JPH04159003A - Highly efficient cutting method for austenitic high manganese steel - Google Patents

Highly efficient cutting method for austenitic high manganese steel

Info

Publication number
JPH04159003A
JPH04159003A JP2278587A JP27858790A JPH04159003A JP H04159003 A JPH04159003 A JP H04159003A JP 2278587 A JP2278587 A JP 2278587A JP 27858790 A JP27858790 A JP 27858790A JP H04159003 A JPH04159003 A JP H04159003A
Authority
JP
Japan
Prior art keywords
cutting
steel
cut
tip
manganese steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2278587A
Other languages
Japanese (ja)
Other versions
JPH07115246B2 (en
Inventor
Moriyoshi Kanamaru
守賀 金丸
Tsuneo Tateno
立野 常男
Sadashi Kusaka
日下 貞司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2278587A priority Critical patent/JPH07115246B2/en
Publication of JPH04159003A publication Critical patent/JPH04159003A/en
Publication of JPH07115246B2 publication Critical patent/JPH07115246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To cut a high Mn steel with high efficiency, by including the carbide, nitride, and carbonitride of Si3N4 whisker, special metal in the specific quantity respectively in a throw away tip, and also forming the whisker from an Al2O3 group ceramics that the whisker is orientated about parallel to the cutting face of the tip. CONSTITUTION:In the case of cutting a high Mn steel, a throw-away tip composed of an Al2O3 group ceramics which includes at 0.5-40wt.% one or two kinds of the carbide, nitride, carbonitride of Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W and includes 3-40wt.% Si3N4 whisker, and also with the whisker being orientated about parallel to the cutting face 1 of the tip, used. The tip thus becomes to have a strong resistance force against the cutting main component of force at cutting time. The austenitic high Mn steel can thus be cut with high efficiency with high notch quantity and high sped without causing the tip defect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高マンガン鋼の高能率切削方法に関し、詳細
には、難削材である高Mn鋼や高Mn鋳鋼を高速、高切
り込み量(即ち、高能率)でスローアウェイチップによ
り切削する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a high efficiency cutting method for high manganese steel, and more specifically, a method for cutting high manganese steel and high manganese cast steel, which are difficult-to-cut materials, at high speed and with a large depth of cut. The present invention relates to a method of cutting with an indexable insert (that is, with high efficiency).

(従来の技術) 高Mn鋼や高Mn鋳鋼(以降、高Mn鋼という)は、高
強度を育し、熱伝導性か悪く、又、切削加工中に硬化す
るため、切削加工が極めて難しい材料、即ち、難削材で
ある。
(Prior art) High Mn steel and high Mn cast steel (hereinafter referred to as high Mn steel) are materials that are extremely difficult to cut because they have high strength, poor thermal conductivity, and harden during cutting. In other words, it is a difficult-to-cut material.

かかる高Mn鋼に対して旋削加工やフライス加工等の切
削を行うに際し、比較的高能率で切削するには、出来る
だけ高温て高硬度及び高強度を有するスローアウェイチ
ップ(以降、チップという)を使用することが要求され
る。
When performing cutting such as turning or milling on such high Mn steel, in order to cut with relatively high efficiency, it is necessary to use an indexable tip (hereinafter referred to as a tip) that has as high temperature as possible, high hardness, and high strength. required to use.

このような要求を充たし得るチップは従来得られていな
いが、それらの中で高温での硬度及び強度が最も高いの
は超硬製チップである。従って、高Mn鋼の切削は超硬
製チップを使用して行われている。しかし、超硬製チッ
プを使用する方法(以降、従来超硬チップ法という)で
も、極めて低い切削速度(約30m/min未満)でな
いと高Mn鋼を切削し得す、そのため切削能率が極めて
低く、切削加工に長時間を要するという問題点かある。
Although no chips have hitherto been available that can meet these requirements, carbide chips have the highest hardness and strength at high temperatures. Therefore, cutting of high Mn steel is performed using carbide tips. However, even with the method using carbide tips (hereinafter referred to as the conventional carbide tip method), high Mn steel can only be cut at extremely low cutting speeds (less than approximately 30 m/min), resulting in extremely low cutting efficiency. However, there is a problem in that the cutting process takes a long time.

