JPH04158322A - Automatic focus adjusting device - Google Patents

Automatic focus adjusting device

Info

Publication number
JPH04158322A
JPH04158322A JP2283547A JP28354790A JPH04158322A JP H04158322 A JPH04158322 A JP H04158322A JP 2283547 A JP2283547 A JP 2283547A JP 28354790 A JP28354790 A JP 28354790A JP H04158322 A JPH04158322 A JP H04158322A
Authority
JP
Japan
Prior art keywords
focus
section
focus area
signal
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2283547A
Other languages
Japanese (ja)
Inventor
Hiroshi Takemoto
浩 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2283547A priority Critical patent/JPH04158322A/en
Publication of JPH04158322A publication Critical patent/JPH04158322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To improve the precision of the automatic tracking function by extracting the intensity distribution of each block in a focus area as the feature quantity of a photographed object, detecting the movement of the feature quantity between frames, and changing the focus area. CONSTITUTION:The image signal outputted from an image pickup section 1 is converted into a digital signal and stored in a frame memory 3, and it is further compressed and coded by a signal process section 4 and recorded by a record section 5 as the image data. The output of the process section 4 is fed to a DCT section 6, and the DCT coefficient obtained here is fed to an arithmetic section 7. The arithmetic section 7 notices a specific coefficient in the DCT coefficient and outputs the control signal corresponding to the change of the coefficient indicating the intensity. A focus control section 8 receives the control signal and drives a motor in the image pickup section 1 to move the position of a lens. The position of the lens is adjusted, and the position where the specific coefficient becomes the maximum value is judged as the focused position. An automatic focus adjusting device with the automatic tracking function to precisely follow a moving object to be photographed is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はビデオカメラやスチルカメラ等の映像信号中
に含まれる周波数成分からレンズの合焦位置を検出し、
カメラの焦点調整を自動的に行う自動焦点調整装置に関
し、特にカメラに対して相対的に移動する被写体を自動
的に追尾して焦点調整を行う自動追尾機能を有する自動
焦点調整装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention detects the focal position of a lens from frequency components contained in a video signal from a video camera, still camera, etc.
The present invention relates to an automatic focus adjustment device that automatically adjusts the focus of a camera, and particularly relates to an automatic focus adjustment device that has an automatic tracking function that automatically tracks and adjusts the focus of a subject moving relative to the camera.

〔従来の技術〕[Conventional technology]

カメラの自動焦点調整装置としては、撮像部から得られ
る映像信号の中から特定の高周波成分を抽出し、この高
周波成分の振幅値が最大となるようにレンズの位置を移
動させて焦点調整を行う装置が知られている(例えば、
rNHK技術研究」第17巻、第1号、r山登りサーボ
方式によるテレビカメラの自動焦点調整装置j)。
The camera's automatic focus adjustment device extracts a specific high-frequency component from the video signal obtained from the imaging unit, and adjusts the focus by moving the lens position so that the amplitude value of this high-frequency component is maximized. The device is known (e.g.
``NHK Technical Research'' Volume 17, No. 1, ``Automatic focus adjustment device for television cameras using mountain-climbing servo method'').

この装置はレンズ系を一種の低域通過フィルタと考え、
焦点調整によって一定距離の被写体に対する等価帯域幅
が変化することに着目し、遮断周波数付近の映像信号の
高周波成分の振幅変化を検出することによって画面の精
細度を検知し、レンズの合焦位置を求めるものである。
This device considers the lens system as a kind of low-pass filter,
Focusing on the fact that the equivalent bandwidth for a subject at a certain distance changes when the focus is adjusted, the definition of the screen is detected by detecting the amplitude change of the high frequency component of the video signal near the cutoff frequency, and the focus position of the lens is determined. It is something to seek.

この場合、遮断周波数付近の高周波成分の振幅値は、最
良結像位置で最大となり、焦点がその前後にずれるにし
たがって低下する山型特性となっている。具体的には、
画像を水平方向に走査して得られる映像信号から特定の
高周波成分(例えば、IMH2)の信号を帯域通過フィ
ルタによって取り出し、この高周波成分の振幅値が最大
となるようにレンズの位置を調整して焦点位置を合わせ
ている。しかし、この装置はフォーカスエリアが撮影画
面の中央に固定されているため、焦点を合わせたい被写
体が移動してしまうと他の被写体に焦点が合ってしまい
、目標とする被写体はボケでしまうという不都合がある
In this case, the amplitude value of the high frequency component near the cutoff frequency has a mountain-shaped characteristic that is maximum at the best imaging position and decreases as the focal point shifts back and forth. in particular,
A signal of a specific high frequency component (for example, IMH2) is extracted from the video signal obtained by scanning the image in the horizontal direction using a band pass filter, and the position of the lens is adjusted so that the amplitude value of this high frequency component is maximized. The focus is adjusted. However, with this device, the focus area is fixed at the center of the shooting screen, so if the subject you want to focus on moves, other subjects will come into focus, leaving the target subject out of focus. There is.

