JPH04158200A - Fissure control exploding method - Google Patents
Fissure control exploding methodInfo
- Publication number
- JPH04158200A JPH04158200A JP28518390A JP28518390A JPH04158200A JP H04158200 A JPH04158200 A JP H04158200A JP 28518390 A JP28518390 A JP 28518390A JP 28518390 A JP28518390 A JP 28518390A JP H04158200 A JPH04158200 A JP H04158200A
- Authority
- JP
- Japan
- Prior art keywords
- wedge
- cavity
- holder
- wave
- fissure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 20
- 230000035939 shock Effects 0.000 claims abstract description 15
- 238000004880 explosion Methods 0.000 claims abstract description 11
- 238000005422 blasting Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 abstract 3
- 230000000644 propagated effect Effects 0.000 abstract 2
- 230000002452 interceptive effect Effects 0.000 abstract 1
- 238000005728 strengthening Methods 0.000 abstract 1
- 239000002360 explosive Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229920003319 Araldite® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、NATM工法を適用した地下空洞開発やコン
クリート構造物の解体において必要となるき裂の方向制
御が可能な爆破工法に係わるものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a blasting method that is capable of controlling the direction of cracks, which is necessary in the development of underground cavities and the demolition of concrete structures using the NATM construction method. be.
NATM工法を適用したトンネル掘削において効率的な
制御爆破工法の必要性が従来から指摘されてきたが、近
年のジオフロント計画などに見らように地下空洞開発の
具体化に伴ってその要求は一層太き(なっている。これ
らの施工においては爆破による地山の損傷防止と余堀を
少なくし、平滑な仕上げ面を得ることなどが要求される
。The need for efficient controlled blasting methods in tunnel excavation using the NATM method has long been pointed out, but as underground cavity development becomes more concrete, as seen in the recent Geofront project, this demand has become even more important. In these construction projects, it is necessary to prevent damage to the ground due to blasting, to minimize over-excavation, and to obtain a smooth finished surface.
また、制御爆破工法は建築物の解体工法としても適用さ
れ、わが国でもミニプラスティング工法の有効性が注目
されている。これは生薬量の爆薬を使用して一部分を破
砕する解体工法である。この場合にも残すべき構造物へ
の損傷を防止するとともに周囲環境への問題から振動、
騒音の防止が必要となる。The controlled blasting method is also used as a method for demolition of buildings, and the effectiveness of the mini-plasting method is attracting attention in Japan as well. This is a demolition method that uses crude drug quantities of explosives to crush parts of the site. In this case, as well as preventing damage to the structures that should be preserved, vibrations and
Noise prevention is required.
この様な背景のもとで、爆破によるき裂の方向制御を目
的とした従来の技術としては、ウオタージェットを使用
して爆破孔壁に切り欠きを入れて応力集中効果を生じさ
せる方法(飯星茂、用上純、五十嵐孝文、中尾健二、
工業火薬協会誌、 Vol。Against this background, the conventional technology aimed at controlling the direction of cracks caused by blasting is a method in which a water jet is used to create a notch in the blast hole wall to create a stress concentration effect ( Shigeru Iiboshi, Jun Yogami, Takafumi Igarashi, Kenji Nakao,
Industrial Explosives Association Journal, Vol.
48、No、 6.1987、pp、 369−377
)や、管状のスリーブにスリットを入れて応力集中効果
を生じさせる方法(11,L、Fourney、 J、
f、Dally、D、C,Bollowayjnt。48, No. 6.1987, pp. 369-377
) and the method of creating a stress concentration effect by making slits in a tubular sleeve (11, L, Fourney, J.
f, Dally, D, C, Bollowayjnt.
J、 Rock MechoMin、 Sci、 a
nd Geomech、^bstr。J, Rock MechoMin, Sci, a
nd Geomech, ^bstr.
Vol、15.1978. pp、121−129.勝
山邦久、清用博、佐々宏−1採鉱ト保安、Vol、29
. No、4.1983.pp。Vol, 15.1978. pp, 121-129. Kunihisa Katsuyama, Hiroshi Kiyoyo, Hiroshi Sasa-1 Mining Safety, Vol. 29
.. No. 4.1983. pp.
16−23) 、 半円状の反射板を使用した方向性
水圧発破(橋本環、高木薫、土木学会誌、1979年9
月琴、pp、 57−66)などがある。16-23), Directional hydraulic blasting using a semicircular reflector (Tan Hashimoto, Kaoru Takagi, Journal of the Japan Society of Civil Engineers, 1979.9)
Gekkin, pp. 57-66).