そこで、かかる問題点を解決すべく、高温て高硬度及び
高強度を有するセラミックスに着目して種々検討か行わ
れ、最近ではAl2O3’−T+C系セラミックス製チ
ップを使用する高Mn鋼の切削方法(以降、従来セラミ
ックスチップ法という)か開発されてきた。
Therefore, in order to solve this problem, various studies have been conducted focusing on ceramics that have high hardness and high strength at high temperatures, and recently a method for cutting high Mn steel using tips made of Al2O3'-T+C ceramics ( Since then, the conventional ceramic chip method) has been developed.

(発明か解決しようとする課題) 上記従来セラミックスチップ法は、高Mn鋼を比較的高
速度(約30〜60m /m1n)で切削し得る。とこ
ろか、チップの靭性不足に基つきチップの欠損がしばし
ば生じるという問題点かある。そのため、極めて小さい
切り込み量(1mm未満)での切削を余儀無くされ、切
削能率か極めて低く、切削加工に長時間を要するという
問題点かある。
(Problems to be Solved by the Invention) The conventional ceramic chip method described above can cut high Mn steel at a relatively high speed (approximately 30 to 60 m2/m1n). However, there is a problem in that chips often break due to insufficient toughness of the chips. Therefore, there is a problem that cutting is forced with an extremely small depth of cut (less than 1 mm), the cutting efficiency is extremely low, and the cutting process takes a long time.

本発明はかかる事情に着目してなされたものであって、
その目的は従来のものかもつ以上のような問題点を解消
し、前記従来セラミックスチップ法の場合に比し、高M
n鋼をチップ欠損を生ずることなく高切り込み量で、且
つ、同等もしくはそれ以上の高速度で切削し得る高Mn
鋼の高能率切削方法を提供しようとするものである。即
ち、前記従来超硬チップ法及び従来セラミックスチップ
法の場合に比して高Mn鋼を高能率で切削し得る切削方
法の提供を課題とするものである。
The present invention has been made with attention to such circumstances, and
The purpose of this method is to solve the above-mentioned problems with the conventional method, and to achieve a higher M than the conventional ceramic chip method.
High Mn that can cut n steel with a high depth of cut without chipping and at an equivalent or higher speed.
The purpose is to provide a highly efficient cutting method for steel. That is, the object of the present invention is to provide a cutting method that can cut high Mn steel with higher efficiency than the conventional carbide tip method and the conventional ceramic tip method.

(課題を解決するための手段) 上記の目的を達成するために、本発明に係る高マンガン
鋼の高能率切削方法は、次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, the high efficiency cutting method for high manganese steel according to the present invention has the following configuration.

即ち、請求項1に記載の高能率切削方法は、高マンガン
鋼を高速、高切り込み量の高能率でスローアウェイチッ
プにより切削する方法であって、スローアウェイチップ
が、5isNiウィスカ:3〜40 wt%を含み、且
ツSi、 Ti、 V、 Cr、 Zr、 Nb、 M
That is, the high-efficiency cutting method according to claim 1 is a method of cutting high-manganese steel with high efficiency at high speed and a high depth of cut using a throw-away tip, wherein the throw-away tip has 5isNi whiskers: 3 to 40 wt. %, and includes Si, Ti, V, Cr, Zr, Nb, M
.

、 Hf、 Ta、 Wの炭化物、窒化物、炭窒化物の
1種又は2種以上を0.5〜40wt%含むと共に、前
記ウィスカをチップのすくい面に略平行に配向させたA
l2O5基セラミツクスよりなることを特徴とする高マ
ンガン鋼の高能率切削方法である。
A containing 0.5 to 40 wt% of one or more of carbides, nitrides, and carbonitrides of Hf, Ta, and W, and the whiskers are oriented substantially parallel to the rake surface of the chip.
This is a highly efficient cutting method for high-manganese steel, which is characterized by being made of l2O5-based ceramics.

請求項2に記載の高能率切削方法は、前記ウィスカが0
量:0.3〜1.5wt%である請求項1に記載の高マ
ンガン鋼の高能率切削方法である。
The high-efficiency cutting method according to claim 2 is characterized in that the whisker is 0.
The high efficiency cutting method for high manganese steel according to claim 1, wherein the amount is 0.3 to 1.5 wt%.

請求項3に記載の高能率切削方法は、前記炭化物、窒化
物、炭窒化物の1種又は2種以上の一部が、A1□0.
結晶粒内にナノオーダで分散してナノコンポジット構造
を呈している請求項1又は請求項2に記載の高マンガン
鋼の高能率切削方法である。
In the highly efficient cutting method according to claim 3, a portion of one or more of the carbides, nitrides, and carbonitrides is A1□0.
3. A highly efficient cutting method for high manganese steel according to claim 1 or 2, wherein the manganese steel is dispersed in nano-order within the crystal grains and exhibits a nanocomposite structure.