そこで、被写体の移動に合わせて合焦位置を自動的に追
尾する装置として、例えば、特開昭60−254107
号(名称; 「カメラにおける自動追尾装置」)が提案
されている。この装置は被追尾被写体の特定の追尾視野
内の色差信号の変化を検出して被追尾被写体の移動の有
無および移動方向を検知し、被追尾被写体の移動に追従
してフォーカスエリアを移動させ、この移動した位置で
前述した山登りサーボ方式のような公知の手段による焦
点検出または焦点調整を行うものである。
Therefore, as a device that automatically tracks the focus position according to the movement of the subject, for example, Japanese Patent Laid-Open No. 60-254107
(name: ``Automatic tracking device for cameras'') has been proposed. This device detects changes in color difference signals within a specific tracking field of the tracked subject, detects the presence or absence of movement of the tracked subject and the direction of movement, moves the focus area to follow the movement of the tracked subject, At this moved position, focus detection or focus adjustment is performed using known means such as the aforementioned hill-climbing servo system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前述の従来例では、被追尾被写体の色差信号
からその移動を認識しているため、目標とする被写体の
色と背景の色とが近位している場合には、被追尾被写体
の移動が検知できないという不都合がある。これは色の
持つ情報の曖昧さのために被写体を特定する精度が上が
らないことに起因する。
However, in the conventional example described above, the movement of the tracked subject is recognized from the color difference signal, so if the color of the target subject is close to the background color, the movement of the tracked subject is recognized. The disadvantage is that it cannot be detected. This is because the accuracy of identifying the subject cannot be improved due to the ambiguity of color information.

この発明は被写体の移動の認識を精度よく実現すること
の出来る自動追尾機能を有する自動焦点調整装置を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic focus adjustment device having an automatic tracking function that can accurately recognize the movement of a subject.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による自動焦点調整装置は、撮像面に結像され
る被写体像を、ディジタル画像信号に変換し、このディ
ジタル画像信号からフォーカスエリア内における輝度の
分布の平均値を求め、この平均値の移動から被写体像の
移動を検知してフォーカスエリアを移動させ、この移動
させたフォーカスエリア内で被写体像の合焦位1を検出
するように構成する。
The automatic focus adjustment device according to the present invention converts the subject image formed on the imaging surface into a digital image signal, calculates the average value of the luminance distribution within the focus area from this digital image signal, and moves this average value. The camera is configured to detect the movement of the subject image, move the focus area, and detect the in-focus position 1 of the subject image within the moved focus area.

〔作 用〕[For production]

この発明の構成において、撮像面に結像される被写体像
のフォーカスエリア内における輝度の分布を検出し、こ
の輝度の分布の平均値(重心)を当該被写体の特徴量と
する。そして、あるフレームにおける特徴量とその1フ
レーム後の特徴量とを比較して被写体の移動を検知する
。次いで、この移動に追従してフォーカスエリアを移動
させ、この新たなフォーカスエリア内において被写体の
合焦位置を検出する。こうすることにより、移動する被
写体を精度よく認識して追尾し、合焦し続けることがで
きる。
In the configuration of the present invention, the luminance distribution within the focus area of the subject image formed on the imaging plane is detected, and the average value (center of gravity) of this luminance distribution is taken as the feature amount of the subject. Then, the movement of the subject is detected by comparing the feature amount in a certain frame with the feature amount one frame later. Next, the focus area is moved following this movement, and the in-focus position of the subject is detected within this new focus area. By doing this, it is possible to accurately recognize and track a moving subject and keep it in focus.

〔実施例〕 第1図はこの発明による自動焦点調整装置の一実施例を
示す構成図である。
[Embodiment] FIG. 1 is a block diagram showing an embodiment of an automatic focus adjustment device according to the present invention.

この装置はレンズを通して結像される被写体像を電気信
号に変換するCCD等の固体撮像素子からなる撮像部1
を備え、この撮像部1から出力される映像信号はAD変
換部2でディジタル信号に変換され、フレームメモリ3
に一時的に記憶される。フレームメモリ3に記憶された
ディジタル信号は信号処理部4で圧縮符号化され、記録
部5にディジタル画像データとして記録される。また、
信号処理部4の出力はDCT部6に供給される。
This device consists of an imaging unit 1 consisting of a solid-state imaging device such as a CCD that converts a subject image formed through a lens into an electrical signal.
The video signal outputted from the imaging section 1 is converted into a digital signal by the AD conversion section 2, and then stored in the frame memory 3.
is temporarily stored. The digital signal stored in the frame memory 3 is compressed and encoded by the signal processing section 4, and recorded in the recording section 5 as digital image data. Also,
The output of the signal processing section 4 is supplied to the DCT section 6.

DCT部6は、第2図に示すフォーカスエリアFE内の
画像データを、1ブロックn×n画素、例えば、8×8
画素からなる複数ブロックに分割し、各ブロック毎に2
次元離散コサイン変換(DCT : Discrete
 Co51ne Transfory+ )を施す。D
CTは周波数領域における直交変換の一種で、得られる
nXn個のDCT係数FuV (u+V=0+1+・・
’+n−1)は、1ブロツクの画像データをfij(i
、j=0.1.・・・、 n−1)とすると、但し、C
−=1ム(2(w=0) =1   (W≠0) で定義される。DCT係数Fuvの各々は1ブロツクの
画像データを空間周波数に分解した成分を表しており、
係数FOOは画像データfijの平均値に比例した値(
直流成分)を表し、変数u、vが大きくなるにつれて周
波数の高い成分(交流成分)を表す。第3図にDCT係
数Fuvの8×8個のマトリクスを示す。図中、左上の
係数FOOは画像中に含まれる直流成分の大きさを表し
、それより下の係数は縦波の高周波成分の大きさを表し
、それより右の係数は横波の高周波成分の大きさを表し
ている。従って、DCT係数Fuvを観察すれば、当該
ブロック中の画像に含まれる縦波、横波およびその合成
波の大きさを同時に検知することができる。
The DCT unit 6 converts the image data in the focus area FE shown in FIG. 2 into one block of n×n pixels, for example, 8×8
Divide into multiple blocks consisting of pixels, and 2 blocks for each block.
Dimensional Discrete Cosine Transform (DCT)
Co51ne Transformation+) is applied. D
CT is a type of orthogonal transformation in the frequency domain, and the resulting nXn DCT coefficients FuV (u+V=0+1+...
'+n-1) is one block of image data fij(i
, j=0.1. ..., n-1), however, C
-=1 frame (2(w=0) =1 (W≠0). Each DCT coefficient Fuv represents a component obtained by decomposing one block of image data into spatial frequencies,
The coefficient FOO is a value proportional to the average value of image data fij (
The higher the variables u and v become, the higher the frequency component (alternating current component) is. FIG. 3 shows an 8×8 matrix of DCT coefficients Fuv. In the figure, the coefficient FOO at the top left represents the magnitude of the DC component included in the image, the coefficients below it represent the magnitude of the high frequency component of longitudinal waves, and the coefficients to the right represent the magnitude of the high frequency component of transverse waves. It represents. Therefore, by observing the DCT coefficient Fuv, it is possible to simultaneously detect the magnitudes of longitudinal waves, transverse waves, and their composite waves included in the image in the block.

DCT部6で得られたDCT係数は演算部7に供給され
る。演算部7では、DCT係数の中の特定の係数に着目
し、その係数の変化分に応じた制御信号を出力する。フ
ォーカス制御部8はこの制御信号を受けて撮像部1内の
モータを駆動し、レンズの位置を移動させる。こうして
撮像部1.AD変換部2.フレームメモリ3.信号処理
部4゜DCT部6.演算部7.フォーカス制御部8によ
って形成される閉ループによってレンズの位置を調整し
、特定の係数が最大値となる位置を合焦位置と判定する
。また、演算部7は、こうして検出した特定の係数の最
大値を記憶しておき、入力される特定の係数が一定値以
上変化した場合は、被写体の内容が変化したと判定して
、改めて合焦動作をやり直す。
The DCT coefficients obtained by the DCT section 6 are supplied to the calculation section 7. The arithmetic unit 7 focuses on a specific coefficient among the DCT coefficients and outputs a control signal according to the amount of change in that coefficient. The focus control section 8 receives this control signal and drives the motor within the imaging section 1 to move the position of the lens. In this way, the imaging section 1. AD conversion section 2. Frame memory 3. Signal processing section 4゜DCT section 6. Arithmetic unit 7. The position of the lens is adjusted by a closed loop formed by the focus control unit 8, and the position where a specific coefficient has the maximum value is determined to be the in-focus position. In addition, the calculation unit 7 stores the maximum value of the specific coefficient detected in this way, and if the input specific coefficient changes by more than a certain value, it determines that the content of the subject has changed and performs the calculation again. Redo the focusing action.

次に、演算部7における被写体の移動量および移動方向
の検出動作について説明する。
Next, the operation of detecting the moving amount and moving direction of the subject in the calculation unit 7 will be explained.

前述したように、2次元DCT係数Fuνは、各ブロッ
ク毎の周波数分布を表しており、第3図における左上の
斜線部の係数FOOは、当該ブロックの直流成分、すな
わち輝度の平均値を表している。
As mentioned above, the two-dimensional DCT coefficient Fuν represents the frequency distribution for each block, and the coefficient FOO in the upper left shaded area in FIG. 3 represents the DC component of the block, that is, the average value of luminance. There is.

従って、フォーカスエリアFE内の各ブロックの輝度の
平均値の分布を、被写体の特徴量と見ることができる。
Therefore, the distribution of the average value of luminance of each block within the focus area FE can be viewed as the feature amount of the subject.

この特徴量は被写体の形状およびフォーカスエリアFE
内に占める位置等によって変化するので、前後2フレー
ムで同じ被写体が写っているとすれば、その分布の違い
から被写体の動きを検出できる。
This feature value is based on the shape of the subject and the focus area FE.
It changes depending on the position occupied within the image, so if the same subject is captured in two frames before and after, the movement of the subject can be detected from the difference in the distribution.

第4図に、演算部7における被写体の動き検出の概念図
を示す、同図において、被写体Aはあるフレームにおけ
るフォーカスエリアEF内の各ブロックの直流成分の分
布を表しており、被写体Bは同じ画像に対する1フレー
ム後のフォーカスエリアEF内の各ブロックの直流成分
(輝度)の分布を表している。実際には、フォーカスエ
リアFE内には追尾する被写体以外の背景が写っている
が、これは変化しないため、以後の処理では相殺される
(第4図の斜線部分)。まず、被写体Aが写っていると
きのフォーカスエリアFHの全ブロックの直流成分の重
心Gを求め、このフレームの特徴音とする。次いで、同
様にして次フレームの直流成分の重心Hを求める。実際
には、重心Gは斜線部も全て含めた重心として求めるが
、次フレームの重心Hを求めるときにも全く同様に含ま
れているので無視してよい。従って、重心Gが重心Hに
移動する量と方間がこのエリア内の特徴音の1フレ一ム
間での移動ベクトルであると考えられる。この移動ベク
トルに基づいて視野内でのフォーカスエリアを移動すれ
ば、追尾する被写体に追従することができる。
FIG. 4 shows a conceptual diagram of subject motion detection in the calculation unit 7. In the figure, subject A represents the distribution of DC components of each block within the focus area EF in a certain frame, and subject B is the same. It represents the distribution of DC components (luminance) of each block within the focus area EF one frame after the image. In reality, the background other than the object to be tracked is captured within the focus area FE, but this does not change and is therefore canceled out in subsequent processing (the shaded area in FIG. 4). First, the center of gravity G of the DC component of all blocks in the focus area FH when the subject A is photographed is determined, and is taken as the characteristic sound of this frame. Next, the center of gravity H of the DC component of the next frame is found in the same manner. Actually, the center of gravity G is calculated as the center of gravity including all the hatched areas, but since the center of gravity G is included in the same way when calculating the center of gravity H of the next frame, it can be ignored. Therefore, the amount and direction by which the center of gravity G moves toward the center of gravity H is considered to be the movement vector between one frame of the characteristic sound in this area. By moving the focus area within the field of view based on this movement vector, it is possible to follow the subject to be tracked.

フォーカス制御部8では、演算部7からのこれらの情報
に基づいてフォーカスエリアFEを変更し、合焦動作を
やり直す。このようにすれば、被写体を自動的に追尾し
ながら合焦し続けることができる。
The focus control section 8 changes the focus area FE based on this information from the calculation section 7, and redoes the focusing operation. In this way, it is possible to maintain focus while automatically tracking the subject.