これらの従来の方法では施工上の煩雑さや爆破装置の複
雑さなどにおいて問題がある。本発明は従来技術の問題
点をふまえ、簡単で高精度、効果的なき裂制御燭破工法
を確立するための新しい着想を加えたものである。即ち
、静的作用としての応用力集中効果だけでな(、動的作
用としての爆発衝撃波の集中効果を生じさせるくさび形
空洞を有する装薬ホルダーを使用してき裂の方向制御を
可能にする爆破工法を確立した。These conventional methods have problems such as the complexity of construction and the complexity of the blasting equipment. The present invention takes into account the problems of the prior art and adds a new idea to establish a simple, highly accurate, and effective crack control candle breaking method. That is, a blasting method that enables direction control of cracks by using a charge holder with a wedge-shaped cavity that produces not only the applied force concentration effect as a static action (but also the concentration effect of the explosion shock wave as a dynamic action). established.
〔課題を解決するための手段〕
本発明の概要を実施例を示す添付図面を参照して説明す
ると次の通りである。[Means for Solving the Problems] An overview of the present invention will be described below with reference to the accompanying drawings showing embodiments.
爆発衝撃波の集中効果を作り出すくさび形空洞1を有す
る装薬ホルダー2を使用したことを特徴とするき裂制御
爆破工法に係るものである。This invention relates to a crack-controlled blasting method characterized by using a charge holder 2 having a wedge-shaped cavity 1 that creates a concentrated effect of explosion shock waves.
本発明では、装薬ホルダ−2内部のくさび形空洞1によ
って爆発衝撃波の集中効果を作り出すことを意図してい
る。即ち、くさび先端での衝撃波は自己増幅作用によっ
て高圧状態になり、爆破孔内部での圧力分布に方向性が
生じることになる。The invention contemplates creating a concentration effect of the explosion shock wave by means of the wedge-shaped cavity 1 inside the charge holder 2. That is, the shock wave at the tip of the wedge reaches a high pressure state due to self-amplification, and the pressure distribution inside the blast hole becomes directional.
予定破断面方向にくさび形空洞1の先端を一致させて装
着しこの様な衝撃波の動的作用によってき裂がくさび先
端に形成されると引き続(・て爆発ガスが静的に作用し
てき裂の進展が促進される。The tip of the wedge-shaped cavity 1 is aligned with the direction of the planned fracture surface, and when a crack is formed at the tip of the wedge due to the dynamic action of such shock waves, the static action of the explosive gas causes a crack to form. progress will be promoted.
また、装薬ホルダー2が周囲と一体であるとすると、こ
のくさび形空洞1は応力集中効果も作り出す。Also, given that the charge holder 2 is integral with the surroundings, this wedge-shaped cavity 1 also creates a stress concentration effect.
従って、装薬ホルダー2によって爆発ガスの予定破断面
方向以外への噴き出しは抑制され、効果的に残留ガス圧
力が破断作用を増大させることとなる。Therefore, the charge holder 2 suppresses the explosion gas from blowing out in directions other than the planned fracture surface, and the residual gas pressure effectively increases the fracture action.
装薬ホルダー2は第1図(1)、(2)に示す部品を組
み合わせて平面より見て第2図のように構成され、同−
直径上に適当な角度を有するくさび形空洞1を形成する
。The charge holder 2 is constructed as shown in Fig. 2 when viewed from above by combining the parts shown in Figs. 1 (1) and (2).
A wedge-shaped cavity 1 having a suitable angle on its diameter is formed.
この装薬ホルダー2を使用することによってき裂方向制
御を可能とする第3図に示すような動的作用としての爆
発衝撃波の集中効果を生じさせることができる。即ち、
その周囲に空気の空隙を有するデカップリング状態で装
填された爆薬を起爆すると爆発衝撃波が装薬ホルダー2
内を外側に、向かって伝搬する「第3図(1)」。By using this charge holder 2, it is possible to produce a concentration effect of the explosion shock wave as a dynamic effect, as shown in FIG. 3, which makes it possible to control the crack direction. That is,
When an explosive loaded in a decoupled state with an air gap around it is detonated, an explosion shock wave is generated in the charge holder 2.
``Figure 3 (1)'' propagates from inside to outside.
くさび形空洞1以外の装薬ホルダ−2内壁面において衝
撃波は反射されるが、くさび形空洞1部分では衝撃波は
その中を干渉しながらくさび形空洞1のくさび先端に向
かって進む「第3図(2)」。The shock wave is reflected on the inner wall surface of the charge holder 2 other than the wedge-shaped cavity 1, but in the wedge-shaped cavity 1 part, the shock wave interferes inside and advances toward the wedge tip of the wedge-shaped cavity 1. (2)”.