請求項4に記載の方法は、前記Al2O5基セラミツク
スか、焼結助剤としてのMgO,ZrO2,TiO2,
y2o3、希土類酸化物、 Crew、 Nip、 5
ift、 Cab、 Na2O又は炭化クロムの1種ま
たは2種以上を0.5〜10.0wt%含有する請求項
1、請求項2又は請求項3に記載の高マンガン鋼の高能
率切削方法である。
The method according to claim 4 is characterized in that the Al2O5-based ceramics or the sintering aids MgO, ZrO2, TiO2,
y2o3, rare earth oxide, Crew, Nip, 5
4. The high-efficiency cutting method for high manganese steel according to claim 1, claim 2, or claim 3, which contains 0.5 to 10.0 wt% of one or more of ift, Cab, Na2O, or chromium carbide. .

(作 用) 本発明に係る高Mn鋼の高能率切削方法(以降、本発明
法いう)は、以上説明したように、高Mn鋼を切削する
に際し、S++ J4ウィスカ 3〜40 wt%を含
み、且ツsi、 Ti、 V、 Cr、 Zr、 Nb
、 Mo、 Hf。
(Function) As explained above, the high-efficiency cutting method for high-Mn steel according to the present invention (hereinafter referred to as the present invention method) includes 3 to 40 wt% of S++ J4 whiskers when cutting high-Mn steel. , and si, Ti, V, Cr, Zr, Nb
, Mo, Hf.

Ta、 Wの炭化物、窒化物、炭窒化物の1種又は2種
以上(以降、炭化物等という)を0.5〜40wt%含
むと共に、前記ウィスカをチップのすくい面に略平行に
配向させたA1.02基セラミツクスよりなるスローア
ウェイチップ(以降、本発明に係るチップという)を使
用するようにしている。
Contains 0.5 to 40 wt% of one or more of carbides, nitrides, and carbonitrides of Ta and W (hereinafter referred to as carbides, etc.), and the whiskers are oriented approximately parallel to the rake surface of the chip. An indexable tip (hereinafter referred to as the tip according to the present invention) made of A1.02 ceramics is used.

この本発明に係るチップは、上記の如<  Si3N4
ウィスカと共に炭化物等を含むAl2O,基セラミック
スよりなる。該513N4ウイスカは、A1.0.基セ
ラミックスの有する特性の劣化を招くことなく、マトリ
ックスを強化し高靭性化する作用を有している。又、炭
化物等は、マトリックスの組織を微細化すると共に異常
粒成長を抑制し、高強度化する作用を有する。故に、本
発明に係るチップは、前記従来のA120i−TiC系
セラミックス製チ、ノブに比し、靭性、強度、高温強度
、高温硬度、及び耐摩耗性か優れている。
The chip according to the present invention has <Si3N4> as described above.
It is made of Al2O-based ceramics containing whiskers and carbides. The 513N4 whisker has A1.0. It has the effect of strengthening the matrix and increasing its toughness without causing deterioration of the properties of the base ceramic. Further, carbides etc. have the effect of refining the structure of the matrix, suppressing abnormal grain growth, and increasing the strength. Therefore, the tip according to the present invention is superior in toughness, strength, high-temperature strength, high-temperature hardness, and wear resistance compared to the conventional A120i-TiC ceramic tips and knobs.

ここて、Si2N4ウィスカ含有量を3〜40wt%と
しているのは、Swt%未満ては高靭性化の効果か小さ
くなって耐欠損性か劣化し、40wt%超では鉄との反
応性を有するSi3N、か相対的に増加して耐摩耗性か
劣化し、且つ513N<ウィスカの充分な均−分散状態
か得られず、強度低下を招くようになるからである。尚
、5lzNtウイスカは針状の形状を有するものである
Here, the reason why the Si2N4 whisker content is set to 3 to 40 wt% is that if it is less than Swt%, the effect of increasing toughness will be reduced and the fracture resistance will be deteriorated, and if it exceeds 40 wt%, Si3N, which has reactivity with iron. , and the wear resistance deteriorates, and a sufficiently uniform dispersion of whiskers cannot be obtained, resulting in a decrease in strength. Note that the 5lzNt whisker has a needle-like shape.

炭化物等の含有量を0.5〜40wt%としているのは
、0.5wt%未満ては前記高強度化の効果か小さくな
り、40wt%超では焼結性の低下により緻密な焼結体
か得られなくなるからである。
The reason why the content of carbides, etc. is 0.5 to 40 wt% is that if it is less than 0.5 wt%, the effect of increasing the strength will be reduced, and if it exceeds 40 wt%, the sinterability will decrease, resulting in a dense sintered body. This is because you will not be able to obtain it.

又、本発明に係るチップは、前記の如きウィスカをチッ
プのすくい面に略平行に配向させるようにしている。こ
のようにすると、針状5izN4ウイスカの軸方向とす
くい面とか平行になっているので、チップは切削加工時
の切削主分力に対し極めて強い抵抗力を有するようにな
り、そのため耐欠損性か更に優れたものになる。尚、上
記ウィスカ配向は、少なくとも、切削性能に直接影響す
るすくい面内、即ちすくい面の近傍において成されてお
ればよい。又、かかる配向か成されている限りにおいて
は、ウィスカ同士か平行でもよ(、直交していてもよく
、放射状になっていてもよく、或いはアトランダムにな
っていてもよい。
Further, in the chip according to the present invention, the whiskers as described above are oriented substantially parallel to the rake face of the chip. In this way, the axial direction of the acicular 5izN4 whiskers is parallel to the rake face, so the insert has extremely strong resistance to the main cutting force during cutting, and therefore has excellent fracture resistance. It becomes even better. Note that the above-mentioned whisker orientation should be at least within the rake face, that is, in the vicinity of the rake face, which directly affects the cutting performance. Further, as long as such orientation is achieved, the whiskers may be parallel to each other (or perpendicular, radial, or at random).

以上の如く、本発明に係るチップは、前記従来のセラミ
ックス製チップに比し、靭性、強度、高温強度、高温硬
度、及び耐摩耗性、並びに耐欠損性が優れている。この
ようにチップの靭性及び耐欠損性か優れていると、高切
り込み量での高Mn鋼切削か可能になり、又、高温硬度
、高温強度及び耐摩耗性か優れていると、高Mn鋼の高
速度切削か可能となる。従って、かかるチップを使用す
る本発明法は、前記従来セラミックスチップ法の場合に
比し、高Mn鋼をチップ欠損を生ずることなく高切り込
み量で切削し得ると共に、高速度で切削し得るようにな
る。即ち、定量的には高Mn鋼を切削速度: 30m/
min以上、切り込み量:1mm以上で切削し得、極高
能率切削か可能となる。
As described above, the chip according to the present invention has superior toughness, strength, high-temperature strength, high-temperature hardness, wear resistance, and chipping resistance compared to the conventional ceramic chips. If the chip has excellent toughness and chipping resistance, it will be possible to cut high-Mn steel with a high depth of cut, and if the chip has excellent high-temperature hardness, high-temperature strength, and wear resistance, it will be possible to cut high-Mn steel. High-speed cutting is possible. Therefore, compared to the conventional ceramic chip method, the method of the present invention using such chips can cut high Mn steel with a high depth of cut without chipping, and can cut at high speed. Become. That is, quantitatively, cutting speed of high Mn steel: 30m/
Cutting can be performed with a cutting depth of 1 mm or more, and extremely high efficiency cutting is possible.

本発明に係るチップを製造するには、 5isN4ウイ
スカを溶媒中に分散してスラリ化した後、Al2O3及
び炭化物等の混合粉末に混合し、焼結し、チップ形状に
加工すればよい。このとき、 Sl 3N4ウイスカの
○量を0.3〜1.5wt%にすると、ウィスカの充分
な均一分散状態が得られ、その結果チップの強度及び靭
性をより向上し得、高強度及び高靭性を確保し易くなる
のでよい。尚、0量:0.3wt%未満てはウィスカ均
一分散効果か小さいため、−方0量: 1.5wt%超
では5if2とAl2O3との反応か生じるため、0量
:0.3〜1.5wt%の場合に比し、強度及び靭性が
低下する。故に、513N4ウイスカの○量を0.3〜
1.5wt%にすることか望ましい。
In order to manufacture a chip according to the present invention, 5isN4 whiskers may be dispersed in a solvent to form a slurry, then mixed with a mixed powder of Al2O3, carbide, etc., sintered, and processed into a chip shape. At this time, if the amount of Sl3N4 whiskers is set to 0.3 to 1.5 wt%, a sufficiently uniform dispersion state of the whiskers can be obtained, and as a result, the strength and toughness of the chip can be further improved, resulting in high strength and high toughness. This is good because it makes it easier to secure. Note that if the amount of 0 is less than 0.3 wt%, the whisker uniform dispersion effect will be small. Compared to the case of 5 wt%, the strength and toughness are lower. Therefore, the amount of ○ of 513N4 whiskers is 0.3~
It is desirable to set it to 1.5 wt%.

