09-24 Aisin Kako Kabushiki Kaisha Friction member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069946A (en) * 1992-06-26 1994-01-18 Aisin Chem Co Ltd Friction material
US6455145B1 (en) 1998-03-17 2002-09-24 Aisin Kako Kabushiki Kaisha Friction member

Similar Documents

Publication Publication Date Title
JP2647164B2 (en) Friction material
US11181159B2 (en) Friction material
JPH0240131B2 (en)
EP3085985B1 (en) Composition for friction material
JPWO2003052022A1 (en) Friction material composition and friction material using friction material composition
CN106015410A (en) Asbestos-free friction material for brake block
JPH04159385A (en) Friction material
JPH0741567A (en) Friction material
JPH11322959A (en) Friction material
JPS5813684A (en) Friction material
JPH05255657A (en) Friction material
JPH0978055A (en) Frictional material for brake
JP2709124B2 (en) Friction material
JP2818326B2 (en) Friction material
JP2002097451A (en) Friction material for aluminum disk rotor
JPH08209115A (en) Friction material composition for brake pad
JPS5821031A (en) Disc brake pad
JPH039130A (en) Friction material
JPS6215281A (en) Friction material composition
JPH1112559A (en) Friction material
JP3220613B2 (en) Friction material
RU2072372C1 (en) Polymer friction composition
JPH02142935A (en) Brake disc member, brake lining member and disc brake device for automobile
JP2000290387A (en) Brake friction material
JPH0343485A (en) Friction material