〔発明の効果] この発明によれば、フォーカスエリア内の各ブロックの
輝度の分布を被写体の特徴音として抽出し、この特徴音
のフレーム間の移動を検知してフォーカスエリアを変更
させるようにしたので、移動する被写体に対して精度よ
く追従する自動追尾機能を有する自動焦点調整装置を提
供することができる。
[Effects of the Invention] According to the present invention, the luminance distribution of each block within the focus area is extracted as the characteristic sound of the subject, and the movement of this characteristic sound between frames is detected to change the focus area. Therefore, it is possible to provide an automatic focus adjustment device having an automatic tracking function that accurately follows a moving subject.

これにより撮影者は被写体を常にフォーカスエリア内に
捕らえ続ける煩わしさから開放され、カメラの操作性の
向上が図れる。また、近年では、動きを検出して追従す
るシステムが様々な産業分野、例えば、顕微鏡2種々の
ロボットの目Φ部分等で必要とされており、これらのシ
ステムにも応用することができる。
This relieves the photographer from the trouble of keeping the subject always within the focus area, and improves the operability of the camera. Furthermore, in recent years, systems that detect and follow movements have been required in various industrial fields, for example, in the eye Φ parts of microscopes and various robots, and the present invention can be applied to these systems as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による自動焦点調整装置の一実施例を
示す構成図、 第2図はフォーカスエリア内のブロック分割を示す図、 第3図は2次元DCT係数のマトリクスを示す図、 第4図は被写体の動き検出の概念図である。 1・・・撮像部、2・・・AD変換部、3・・・フレー
ムメモリ、4・・・信号処理部、5・・・記録部、6・
・・DCT部、7・・・演算部、8・・・フォーカス制
御部。
FIG. 1 is a block diagram showing an embodiment of an automatic focus adjustment device according to the present invention, FIG. 2 is a diagram showing block division within a focus area, FIG. 3 is a diagram showing a matrix of two-dimensional DCT coefficients, and FIG. The figure is a conceptual diagram of subject motion detection. DESCRIPTION OF SYMBOLS 1... Imaging unit, 2... AD conversion unit, 3... Frame memory, 4... Signal processing unit, 5... Recording unit, 6...
...DCT section, 7... Calculation section, 8... Focus control section.

Claims (3)

【特許請求の範囲】[Claims] (1)撮像面に結像される被写体像を、ディジタル画像
信号に変換し、このディジタル画像信号からフォーカス
エリア内における輝度の分布の平均値を求め、上記平均
値の移動から上記被写体像の移動を検知して上記フォー
カスエリアを移動させ、上記移動させたフォーカスエリ
ア内で上記被写体像の合焦位置を検出することを特徴と
する自動焦点調整装置。
(1) Convert the subject image formed on the imaging surface into a digital image signal, calculate the average value of the luminance distribution within the focus area from this digital image signal, and calculate the movement of the subject image based on the movement of the average value. An automatic focus adjustment device characterized in that the focus area is moved by detecting the focus area, and the in-focus position of the subject image is detected within the moved focus area.
(2)撮像素子の撮像面にレンズを通して結像される被
写体像を電気信号に変換する撮像手段と、この変換した
電気信号をディジタル画像信号に変換するAD変換手段
と、 上記ディジタル画像信号のうちフォーカスエリア内にあ
る画像信号を、複数n×n画素からなる複数ブロックに
分割し、各ブロック毎に周波数領域における2次元直交
変換を施して複数n×n個の変換係数を得る直交変換手
段と、上記変換係数の中の特定の第1の変換係数から上
記レンズの合焦位置を検出し、上記フォーカスエリア内
にある各ブロックの特定の第2の変換係数の分布から輝
度信号の分布を検出し、この輝度信号の分布の変化から
上記被写体の移動量および移動方向を検出する演算手段
と、上記演算手段からの検出信号に基づいて上記レンズ
の位置および上記フォーカスエリアを移動させるフォー
カス制御手段とを備えることを特徴とする自動焦点調整
装置。
(2) an imaging device that converts a subject image formed through a lens on the imaging surface of an imaging device into an electrical signal; and an AD conversion device that converts the converted electrical signal into a digital image signal; orthogonal transformation means for dividing an image signal within a focus area into a plurality of blocks each consisting of a plurality of n×n pixels, and performing two-dimensional orthogonal transformation in the frequency domain for each block to obtain a plurality of n×n transform coefficients; , detecting the focal position of the lens from a specific first transform coefficient among the transform coefficients, and detecting the distribution of the luminance signal from the distribution of the specific second transform coefficient of each block within the focus area. and a calculation means for detecting the amount and direction of movement of the subject from changes in the distribution of the luminance signal, and a focus control means for moving the position of the lens and the focus area based on the detection signal from the calculation means. An automatic focus adjustment device comprising:
(3)前記演算手段における輝度信号の分布の検出は、
上記フォーカスエリア内の各ブロックの特定の第2の変
換係数の分布の重心を求めることによって行うことを特
徴とする請求項2記載の自動焦点調整装置。
(3) Detection of the distribution of the luminance signal in the calculation means:
3. The automatic focus adjustment device according to claim 2, wherein the automatic focus adjustment is performed by determining the center of gravity of the distribution of the specific second transformation coefficient of each block within the focus area.
JP2283547A 1990-10-23 1990-10-23 Automatic focus adjusting device Pending JPH04158322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283547A JPH04158322A (en) 1990-10-23 1990-10-23 Automatic focus adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283547A JPH04158322A (en) 1990-10-23 1990-10-23 Automatic focus adjusting device

Publications (1)

Publication Number Publication Date
JPH04158322A true JPH04158322A (en) 1992-06-01

Family

ID=17666941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283547A Pending JPH04158322A (en) 1990-10-23 1990-10-23 Automatic focus adjusting device

Country Status (1)

Country Link
JP (1) JPH04158322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404013A (en) * 1993-02-25 1995-04-04 Fujitsu Limited Infrared imaging system having an automatic focusing control
WO2006082967A1 (en) * 2005-02-07 2006-08-10 Matsushita Electric Industrial Co., Ltd. Imaging device
WO2012096395A1 (en) 2011-01-13 2012-07-19 Ricoh Company, Limited Image capturing device and image capturing method
US8724981B2 (en) 2010-06-15 2014-05-13 Ricoh Company, Limited Imaging apparatus, focus position detecting method, and computer program product
CN111133356A (en) * 2017-09-20 2020-05-08 富士胶片株式会社 Image pickup apparatus, image pickup apparatus main body, and focus control method for image pickup apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404013A (en) * 1993-02-25 1995-04-04 Fujitsu Limited Infrared imaging system having an automatic focusing control
WO2006082967A1 (en) * 2005-02-07 2006-08-10 Matsushita Electric Industrial Co., Ltd. Imaging device
US7769285B2 (en) 2005-02-07 2010-08-03 Panasonic Corporation Imaging device
US8724981B2 (en) 2010-06-15 2014-05-13 Ricoh Company, Limited Imaging apparatus, focus position detecting method, and computer program product
WO2012096395A1 (en) 2011-01-13 2012-07-19 Ricoh Company, Limited Image capturing device and image capturing method
US9106837B2 (en) 2011-01-13 2015-08-11 Ricoh Company, Limited Image capturing device and image capturing method
CN111133356A (en) * 2017-09-20 2020-05-08 富士胶片株式会社 Image pickup apparatus, image pickup apparatus main body, and focus control method for image pickup apparatus

Similar Documents

Publication Publication Date Title
US5877809A (en) Method of automatic object detection in image
JP4823179B2 (en) Imaging apparatus and imaging control method
CN105190688B (en) Method and apparatus for checking image
JP3733392B2 (en) Image composition change detection method
US6198505B1 (en) High resolution, high speed digital camera
JP4641494B2 (en) Optical equipment
JP3732665B2 (en) Automatic focus control device and focusing operation determination method thereof
JPH0580248A (en) Automatic focusing device
JP2006196965A (en) Optical apparatus
JP4866557B2 (en) Video signal processing apparatus, imaging apparatus equipped with the video signal processing apparatus, video signal processing method, and video signal processing program
Sun et al. Panoramic video capturing and compressed domain virtual camera control
JP2957800B2 (en) Automatic focusing device
JP3404803B2 (en) Moving image recording medium, still image extracting device, moving image recording device, and still image automatic extracting method
JP4434345B2 (en) Automatic focusing apparatus and method
JPH04158322A (en) Automatic focus adjusting device
JPH06268894A (en) Automatic image pickup device
US6115067A (en) Apparatus for maintaining object image size during zooming
JP3122099B2 (en) Image synthesizing apparatus and image synthesizing method
JP3525493B2 (en) Still image extraction device, moving image recording device, and still image automatic extraction method
JP2603212B2 (en) Automatic tracking device in camera
JPH04158321A (en) Automatic focus adjusting device
JP3116422B2 (en) Camera control device
JP2010250345A (en) Optical apparatus
JP6071173B2 (en) Imaging apparatus, control method thereof, and program
JPH04293368A (en) Electronic image pickup device