この時、くさび形空洞1の断面が縮小することによって
、衝撃波が強くなる集中効果が生じる「第3図(3)、
(4)J。At this time, the cross section of the wedge-shaped cavity 1 is reduced, causing a concentration effect that intensifies the shock wave.
(4) J.
この様なメカニズムによって装薬孔3の孔壁に作用する
爆力の作用方向と作用時間の制御が可能となり、くさび
形空洞1のくさび先端位置を予定破断面方向に一致させ
ることによってき裂の進展方向を制御することが出来る
。Such a mechanism makes it possible to control the direction and duration of the explosive force acting on the hole wall of the charging hole 3, and by aligning the wedge tip position of the wedge-shaped cavity 1 with the planned fracture surface direction, cracks can be prevented. The direction of progress can be controlled.
また、装薬のデカップリングと装薬ホルダー2の補助効
果による爆破孔壁近傍の損傷防止と予定破面以外への爆
発ガスの噴き出しを制御することによる破断作用の向上
と騒音の低減なども実現できる。In addition, the decoupling of the charge and the auxiliary effect of the charge holder 2 prevent damage near the blast hole wall, and by controlling the blowout of explosive gas to areas other than the planned fracture surface, it is possible to improve the rupture action and reduce noise. can.
このことは、爆破エネルギーの変換効果を高めることを
意味し、使用する薬量の低減化を可能とする。This means that the conversion effect of blast energy is increased, and the amount of explosives used can be reduced.
本発明の有効性を実証するためにモルタル供試体(45
X30X10c++)を使用して爆破実験を行った。In order to demonstrate the effectiveness of the present invention, mortar specimens (45
A bombing experiment was conducted using the
装薬ホルダー2は第4図に示された状態で使用された。The charge holder 2 was used in the state shown in FIG.
この実験では雷管4を固定するためのスベサー5の上部
に込め物(粘土やアラルダイトなど)6を込め、孔口を
速硬性樹脂でタンピングして密閉状態としている。また
、孔口からの爆発ガスの散逸を防止するために孔口に鋼
材をかぶせた。In this experiment, a filling material (clay, araldite, etc.) 6 was placed in the upper part of a smoother 5 for fixing the detonator 4, and the hole was sealed by tamping with a fast-curing resin. Additionally, the hole was covered with a steel material to prevent the explosion gas from escaping through the hole.
尚、図中符号7はエアーギャップである。Note that the reference numeral 7 in the figure is an air gap.
第5図はこの実証実験の燗破後のき袋形成状態を示した
実験写真を描いたものである。き袋形成による破断面が
予定破断面(供試体表面に記された矢印の方向)に沿っ
て生じていることがわかる。FIG. 5 depicts an experimental photograph showing the state of pouch formation after the boiling in this demonstration experiment. It can be seen that the fracture surface due to bag formation occurs along the planned fracture surface (in the direction of the arrow marked on the surface of the specimen).
即ち、き裂方向制御を目的とした本工法の有効性が確認
された。面、この破断面並びに爆破孔近傍の破断面の拡
大写真などにより、孔壁3にも損傷が生じていないこと
が確認されている。In other words, the effectiveness of this method for controlling crack direction was confirmed. It has been confirmed from the enlarged photographs of this fracture surface and the fracture surface near the blast hole that no damage has occurred to the hole wall 3 either.
また、超音波パルス法を用いてき装面に平行な方向の供
試体の弾性波速度を測定した結果、爆破前の値と相違が
ないことがわかった。これより、破断面以外の部分は損
傷していないものと判断することができる。Furthermore, as a result of measuring the elastic wave velocity of the specimen in the direction parallel to the loading surface using the ultrasonic pulse method, it was found that there was no difference from the value before blasting. From this, it can be determined that the parts other than the fractured surface are not damaged.
本発明は、予定した破断面に沿ってき裂が進展するよう
制御でき、破断面以外には損傷せしめない秀れた効果を
発揮するき裂制御爆破工法となる。The present invention provides a crack control blasting method that can control the propagation of cracks along the planned fracture surface and exhibits an excellent effect of not causing damage to areas other than the fracture surface.
図面は本発明の一実施例とその実験結果を示すものであ
り、第1図(1)、(2)は装薬ホルダーの172の平
面図、正面図、第2図は第1図の1/2部品を組み合わ
せて構成した装薬ホルダーの平断面図、第3図(1)〜
(4)はくさび形空洞を有する装薬ホルダーを使用した
場合の爆発衝撃波の集中効果を説明する説明図であって
、第3図(1)(2)は平面図、第3図(3)、(4)
は要部の拡大平面図、第4図は実証実験における装薬状
態の縦断面図、第5図は実証実験の実験結果を写した実
験写真を描いた平面図である。
1・・・くさび形空洞、2・・・装薬ホルダー。
平成2年10月23日
出願人 中 村 裕 −代理人 吉
井 昭 栄
7/[有]
。7. プ乙因
(9) 、幻7
?淵
さり49The drawings show an embodiment of the present invention and its experimental results, and FIGS. 1 (1) and (2) are a plan view and a front view of the charge holder 172, and FIG. / Plane sectional view of a charge holder constructed by combining two parts, Figure 3 (1) ~
(4) is an explanatory diagram illustrating the concentration effect of explosion shock waves when a charge holder having a wedge-shaped cavity is used, in which Figures 3 (1) and (2) are plan views, and Figure 3 (3) ,(4)
4 is an enlarged plan view of the main part, FIG. 4 is a longitudinal sectional view of the charged state in the demonstration experiment, and FIG. 5 is a plan view depicting an experimental photograph showing the experimental results of the demonstration experiment. 1... Wedge-shaped cavity, 2... Charge holder. October 23, 1990 Applicant: Hiroshi Nakamura - Agent: Akie Yoshii 7/[Yes]. 7. Pu-o-in (9), illusion 7
? Fuchi Sari 49
Claims (1)
装薬ホルダーを使用したことを特徴とするき裂制御爆破
工法。A crack-controlled blasting method characterized by the use of a charge holder with a wedge-shaped cavity that creates a concentrated effect of explosion shock waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2285183A JPH0812040B2 (en) | 1990-10-23 | 1990-10-23 | Crack control blasting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2285183A JPH0812040B2 (en) | 1990-10-23 | 1990-10-23 | Crack control blasting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04158200A true JPH04158200A (en) | 1992-06-01 |
JPH0812040B2 JPH0812040B2 (en) | 1996-02-07 |
Family
ID=17688182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2285183A Expired - Lifetime JPH0812040B2 (en) | 1990-10-23 | 1990-10-23 | Crack control blasting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0812040B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101864961A (en) * | 2010-05-27 | 2010-10-20 | 武汉大学 | Method for actively preventing and controlling rock burst |
KR101067136B1 (en) * | 2009-06-23 | 2011-09-22 | 김태성 | Joint or crack making method of concrete and rock |
JP2013517458A (en) * | 2009-11-27 | 2013-05-16 | アイシス イノベーション リミテッド | Energy concentration |
JP2013124509A (en) * | 2011-12-15 | 2013-06-24 | Penta Ocean Construction Co Ltd | Pile head treatment method and charge holder |
JP2015129407A (en) * | 2014-01-08 | 2015-07-16 | 五洋建設株式会社 | Crushing method of structure |
US9530524B2 (en) | 2010-05-07 | 2016-12-27 | Oxford University Innovation Limited | Localised energy concentration |
US9704603B2 (en) | 2009-11-27 | 2017-07-11 | Oxford University Innovation Limited | High velocity droplet impacts |
US9984775B2 (en) | 2013-03-06 | 2018-05-29 | Oxford University Innovation Limited | Localised energy concentration |
US9984774B2 (en) | 2013-03-06 | 2018-05-29 | Oxford University Innovation Limited | Localised energy concentration |
US10155212B2 (en) | 2012-05-21 | 2018-12-18 | Oxford University Innovation Limited | Producing a localized concentration of gas between a surface of a depression and an impacting jet that is formed by using static pressure to collapse a gas pocket |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101358398B1 (en) * | 2012-12-24 | 2014-02-05 | 전남대학교산학협력단 | Side inner wall guider for explosive tubes, and installing method with the same for controlled blasting |
CN104713433B (en) * | 2015-03-25 | 2016-12-07 | 惠州中特特种爆破技术工程有限公司 | A kind of combination type adjustable layout of linear shaped charge device and blasting method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5026608A (en) * | 1973-07-07 | 1975-03-19 | ||
JPS5760200A (en) * | 1980-09-30 | 1982-04-10 | Tokyo Giken Kogyo Kk | Direction controlling explosion |
JPS5930879A (en) * | 1982-08-11 | 1984-02-18 | Nissan Chem Ind Ltd | Frothing molded product |
-
1990
- 1990-10-23 JP JP2285183A patent/JPH0812040B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5026608A (en) * | 1973-07-07 | 1975-03-19 | ||
JPS5760200A (en) * | 1980-09-30 | 1982-04-10 | Tokyo Giken Kogyo Kk | Direction controlling explosion |
JPS5930879A (en) * | 1982-08-11 | 1984-02-18 | