JPH04159077A - Grinding machine control device - Google Patents

Grinding machine control device

Info

Publication number
JPH04159077A
JPH04159077A JP2279268A JP27926890A JPH04159077A JP H04159077 A JPH04159077 A JP H04159077A JP 2279268 A JP2279268 A JP 2279268A JP 27926890 A JP27926890 A JP 27926890A JP H04159077 A JPH04159077 A JP H04159077A
Authority
JP
Japan
Prior art keywords
grinding
fuzzy inference
cutting speed
constant
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2279268A
Other languages
Japanese (ja)
Inventor
Fumito Okino
文人 興野
Yasuhiko Murai
村井 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2279268A priority Critical patent/JPH04159077A/en
Priority to US07/774,086 priority patent/US5402354A/en
Priority to DE4133754A priority patent/DE4133754C2/en
Publication of JPH04159077A publication Critical patent/JPH04159077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To perform computation of a variation point in a short time by automatically controlling the variation point of a constant cutting speed through fuzzy inference, based on a detecting value for a polishing state by a sensor. CONSTITUTION:A sensor 7 to detect the grinding state of a material 6 to be ground and a control means 11 to control the variation point of a constant cutting cut speed, based on an output signal from the sensor 7. Based on a detecting value for a polishing state by the sensor 7, a plurality of the variation points of a constant cut speed are automatically controlled through fuzzy inference by means of a fuzzy inference device 10. Namely, when cutting is effected at a specified speed, the variation point is automatically determined from a detecting value for a polishing state through fuzzy inference. During arrival at the variation point, cutting is effected at a subsequent constant speed, and during the occurrence of spark out, a cut speed is reduced to zero.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は研削盤制御装置に関し、特に、−定切り込み速
度の変更点を、ファジィ推論の適用により、被削材1つ
毎に自動的に制御する装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a grinding machine control device, and in particular, - automatically changes the constant cutting speed for each workpiece by applying fuzzy reasoning. It relates to a device to be controlled.

〈従来の技術〉 従来、円筒研削盤の研削サイクルでは、砥石の一定切り
込み速度の変更点は、粗研削(粗研)から精密研削(精
研)への変更また精研からスパークアウトへの変更いず
れの場合も、同一種類の被削材間で固定値であった。
<Conventional technology> Conventionally, in the grinding cycle of a cylindrical grinder, the constant cutting speed of the grinding wheel was changed from rough grinding (coarse grinding) to precision grinding (seiken), and from fine grinding to spark-out. In both cases, the values were fixed among the same type of workpiece.

このように砥石の切り込み速度変更点が固定値であるた
め、下記■〜■のような不都合が生じていた。
Since the point at which the cutting speed of the grindstone is changed is a fixed value, the following disadvantages (1) to (4) have occurred.

■ 加工時間の短縮に限界がある。特に、粗研から精研
への変更点が固定の場合に顕著である。
■ There is a limit to reducing machining time. This is especially noticeable when the change from rough grinding to fine grinding is fixed.

■ 品質にばらつきが生じる。■ There are variations in quality.

■ 加工精度にばらつきが生じる。■ Variations in processing accuracy occur.

これらの理由は下記(jl〜(■)の通りである。These reasons are as follows (jl~(■)).

fit  砥石の切れ味は、ドレス直後は良好であるが
、目つぶれや目づまり等のため次第に悪化してゆく。・ (iil  切り込み速度変更点固定方式では、切れ味
が良い場合は、粗研から精研への変更点、あるいは精研
からスパークアウトへの変更点まで早く達し、更に、ス
パークアウト開始後仕上げ寸法(仕上げ径や仕上げ幅)
に達するまでの時間は短いが、切り込み過剰となり、ま
た滑らかには仕上げ寸法に達せず品質(面粗度)が悪く
なる。
The sharpness of the fit whetstone is good immediately after dressing, but it gradually deteriorates due to crushing and clogging. (ii) With the cutting speed change point fixed method, if the cutting speed is good, the change point from coarse to fine grinding or from fine grinding to spark out will be reached quickly, and the finishing dimension ( (finished diameter and finished width)
Although it takes a short time to reach this point, the cut will be excessive, and the finished dimension will not be reached smoothly, resulting in poor quality (surface roughness).

−逆に、切れ味が悪い場合は、面粗度は良くなるが、切
り残しが生じ、また仕上げ寸法に達する時間も長くなる
- On the other hand, if the cutting is poor, the surface roughness will be improved, but there will be uncut parts and the time required to reach the finished dimensions will be longer.

− このように切れ味により、切り込み過剰や切り残し
が生じて加工精度がばらつき、また面粗度がばらつくた
め、切れ味の良い場合にも滑らかに仕上げ径または仕上
げ輻に達し且つ切り込み過剰とならないように、スパー
クアウト開始点など一定切り込み速度の変更点を大きめ
の固定値に設定している。
− In this way, depending on the sharpness, excessive depth of cut or uncut parts may occur, resulting in variations in machining accuracy and variations in surface roughness. , the points at which the constant cutting speed changes, such as the spark-out starting point, are set to larger fixed values.

M  この結果、加工時間は切れ味の悪さに応じて長く
なって大きくばらつく。しかも大きな切り残しが生しる
程に切れ味が悪い場合は補助ピックが必要となり、仕上
げ径または仕上げ幅に達するまての時間が更に長くなる
M As a result, the machining time becomes longer and varies greatly depending on the degree of sharpness. Moreover, if the sharpness is so poor that a large uncut portion is left, an auxiliary pick is required, and the time required to reach the finished diameter or finished width becomes even longer.

一方、特公昭60−3951号公報のように円筒研削盤
の適応制純研削が知られている。
On the other hand, adaptive pure grinding using a cylindrical grinder is known as disclosed in Japanese Patent Publication No. 60-3951.

この技術で1ま、数式により研削状況のモデル化を予め
行っておき、被削材直径の実測値等を制御装置に入力す
ることにより、研削加工中に一定切り込み速度の変更点
の演算を行っていた。しかし、この適応制碑研削では、
下記fat〜(b)のような不都合が生じていた。
With this technology, the grinding situation is modeled in advance using mathematical formulas, and by inputting the actual measured value of the workpiece diameter, etc. into the control device, the change point of the constant cutting speed can be calculated during the grinding process. was. However, in this adaptive monument grinding,
Inconveniences such as the following fat~(b) have occurred.

ta+  研削状況は被削材の状態、砥石の状態等によ
って時々刻々と変化する。従って、研削状況を厳密にモ
デル化しようとすると、極めて多くのパラメータが必要
となり、演算時間が増大する。この演算時間の増大によ
りサンブリレグ間隔に限界が生じて長くなり、結局、細
い研削状況の変化に対応することができない。
ta+ Grinding conditions change from moment to moment depending on the condition of the workpiece, the condition of the grindstone, etc. Therefore, if a grinding situation is to be modeled strictly, an extremely large number of parameters will be required, and the calculation time will increase. Due to this increase in calculation time, there is a limit to the length of the sanburi leg interval and it becomes longer, and as a result, it is not possible to respond to changes in the fine grinding situation.

(b)  逆に、研削状況を単純化してモデル化すると
、個々の被削材に対する適応の精度が悪くなる。
(b) On the other hand, if the grinding situation is simplified and modeled, the accuracy of adaptation to each work material will deteriorate.

〈発明が解決しようとする課題〉 本発明は上述した従来技術に艦み、砥石の一定切り込み
速度の変更点を被削材1つ毎に自動的に決定し、加工精
度の向上、品質の安定化及び加工時間の短縮を全て達成
することができる研削盤制御装置の提供を目的とする。
<Problems to be Solved by the Invention> The present invention builds on the above-mentioned conventional technology, and automatically determines the change point of the constant cutting speed of the grinding wheel for each workpiece, thereby improving machining accuracy and stabilizing quality. The object of the present invention is to provide a grinding machine control device that can achieve all of the following:

く課題を解決するための手段〉 本発明の構成は、駆動装置により回転駆動される砥石と
、被削材を保持する主軸台と、砥石と主軸台の少なくと
も一方を移動して複数の一定速度で切り込みを行う移動
機構と、被削材の研削状態を検出するセンサと、このセ
ンサの出力信号に基づいて一定切り込み速度の変更点を
制御する制御手段とを具備する研削盤制御装置において
、 前記センサによる研削状態の検出値に基づいて、複数の
一定切り込み速度の変更点をファジィ推論により自動的
に11!Imするファジィ推論装置を具備することを特
徴とするものである。但し、一定速度には速度ゼ四も含
めることができろ。
Means for Solving the Problems> The configuration of the present invention includes a grindstone that is rotationally driven by a drive device, a headstock that holds a workpiece, and at least one of the grindstone and the headstock that is moved at a plurality of constant speeds. A grinding machine control device comprising: a moving mechanism that makes a cut; a sensor that detects the grinding state of a workpiece; and a control means that controls a point at which a constant cutting speed is changed based on an output signal of the sensor. Based on the value detected by the sensor on the grinding state, multiple constant cutting speed changes are automatically determined using fuzzy inference. The invention is characterized by comprising a fuzzy inference device that performs Im. However, the constant speed can also include speed 4.

く作   用〉 成る一定速度で切り込みが行われているとき、研削状態
の検出値から、ファジィ推論により変更点が自動的に求
められる。この変更点に達したとき、次の一定速度で切
り込みが行われる。スパークアウトの時は、切り込み速
度がゼロとされる。
When cutting is performed at a constant speed, the points of change are automatically determined by fuzzy reasoning from the detected values of the grinding state. When this change point is reached, the cut is made at the next constant speed. At the time of spark-out, the cutting speed is assumed to be zero.

く実 施 例〉 以下、図面を参照して、本発明を実施例と共に説明する
Embodiments Hereinafter, the present invention will be described along with embodiments with reference to the drawings.

第1図1ま一実施例に係る装置の構成を示すブロック図
であり、被削材寸法検出器7と、モータ負荷検出器9を
用い、研削状態の検出値としてモータ負荷と切り残し量
をファジィ推論装置10に入力することにより、第2図
〜第9図に示すようなファジィ推論を行って、一定切り
込み速度の変更点を制御するようにしている。
FIG. 1 is a block diagram showing the configuration of the apparatus according to the first embodiment, in which a workpiece size detector 7 and a motor load detector 9 are used to calculate the motor load and uncut amount as detected values of the grinding state. By inputting the data to the fuzzy inference device 10, fuzzy inference as shown in FIGS. 2 to 9 is performed to control changes in the constant cutting speed.

第1図において、円筒研削盤本体1では、主軸台2ある
いは主軸台2と心押台3により被削材6が保持され、ま
た回転駆動される。
In FIG. 1, in a cylindrical grinding machine main body 1, a workpiece 6 is held by a headstock 2 or a headstock 2 and a tailstock 3, and is also rotationally driven.

また、駆動モータ4より砥石5が回転駆動される。更に
、図示省略の移動機構により主軸台2が心押台3と共に
移動されて、切り込み量が調整される。もちろん、砥石
5だけ、あるいは砥石5と主軸台2の両方を移動機構に
より移動して、切り込み量を調整しても良い。
Further, the grindstone 5 is rotationally driven by the drive motor 4. Further, the headstock 2 is moved together with the tailstock 3 by a moving mechanism (not shown) to adjust the depth of cut. Of course, the amount of cut may be adjusted by moving only the grindstone 5 or both the grindstone 5 and the headstock 2 using a moving mechanism.

移動機構による切り込み速度は制御装置12の指令によ
り切換わり、変更点に達するまで一定であり、変更点に
達したら次の一定速度になる。
The cutting speed by the moving mechanism is changed by a command from the control device 12, and remains constant until the changing point is reached, and then becomes the next constant speed.

被削材寸法検出器7とモータ負荷検出器9は研削盤本体
1に取付けられている。
A workpiece size detector 7 and a motor load detector 9 are attached to the grinding machine body 1.

被削材寸法検出器7は接触あるいは非接触で、加工中の
被削材6の寸法(例えば、・プランジ、トラバース、テ
ーパ研削では直径、ショルダ研削では輻)を実測するも
のであり、主として接触型の自動定寸製電が用いられる
The workpiece size detector 7 is a contact or non-contact device that actually measures the dimensions of the workpiece 6 during machining (for example, the diameter for plunge, traverse, and taper grinding, and the radius for shoulder grinding). Automatic mold sizing is used.

この被削材寸法検出I#7から出力された検出信号7A
と、NC装置11によりNC指令値から計算された時々
刻々の砥石の設定切り込み量11Aとが制御値[12内
の減算回路8に入力し、この減算回路8が切り残し量8
Aを算出してファジィ推論装置10に入力する。
Detection signal 7A output from this work material size detection I#7
and the momentary grinding wheel set cutting amount 11A calculated from the NC command value by the NC device 11 are input to the subtraction circuit 8 in the control value [12, and this subtraction circuit 8 calculates the uncut amount 8.
A is calculated and input to the fuzzy inference device 10.

モータ負荷検出N9は研削中にモータ4の負荷電流を検
出することにより研削中のモータ負荷を検出するもので
あり、検出信号9Aをファジィ推論装置10に入力する
。なお、負荷検出対象のモータとしては、砥石駆動用モ
ータ4の他、被削材6を回転駆動するモータであっても
かまわない。
The motor load detection N9 detects the motor load during grinding by detecting the load current of the motor 4 during grinding, and inputs the detection signal 9A to the fuzzy inference device 10. Note that, in addition to the grindstone drive motor 4, the motor to be subjected to load detection may be a motor that rotationally drives the workpiece 6.

これら研削状態を表わす入力値(モータ負荷、切り残し
量)に対して、ファジィ推論装置10が研削状態に最適
な切り込み速度変更点を演算し、その結果(データ)1
0AをNC装置1−11に与える。
The fuzzy inference device 10 calculates the optimal cutting speed change point for the grinding condition based on the input values (motor load, uncut amount) representing the grinding condition, and the result (data) 1
0A is given to the NC device 1-11.

思上の演算は成る一定速度(仮に第1の一定切り込み速
度とする)での切り込み中、常時行っており、NC装置
11はファジィ推論結果である切り込み速度変更点と、
被削材寸法検出器7による実測寸法値とを入力して、こ
れらの値が一致した時、速度切換え指令11Bを研削盤
本体1に与えて、次の一定速度(第2の一定切り込み速
度)に変更させる。
The hypothetical calculation is always performed during cutting at a constant speed (temporarily assumed to be the first constant cutting speed), and the NC device 11 calculates the cutting speed change point, which is the fuzzy inference result, and
Input the actual dimension value measured by the work material dimension detector 7, and when these values match, give the speed switching command 11B to the grinding machine body 1 to start the next constant speed (second constant cutting speed). change it to

これにより、研削盤本体1は予め定められた第2の一定
切り込み速度で切り込みを行い、この切り込み中にファ
ジィ推論装置10は次の切り込み速度変更点の推論を行
う。
As a result, the grinding machine main body 1 performs cutting at a predetermined second constant cutting speed, and during this cutting, the fuzzy inference device 10 infers the next cutting speed change point.

なお、減算回路8とファジィ推論装[10とNC装[1
1は同一装置構成としても良い。
In addition, the subtraction circuit 8, the fuzzy inference device [10] and the NC device [1]
1 may have the same device configuration.

また、安全のため、モータ負荷検出I19の出力が基準
値(通常120%)を越えた場合は、ファジィ推論装置
10を通さず、モータ負荷検出1#9の出力を直接NC
vicl111へ入力して適切な安全措置をとるように
しても良い。
For safety, if the output of the motor load detection I19 exceeds the reference value (usually 120%), the output of the motor load detection I#9 is directly output to the NC without passing through the fuzzy inference device 10.
It is also possible to input the information to the vicl 111 and take appropriate safety measures.

また、設定切り込み量として、NC指令値の代りに、切
り込み速度検出養を用いた実測値を使用しても良い。
Furthermore, as the set cutting depth, an actual value measured using cutting speed detection may be used instead of the NC command value.

次に、ファジィ推論装置10について詳述する。ここで
は、−例として2人力1出力のファジィ推論を行うもの
としてあり、第2図〜第4図に示すメンバーシップ関数
に基づいて粗研から精研への最適な切り込み速度変更点
を出力し、更に、第6図〜第8図に示すメンバーシップ
関数に基づいて精研からスパークアウトへの最適な切り
込み速度変更点を出力するように構成しである。
Next, the fuzzy inference device 10 will be explained in detail. Here, as an example, fuzzy inference is performed using two human power and one output, and the optimal cutting speed change point from coarse grinding to fine grinding is output based on the membership functions shown in Figures 2 to 4. Furthermore, the present invention is configured to output the optimum cutting speed change point from fine cutting to sparking out based on the membership functions shown in FIGS. 6 to 8.

まず、粗研から精研への切り込み速度変更点のファジィ
推論について説明する。第2図にモータ負荷検出M9か
らの砥石モータ負荷X、を入力値とするメンバーシップ
関数の例を示す。第3図に被削材寸法検出器7からの寸
法実測値とNC装置11算出の設定切り込み量より求め
られた切り残し量x2を入力値とするメンバーシップ関
数の例を示す。第4図に粗研から精研への切り込み速度
変更点Y1(仕上寸法との差で表記)を出力値とするメ
ンバーシップ関数の例を示す。また、本実施例で使用す
る制御ルールの一部は下記(イ)、(ロ)であり、第5
図に各刺部ルールのマトリクスを示す。
First, the fuzzy inference of the cutting speed change point from coarse grinding to fine grinding will be explained. FIG. 2 shows an example of a membership function in which the input value is the grindstone motor load X from the motor load detection M9. FIG. 3 shows an example of a membership function whose input value is the uncut amount x2 obtained from the measured dimension value from the work material dimension detector 7 and the set cutting depth calculated by the NC device 11. FIG. 4 shows an example of a membership function whose output value is the cutting speed change point Y1 (expressed as the difference from the finished dimension) from rough grinding to fine grinding. In addition, some of the control rules used in this example are the following (a) and (b), and the fifth
The figure shows the matrix of each barb rule.

k) もし、砥石モータ負荷x1が大きくてβ)且つ切
り残し量X2が少なければ(S+ 、粗研から精研への
切り込み速度変更点Y1を非常に大きくする(VB)。
k) If the grindstone motor load x1 is large (β) and the uncut amount X2 is small (S+), the cutting speed change point Y1 from rough grinding to fine grinding is made very large (VB).

(ロ) もし、砥石モータ負荷x1が小さくて(Sl且
つ切り残し量x2が多ければ日、粗研から精研への切り
込み速度変更点Y1を非常に小さくする (VS)。
(b) If the grindstone motor load x1 is small (Sl and the uncut amount x2 is large), the cutting speed change point Y1 from rough grinding to fine grinding is made very small (VS).

次に、精研からスパークアウトへの切り込み速度変更点
のファジィ推論について説明する。基本的には第2図〜
第5図の場合と同様であり、第6図にモータ負荷検出器
9からの砥石モータ負荷x1を入力値とするメンバーシ
ップ関数の例を示す。第7図に被削材寸法検出器7から
の寸法実測値とNC装f1コ算出の設定切り込み量より
求められた切り残し量x2を入力値とするメンバーシッ
プ関数の例を示す。第8図に精研からスパークアウトへ
の切り込み速度変更点Y、 (仕上寸法との差で表記)
を出力値とするメンバーシップ関数の例を示す。また、
本実施例で使用する制御ルールの一部は下記(イ)、(
ロ)であり、第9図に各刺部ルールのマトリクスを示す
Next, fuzzy inference regarding the cutting speed change point from fine grinding to spark out will be explained. Basically, Figure 2~
This is the same as the case in FIG. 5, and FIG. 6 shows an example of a membership function using the grindstone motor load x1 from the motor load detector 9 as an input value. FIG. 7 shows an example of a membership function whose input value is the uncut amount x2 obtained from the actual dimension value from the work material dimension detector 7 and the set cutting amount calculated by the NC device f1. Figure 8 shows cutting speed change point Y from fine grinding to spark out (expressed as difference from finished dimension)
Here is an example of a membership function whose output value is . Also,
Some of the control rules used in this example are as follows (a), (
(b), and FIG. 9 shows the matrix of each splinter rule.

(イ) もし、砥石モータ負荷x1が大きくて(ハ)且
つ切り残し量X2が少なければ(S)、精研からスパー
クアウトへの切り込み速度変更点Y1を非常に大きくす
る(VB)。
(B) If the grindstone motor load x1 is large (C) and the uncut amount X2 is small (S), the cutting speed change point Y1 from fine grinding to spark out is made very large (VB).

(ロ) もし、砥石モータ負荷x1が小さくて+31且
つ切り残し量x2が多ければβ)、精研からスパークア
ウトへの切り込み速度変更点Y1を非常に小さくする(
VS)。
(b) If the grinding wheel motor load x1 is small and +31 and the uncut amount x2 is large (β), then the cutting speed change point Y1 from fine grinding to spark out should be made very small (
VS).

上述した第2図〜第4図、第6図〜第8図に示される如
きメジバーンツブ関数は、既に定められてt)る各々の
一定切り込み速度に対し、上記各側のようにそれぞれ定
義しても良く、あるいは、同じテーブル上に定義しても
かまわない。
The Mediburn Tube functions as shown in FIGS. 2 to 4 and 6 to 8 described above are defined as for each side above for each constant cutting speed that has already been determined. Alternatively, they can be defined on the same table.

また、ファジィ推論装置10への入力値の信号としては
、第1図に示した砥石モータ負荷と切り残し量の2人力
値の他、研削状態を表わすものであれば何を用いても良
く、第10図にその例を示す。
Further, as the input value signal to the fuzzy inference device 10, in addition to the two manual force values of the grindstone motor load and the amount of uncut material shown in FIG. 1, any signal that represents the grinding state may be used. An example is shown in FIG.

第10図の例では、研削盤本体1には被削材寸法検出器
7及びモータ負荷検出器9の他、切り込み速度検出@1
4、砥石5と被削材6間の接触火花検出器15、表面性
状(びびりマーク)検出器16、研削音検出器17、A
E波検出器18、表面粗さ検出器19、振動検出M20
、fi度検出器21が取付けられ、これらによる研削状
態の検出値がファジィ推論装置10に入力されるように
なっている。但し、どの検出値をどれだけ用いても良く
、また、どのような検出値の組み合せとしてファジィ推
論を行ってもかまわない。−例として、被削材寸法(例
えば、直径)の変化量と切り残し量とを入力値として切
り込み速度の最適な変更点をファジィ推論する実施例を
、第10図〜第14図を参照して説明する。
In the example shown in FIG. 10, the grinding machine body 1 includes a workpiece size detector 7, a motor load detector 9, and a cutting speed detector @1.
4. Contact spark detector 15 between grinding wheel 5 and workpiece 6, surface texture (chatter mark) detector 16, grinding sound detector 17, A
E wave detector 18, surface roughness detector 19, vibration detection M20
, a fi degree detector 21 are attached, and the detected values of the grinding state by these are inputted to the fuzzy inference device 10. However, any number of detected values may be used, and fuzzy inference may be performed using any combination of detected values. - As an example, refer to Figs. 10 to 14 for an example of using fuzzy inference to determine the optimal change in cutting speed using the amount of change in workpiece dimensions (e.g., diameter) and the amount of uncut material as input values. I will explain.

第10図において、差分回路22は被削材寸法検出器7
からの直径実測値と、とれよりも成る一定時間過去の直
径実測値との差、即ち被削材直径変化量(時間変化)を
求めてその信号22Aをファジィ推論装置10へ入力す
る。減算回路8は被削材寸法検出#7からの直径実測値
と、切り込み速度検出器14に基づく砥石切り込み量と
から切り残し量を求めてその信号8Aをファジィ推論装
[10へ入力する。
In FIG. 10, the differential circuit 22 is connected to the workpiece size detector 7.
The difference between the measured diameter value from and the measured diameter value past a certain period of time, that is, the amount of change in diameter of the workpiece (temporal change) is determined and the signal 22A is input to the fuzzy inference device 10. The subtraction circuit 8 calculates the uncut amount from the actual diameter value from the workpiece size detection #7 and the cutting amount of the grindstone based on the cutting speed detector 14, and inputs the signal 8A to the fuzzy inference system [10].

第11図に差分回路22からの被削材直径変化量x1を
入力値とするメンバーシップ関数の例を示す。第12図
に減算回@8より求められた切り残し量X−を入力値と
するメンバーシップ関数の例を示す。第13図に精研か
らスパークアウトへの切り込み速度変更点Y。
FIG. 11 shows an example of a membership function whose input value is the amount of change in workpiece diameter x1 from the difference circuit 22. FIG. 12 shows an example of a membership function whose input value is the uncut amount X- obtained from the subtraction cycle @8. Figure 13 shows cutting speed change point Y from fine grinding to spark out.

(仕上寸法との差で表記)を出力値とするメンバーシッ
プ関数の例を示す。また、本実施例で使用する制御ルー
ルの一部は下記(イ)、(ロ)であり、第14図に各制
御ルールのマトリクスを示す。
An example of a membership function whose output value is (expressed as the difference from the finished dimension) is shown below. Further, some of the control rules used in this embodiment are as shown in (a) and (b) below, and FIG. 14 shows a matrix of each control rule.

(イ) もし、被削材直径変化量X1が大きくてCB)
且つ切り残し量x2が少なければ(31、精研からスパ
ークアウトへの切り込み速度変更点Y1を非常に大きく
する (VB)。
(B) If the amount of workpiece diameter change X1 is large and CB)
Moreover, if the uncut amount x2 is small (31), the cutting speed change point Y1 from fine grinding to spark out is made very large (VB).

(ロ) もし、被削材直径変化量X1が小さくて(s)
且つ切り残し量X2が多ければ(へ)、精研からスパー
クアウトへの切り込み速度変更点Yを非常に小さくする
(VS)。
(b) If the work material diameter change amount X1 is small (s)
Moreover, if the uncut amount X2 is large (v), the cutting speed change point Y from fine sharpening to spark out is made very small (VS).

なお、変更点の数は1個以上、いくつ演算するようにし
ても良い。
Note that the number of change points may be one or more, and any number of changes may be calculated.

入力値信号として、砥石モータ負荷、切り残し量及び被
削材寸法変化量以外のものを用いる場合は以下のように
なる。
When using something other than the grindstone motor load, the amount of uncut material, and the amount of dimensional change of the workpiece as the input value signal, the following will occur.

切り込み速度: NC装【1]の指令による切り込み速度と、研削盤本体
11の実際の切り込み速度とは必ずしも一致せず、研削
状態によって異なる。
Cutting speed: The cutting speed commanded by the NC system [1] and the actual cutting speed of the grinding machine body 11 do not necessarily match, and differ depending on the grinding state.

従って、切り込み速度検出器14で切り込み速度を実測
してこれをファジィ推論の入力値とすることにより、精
度の良い制御を行うことができる。
Therefore, by actually measuring the cutting speed with the cutting speed detector 14 and using this as an input value for fuzzy inference, accurate control can be performed.

表面性状: 被削材6に光を当てると、反射光が縞模様を描く (び
びりマーク)場合がある。このようなびびりマークが生
じた場合は、例え寸法精度や表面粗さが要求値を満足し
ていても、製品としての価値が下ることがある。従って
、表面性状検出M16によって表面性状を検出しこれを
ファジィ推論の入力値とすることにより、品質良く研削
する制御が行える。
Surface texture: When light is applied to the workpiece 6, the reflected light may draw a striped pattern (chatter marks). If such chatter marks occur, the value of the product may decrease even if the dimensional accuracy and surface roughness meet the required values. Therefore, by detecting the surface texture using the surface texture detection M16 and using this as an input value for fuzzy inference, it is possible to control grinding with good quality.

表面粗さ: 製品には要求表面粗さがあるので、研削中に表面粗さ検
出器19により被削材6の現状の表面粗さを検出して表
面粗さが要求値に達した時、砥石5を被削材6から相対
的に離しテスハークアウトを中止する。これにより、必
要以上にスパークアウトを行うことなく、短時間で要求
精度を得ろことができる。また、必要に応じて表面粗さ
の検出値をファジィ推論の入力値とする。
Surface roughness: Since the product has a required surface roughness, the current surface roughness of the workpiece 6 is detected by the surface roughness detector 19 during grinding, and when the surface roughness reaches the required value, The whetstone 5 is relatively separated from the workpiece 6 and the Tesshake-out is stopped. This makes it possible to obtain the required accuracy in a short period of time without causing unnecessary spark-outs. Furthermore, the detected value of surface roughness is used as an input value for fuzzy inference, if necessary.

振動: 加工中の振動発生は砥石5の剛性、被削材6の剛性等に
関連するが、振動はびびりマーク発生等の原因ともなる
。従って、振動検出璧20により振動を検出することに
より研削状態を把握でき、ファジィ推論の入力値とすル
コトニより品質良い制御ができる。
Vibration: The generation of vibration during machining is related to the rigidity of the grinding wheel 5, the rigidity of the workpiece 6, etc., but vibration also causes chatter marks and the like. Therefore, the grinding state can be grasped by detecting the vibrations using the vibration detection pin 20, and control with better quality than the input value of fuzzy inference can be achieved.

温度: 加工中の被削材6の温度は、被削材6の表面硬度等の品
質に関連する。また、研削盤本体1の研削油や潤滑油な
どの温度も研削状態に影響する。従って、温度検出M2
1の検出値をファジィ推論の入力値とすることにより、
品質良い制御ができろ。
Temperature: The temperature of the workpiece 6 during processing is related to the quality of the workpiece 6, such as its surface hardness. Furthermore, the temperature of the grinding oil, lubricating oil, etc. in the grinding machine body 1 also affects the grinding state. Therefore, temperature detection M2
By using the detected value of 1 as the input value of fuzzy inference,
Have good quality control.

AE波: 加工中のAE波をAE波検出器18により検出すると、
スパークアウト時など、砥石5と被削材6の接触検知が
困難な場合でも、研削状態を把握できる。従って、AE
波の検出値をファジィ推論の入力値とすることにより、
品質良い制御ができろ。
AE wave: When the AE wave during processing is detected by the AE wave detector 18,
Even when it is difficult to detect contact between the grinding wheel 5 and the workpiece 6, such as during spark-out, the grinding state can be grasped. Therefore, A.E.
By using the detected wave values as input values for fuzzy inference,
Have good quality control.

研削音検出器: 熟練した作業者:よ研削音や、砥石5と被削材6の接触
による火花の出方によって、被削材6の被削性や砥石6
の研削性等を総合的に評価し、判断している。従って、
研削音検出器17や接触火花検出N15で研削音や火花
を検出してその性質を調べることにより研削状態を把握
でき、これらの検出値をファジィ推論の入力値とするこ
とにより品質良い制御ができる。
Grinding sound detector: Skilled worker: Detects the machinability of the workpiece 6 and the grinding wheel 6 by the grinding sound and the appearance of sparks due to contact between the grinding wheel 5 and the workpiece 6.
Judgments are made by comprehensively evaluating the grindability, etc. Therefore,
Grinding conditions can be grasped by detecting grinding sounds and sparks using the grinding sound detector 17 and contact spark detection N15 and investigating their properties, and high-quality control can be achieved by using these detected values as input values for fuzzy inference. .

〈発明の効果〉 本発明によれば研削状態の検出値に基づいてファジィ推
論により一定切り込み速度の変更点を自動的に制御する
。従って、従来の適応刺部研削のように研削状況を厳密
にモデル化する必要がなく、また、短時間で変更点の演
算を行うことがてきる。更に、研削状況の細い変化に対
応でき、そのため、より一層の加工精度が向上し、品質
が安定し、加工時間が短縮する。
<Effects of the Invention> According to the present invention, changes in the constant cutting speed are automatically controlled by fuzzy reasoning based on the detected value of the grinding state. Therefore, unlike conventional adaptive splinter grinding, there is no need to strictly model the grinding situation, and changes can be calculated in a short time. Furthermore, it can respond to small changes in the grinding situation, which further improves machining accuracy, stabilizes quality, and shortens machining time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図、第3図、第4図、第6図、第7図、第8図、第1
1図、第12図及び第13図はそれぞれメンバーシップ
関数を示す図、第5図、第9図及び第14図はそれぞれ
制御ルールのマトリクスを示す図、第10図は本発明の
他の実施例の構成を示すブロック図である。 図面中、1は研削盤本体、2は主軸台、3は心神台、4
は砥石駆動モータ、5は砥石、6は被削材、7は被削材
寸法検出器、8は減算回路、9はモータ負荷検出盤、1
0はファジィ推論装置、11はNC装置、12は制御装
置、14は切り込み速度検出器、15は接触火花検出器
、16;:表面性状(びびりマーク)検出器、17は研
削音検出器、18はAE波検出器、19は表面粗さ検出
器、20は振動検出器、21は温度検出器、22は差分
回路てある。 特  許  出  願  人 三菱重工業株式会社 代     理     人
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention; FIGS. 2, 3, 4, 6, 7, 8, 1
1, 12, and 13 are diagrams showing membership functions, respectively; FIGS. 5, 9, and 14 are diagrams showing control rule matrices, respectively; and FIG. 10 is a diagram showing another implementation of the present invention. FIG. 2 is a block diagram showing an example configuration. In the drawing, 1 is the grinding machine body, 2 is the headstock, 3 is the Shinshindai, and 4
is a grindstone drive motor, 5 is a grindstone, 6 is a workpiece, 7 is a workpiece size detector, 8 is a subtraction circuit, 9 is a motor load detection board, 1
0 is a fuzzy reasoning device, 11 is an NC device, 12 is a control device, 14 is a cutting speed detector, 15 is a contact spark detector, 16 is a surface texture (chatter mark) detector, 17 is a grinding sound detector, 18 19 is an AE wave detector, 19 is a surface roughness detector, 20 is a vibration detector, 21 is a temperature detector, and 22 is a differential circuit. Patent applicant Mitsubishi Heavy Industries, Ltd. Agent

Claims (1)

【特許請求の範囲】 駆動装置により回転駆動される砥石と、被削材を保持す
る主軸台と、砥石と主軸台の少なくとも一方を移動して
複数の一定速度で切り込みを行う移動機構と、被削材の
研削状態を検出するセンサと、このセンサの出力信号に
基づいて一定切り込み速度の変更点を制御する制御手段
とを具備する研削盤制御装置において、 前記センサによる研削状態の検出値に基づいて、複数の
一定切り込み速度の変更点をファジィ推論により自動的
に制御するファジィ推論装置を具備することを特徴とす
る研削盤制御装置。
[Scope of Claims] A grindstone that is rotationally driven by a drive device, a headstock that holds a workpiece, a moving mechanism that moves at least one of the grindstone and the headstock to make cuts at a plurality of constant speeds, and a workpiece. A grinding machine control device comprising a sensor that detects a grinding state of a material to be cut, and a control means that controls a change point of a constant cutting speed based on an output signal of the sensor, A grinding machine control device comprising: a fuzzy inference device that automatically controls a plurality of constant cutting speed changes using fuzzy inference.
JP2279268A 1990-10-12 1990-10-19 Grinding machine control device Pending JPH04159077A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2279268A JPH04159077A (en) 1990-10-19 1990-10-19 Grinding machine control device
US07/774,086 US5402354A (en) 1990-10-12 1991-10-09 Control apparatus and control method for machine tools using fuzzy reasoning
DE4133754A DE4133754C2 (en) 1990-10-12 1991-10-11 Method for controlling a grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279268A JPH04159077A (en) 1990-10-19 1990-10-19 Grinding machine control device

Publications (1)

Publication Number Publication Date
JPH04159077A true JPH04159077A (en) 1992-06-02

Family

ID=17608801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279268A Pending JPH04159077A (en) 1990-10-12 1990-10-19 Grinding machine control device

Country Status (1)

Country Link
JP (1) JPH04159077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100742A (en) * 1993-09-30 1995-04-18 Toyoda Mach Works Ltd Grinding device
JP2008093789A (en) * 2006-10-12 2008-04-24 Shigiya Machinery Works Ltd Grinder
JP2017019023A (en) * 2015-07-07 2017-01-26 株式会社ジェイテクト Cylinder grinding method and cylinder grinder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295543A (en) * 1988-09-30 1990-04-06 Omron Tateisi Electron Co Control device for grinder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295543A (en) * 1988-09-30 1990-04-06 Omron Tateisi Electron Co Control device for grinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100742A (en) * 1993-09-30 1995-04-18 Toyoda Mach Works Ltd Grinding device
JP2008093789A (en) * 2006-10-12 2008-04-24 Shigiya Machinery Works Ltd Grinder
JP2017019023A (en) * 2015-07-07 2017-01-26 株式会社ジェイテクト Cylinder grinding method and cylinder grinder

Similar Documents

Publication Publication Date Title
Ismail et al. Chatter suppression in five-axis machining of flexible parts
JPS5830110B2 (en) Kensaku Kakoseigyosouchi
JPH0241872A (en) Numerical control grinder
JP2555296B2 (en) Machining state detection device for machine tools
JP2020023040A (en) Grinding quality estimation model generation device, grinding quality estimation device, operation command data adjustment model generation device of grinding machine and operation command data updating device of grinding machine
US4640057A (en) Dressing-grinding process and electronically controlled grinding machine
JP2020015129A (en) Grinding wheel surface state estimation model creation device, grinding wheel surface state estimation device, operation command data adjustment model creation device for grinder and operation command data updating device for grinder
US3811228A (en) Method and apparatus for controlling the accuracy of machining of a machine tool
US5402354A (en) Control apparatus and control method for machine tools using fuzzy reasoning
JPH07121502B2 (en) How to cylindrically grind a workpiece
JPH04159077A (en) Grinding machine control device
US5271187A (en) Numerically controlled grinding machine
Xue et al. Monitoring of wheel dressing operations for precision grinding
JP7451949B2 (en) Machining quality prediction system
JPH0475848A (en) Adaptive control device
JP3344064B2 (en) Grinding equipment
JP2808485B2 (en) Control method of cylindrical grinding machine
JP2940073B2 (en) Grinding machine control method
JP2949593B2 (en) Workpiece cylindricity detector
JP2950929B2 (en) Automatic processing condition determination device
JP2023158578A (en) Grinding system
JPH0839426A (en) Grinding device
JP3282871B2 (en) Dimension control method of workpiece in grinding
RU2019384C1 (en) Method to control process of circular cut in polishing
RU2254977C1 (en) In-feed grinding process control method