前記炭化物等の一部がAl2O,結晶粒内にナノす−ダ
て分散してナノコンポジット構造を呈するようにすると
、S! 3N4ウイスカによる繊維強化とナノ複合強化
の組合せ作用効果により、チップの強度及び耐欠損性を
より向上し得るようになる。
When a part of the carbide etc. is nano-dispersed within Al2O and crystal grains to form a nanocomposite structure, S! The combined effect of fiber reinforcement by 3N4 whiskers and nanocomposite reinforcement makes it possible to further improve the strength and fracture resistance of the chip.

本発明に係るチップの製造過程の焼結前に、焼結助剤と
してMgO,Zr0z、 TiO*、 Y2(h、希土
類酸化物、 CrO2,Nip、 5ift、 Cab
、 Na2O又は炭化クロムの1種または2種以上を0
.5〜10.0wt%添加すると、焼結性か向上し、焼
結組織か微細化及び均一化され、高強度及び高靭性を確
保し易くなる。添加量か0、5wt%未満てはこの効果
が極めて小さく、10.0wt%超では高温強度か低下
する。
Before sintering in the manufacturing process of the chip according to the present invention, MgO, ZrOz, TiO*, Y2(h, rare earth oxide, CrO2, Nip, 5ift, Cab) are used as sintering aids.
, one or more of Na2O or chromium carbide.
.. Addition of 5 to 10.0 wt% improves sinterability, makes the sintered structure finer and more uniform, and makes it easier to ensure high strength and toughness. If the added amount is less than 0.5 wt%, this effect will be extremely small, and if it exceeds 10.0 wt%, the high temperature strength will decrease.

(実施例) 実施例1 0量を0.6wt%に調整した5IJ4ウイスカを、溶
媒に添加し、超音波エネルギを30分間付与し、溶媒中
に均一に分散させ、スラリを得た。該スラリにAl2O
2粉末及び炭化物等、或いは更に焼結助剤を含む混合体
を添加し、両者を湿式ミルにより20時間攪拌・混合し
た後、スプレードライヤにより乾燥・造粒した。得られ
た混合粉末を、黒鉛型内に詰め込み、Ar気流中にて1
8508C,200Kg/cm2の条件でホットプレス
により30分間の一軸加圧焼結を行い、焼結体(即ちA
l20i基セラミツクス)を得た。このようにすると焼
結体中のウィスカはホットプレス面に平行に2次元に配
向させ得る。尚、S1!Naウイスカ及び炭化物等の添
加量、焼結助剤の種類及び添加量を第1表に示す如く変
化させた。51iN4ウイスカ含有量は15〜30wt
%である。
(Example) Example 1 5IJ4 whiskers whose amount was adjusted to 0.6 wt% were added to a solvent, and ultrasonic energy was applied for 30 minutes to uniformly disperse them in the solvent to obtain a slurry. Al2O is added to the slurry.
A mixture containing 2 powders and carbides, or a sintering aid was added, and both were stirred and mixed in a wet mill for 20 hours, and then dried and granulated in a spray dryer. The obtained mixed powder was packed into a graphite mold and heated for 1 hour in an Ar air flow.
Uniaxial pressure sintering was performed using a hot press for 30 minutes under the conditions of 8508C and 200Kg/cm2 to obtain a sintered body (i.e. A
120i-based ceramics) were obtained. In this way, the whiskers in the sintered body can be oriented two-dimensionally parallel to the hot press surface. Furthermore, S1! The amounts of Na whiskers and carbides added, as well as the type and amount of sintering aids, were varied as shown in Table 1. 51iN4 whisker content is 15-30wt
%.

上記焼結体から、ホットプレス面とチップのすくい面と
が平行になるように5.2 X13.5X13.5mm
のチップを切り出し、これをチップ研磨機により5NG
N 434 T−4の形状(ISO規格)に加工した。
5.2 x 13.5 x 13.5 mm from the above sintered body so that the hot press surface and the rake surface of the chip are parallel.
Cut out a chip and use a chip polisher to grind it into 5NG.
Processed into the shape of N434T-4 (ISO standard).

このチップの正面図を第1図に、側面図を第2図に示す
。これらの図において、(1)はすくい面、(2)は丸
コーナ部、(3)はホーニング部、(4)はホーニング
巾を示すものである。丸コーナ部(2)のコーナ半径は
1.6mm、ホーニング巾(4)は0.2mmである。
A front view of this chip is shown in FIG. 1, and a side view is shown in FIG. In these figures, (1) shows the rake face, (2) shows the round corner part, (3) shows the honing part, and (4) shows the honing width. The corner radius of the round corner portion (2) is 1.6 mm, and the honing width (4) is 0.2 mm.

このようにして得たチップは、本発明に係るチップの実
施例であり、本発明に係るチップの条件を全て充たして
いるものである。
The thus obtained chip is an example of the chip according to the present invention, and satisfies all the conditions for the chip according to the present invention.

上記チップをバイトに取りつけて工具とし、これらを用
いて下記切削試験を行った。即ち、高Mn鋼を被削材と
し、切削速度・60m/min 、切り込み量 5 m
m、送り量+ 0.25mm/revで切削試験し、欠
損までの時間を測定した。第1表に示す如く、欠損時間
は70〜1)0分てあった。
The above chips were attached to a cutting tool to make a tool, and the following cutting tests were conducted using these. That is, high Mn steel was used as the work material, the cutting speed was 60 m/min, and the depth of cut was 5 m.
A cutting test was conducted at m, feed amount + 0.25 mm/rev, and the time until breakage was measured. As shown in Table 1, the loss time was 70 to 1)0 minutes.

又、第1表に示す実験No、 3のチップについて、切
り込み量:5mm、切削時間:30分、切削速度・60
m/min以上、送り量: 0.25mm/rev以上
の条件で高Mn鋳鋼の切削試験をし、チップの欠損を生
しる事なく切削し得る切削速度の限界値及び送り量の限
界値を求めた。切削速度の限界値は、送り量(+、25
.0.355及び0.5mm/revに対し70.50
及び35m/min 、送り量の限界値は、切削速度:
60.70及び100m/min  に対し0.39.
0.355及び0.1mm/revてあった。
In addition, for the chip of experiment No. 3 shown in Table 1, depth of cut: 5 mm, cutting time: 30 minutes, cutting speed: 60
We conducted a cutting test on high Mn cast steel under the conditions of m/min or more, feed rate: 0.25 mm/rev or more, and determined the cutting speed limit and feed rate limit that can be cut without chipping. I asked for it. The cutting speed limit value is the feed rate (+, 25
.. 70.50 for 0.355 and 0.5mm/rev
and 35m/min, the limit value of the feed amount is the cutting speed:
60.70 and 0.39 for 100m/min.
0.355 and 0.1 mm/rev.

実施例2 実施例1の場合と同様のチップをフライスカッター(Φ
200.7枚歯)に取り付けて工具とし、高Mn鋼を被
削材として、切削速度: 80m/min 、切り込み
量:5mm、送り量: 0.25mm/1oothて切
削試験した。第1表に示す如く欠損時間は60〜1)0
分であった。
Example 2 The same tip as in Example 1 was used with a milling cutter (Φ
200.7 teeth) to use as a tool, high Mn steel was used as the work material, and a cutting test was conducted at a cutting speed of 80 m/min, depth of cut: 5 mm, and feed amount: 0.25 mm/1ooth. As shown in Table 1, the missing time is 60~1)0
It was a minute.

比較例1 一実施例1と同様の方法(操作、手順、条件)により、
焼結体を得た。このときのS!J4ウィスカ、炭化物等
の添加量を第2表に示す。尚、ウィスカ中00量は実施
例1と同様の0.6wt%である。
Comparative Example 1 By the same method (operation, procedure, conditions) as in Example 1,
A sintered body was obtained. S at this time! Table 2 shows the amounts of J4 whiskers, carbides, etc. added. Note that the amount of 00 in the whisker is 0.6 wt%, which is the same as in Example 1.

上記焼結体から、実施例1と同様の方法により、同様の
寸法のチップを切り出した。但し、実験No、 7のも
のは、実施例1の場合と異なり、ホットプレス面とチッ
プのすくい面とか直交するように切り出した。
Chips with similar dimensions were cut out from the sintered body by the same method as in Example 1. However, in Experiment No. 7, unlike in Example 1, the chips were cut so that the hot press surface and the rake surface of the chip were perpendicular to each other.

上記チップをバイトに取りつけて工具とし、実施例1と
同様の切削試験を行った。第2表に示す如く、欠損時間
は0.1〜20分であった。
The above-mentioned tip was attached to a cutting tool to make a tool, and the same cutting test as in Example 1 was conducted. As shown in Table 2, the loss time was 0.1 to 20 minutes.

比較例2 超硬チップを用いて、実施例1と同様の切削速度: 6
0m/min 、切り込み量:5mm、送り量:0.2
5第1表 第2表 (以下、余白) mm/revの条件で、高Mn鋳鋼の切削試験を行った
ところ、すぐにクレータ摩耗か生じ、切削不能になった
Comparative Example 2 Cutting speed similar to Example 1 using a carbide tip: 6
0m/min, depth of cut: 5mm, feed amount: 0.2
5 Table 1 Table 2 (hereinafter referred to as blank space) When a cutting test was conducted on high Mn cast steel under the conditions of mm/rev, crater wear immediately occurred and cutting became impossible.

又、切り込み量+5mm、切削時間:30分、切削速度
:10m/min以上、送り量: 0.2mm/rev
以上の条件て高Mn鋳鋼の切削試験を行い、切削速度及
び送り量の限界値を求めた。切削速度限界値は、送り量
、0.2及び0.35mm/revに対し20及び15
m/minであり、送り量限界値は、切削速度:10及
び15m/minに対し0.355及び0.350mm
/revであった。
Also, depth of cut +5mm, cutting time: 30 minutes, cutting speed: 10m/min or more, feed rate: 0.2mm/rev
A cutting test was conducted on high Mn cast steel under the above conditions, and the limit values of cutting speed and feed amount were determined. Cutting speed limit values are 20 and 15 for feed rate, 0.2 and 0.35 mm/rev.
m/min, and the feed rate limit values are 0.355 and 0.350 mm for cutting speeds of 10 and 15 m/min.
/rev.

以上の実施例及び比較例の結果は、本発明法は従来セラ
ミックスチップ法の場合に比し、高Mn鋼をチップ欠損
を生ずることなく高切り込み量、高速度で切削し得、高
能率切削か可能となる事を裏付けている。
The results of the above Examples and Comparative Examples show that the method of the present invention can cut high Mn steel at a high depth of cut and at high speed without chipping, compared to the conventional ceramic chip method, and achieves high cutting efficiency. It proves that it is possible.

(発明の効果) 本発明に係る高Mn鋼の高能率切削方法によれば、従来
セラミックスチップ法の場合に比し、高Mn鋼をチップ
欠損を生ずることなく高切り込み量、且つ、高速度で切
削し得るようになる。従って、従来超硬チップ法及び従
来セラミックスチップ法の場合に比して高Mn鋼を高能
率で切削し得るようになり、その結果高Mn鋼の切削加
工時間を短縮し得るようになる。
(Effect of the invention) According to the high-efficiency cutting method for high-Mn steel according to the present invention, compared to the conventional ceramic chip method, high-Mn steel can be cut at a high depth of cut and at a high speed without chipping. Becomes capable of cutting. Therefore, compared to the conventional carbide tip method and the conventional ceramic tip method, high Mn steel can be cut with high efficiency, and as a result, the machining time for high Mn steel can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1に係るスローアウェイチップの形状
を示す正面図、第2図は、実施例1に係るスローアウェ
イチップの形状を示す側面図である。 (1)−すくい面    (2)−丸コーナ部(3)−
ホーニング部  (4)−ホーニング巾特許出願人 株
式会社 神戸製鋼折 代 理 人  弁理士 金丸 章− 第1図 第2図
FIG. 1 is a front view showing the shape of the indexable tip according to the first embodiment, and FIG. 2 is a side view showing the shape of the indexable tip according to the first embodiment. (1) - Rake face (2) - Round corner (3) -
Honing section (4) - Honing width patent applicant Kobe Steel Oriya Co., Ltd. Attorney Akira Kanamaru - Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)高マンガン鋼を高速,高切り込み量の高能率でス
ローアウェイチップにより切削する方法であって、スロ
ーアウェイチップが、Si_3N_4ウイスカ:3〜4
0wt%を含み、且つSi,Ti,V,Cr,Zr,N
b,Mo,Hf,Ta,Wの炭化物、窒化物、炭窒化物
の1種又は2種以上を0.5〜40wt%含むと共に、
前記ウイスカをチップのすくい面に略平行に配向させた
Al_2O_3基セラミックスよりなることを特徴とす
る高マンガン鋼の高能率切削方法。
(1) A method for cutting high manganese steel at high speed and with high efficiency with a large depth of cut, the indexable tip has Si_3N_4 whiskers: 3 to 4
Contains 0wt% and contains Si, Ti, V, Cr, Zr, N
Containing 0.5 to 40 wt% of one or more of carbides, nitrides, and carbonitrides of b, Mo, Hf, Ta, and W,
A highly efficient cutting method for high manganese steel, characterized in that the whiskers are made of Al_2O_3-based ceramics in which the whiskers are oriented substantially parallel to the rake face of the chip.
(2)前記ウイスカがO量:0.3〜1.5wt%であ
る請求項1に記載の高マンガン鋼の高能率切削方法。
(2) The high-efficiency cutting method for high manganese steel according to claim 1, wherein the whisker has an O content of 0.3 to 1.5 wt%.
(3)前記炭化物、窒化物、炭窒化物の1種又は2種以
上の一部が、Al_2O_3結晶粒内にナノオーダで分
散してナノコンポジット構造を呈している請求項1又は
請求項2に記載の高マンガン鋼の高能率切削方法。
(3) A portion of one or more of the carbides, nitrides, and carbonitrides is dispersed in the nano-order within the Al_2O_3 crystal grains to form a nanocomposite structure. High-efficiency cutting method for high-manganese steel.
(4)前記Al_2O_3基セラミックスが、焼結助剤
としてのMgO,ZrO_2,TiO_2,Y_2O_
3,希土類酸化物,CrO_2,NiO,SiO_2,
CaO,Na_2O又は炭化クロムの1種または2種以
上を0.5〜10.0wt%含有する請求項1、請求項
2又は請求項3に記載の高マンガン鋼の高能率切削方法
(4) The Al_2O_3-based ceramic contains MgO, ZrO_2, TiO_2, Y_2O_ as a sintering aid.
3, rare earth oxide, CrO_2, NiO, SiO_2,
The high-efficiency cutting method for high manganese steel according to claim 1, claim 2, or claim 3, containing 0.5 to 10.0 wt% of one or more of CaO, Na_2O, or chromium carbide.
JP2278587A 1990-10-17 1990-10-17 High efficiency cutting method for high manganese steel Expired - Lifetime JPH07115246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2278587A JPH07115246B2 (en) 1990-10-17 1990-10-17 High efficiency cutting method for high manganese steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278587A JPH07115246B2 (en) 1990-10-17 1990-10-17 High efficiency cutting method for high manganese steel

Publications (2)

Publication Number Publication Date
JPH04159003A true JPH04159003A (en) 1992-06-02
JPH07115246B2 JPH07115246B2 (en) 1995-12-13

Family

ID=17599342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278587A Expired - Lifetime JPH07115246B2 (en) 1990-10-17 1990-10-17 High efficiency cutting method for high manganese steel

Country Status (1)

Country Link
JP (1) JPH07115246B2 (en)

Also Published As

Publication number Publication date
JPH07115246B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US5123935A (en) Al2 o3 composites, process for producing them and throw-away tip made of al2 o3 composites
US7485278B2 (en) Method for making silicon carbide whiskers
JP2709732B2 (en) Silicon carbide whisker-alumina composition coated with alumina
AU673546B2 (en) High Z sialon refractory inserts and cutting tools
KR100284058B1 (en) Whisker reinforced ceramic cutting tool and composition thereof
JP2008036815A (en) Ceramic cutting insert of polycrystalline tungsten carbide
US5059564A (en) Alumina-titanium carbide-silicon carbide composition
JPH04159003A (en) Highly efficient cutting method for austenitic high manganese steel
JP3043028B2 (en) Milling cutter
JPH04159004A (en) Cutting method for cast iron
JP2879942B2 (en) High efficiency cutting method for high manganese steel
JP2879943B2 (en) Cast iron cutting method
JP2895163B2 (en) Cutting tools
JP3088731B2 (en) Milling cutter
JPH04159011A (en) Milling cutter
JPH1110409A (en) Ceramics cutting tool and manufacture thereof
JP2879931B2 (en) High efficiency cutting method for cast iron
JPH04159005A (en) Cutting tool
JPS6389471A (en) Ceramic material for cutting tool
JP2003171172A (en) Alumina sintered compact, blade edge exchange-type chip and cutting tool
JPH04304903A (en) Ceramic cutting tool
JPH04315507A (en) Ceramic cutting tool and manufacture thereof
JPH0328158A (en) Fiber-reinforced ceramic
JPH0663811A (en) Ceramic end mill and manufacture thereof, and machining method using it
JPH0328159A (en) Fiber-reinforced ceramic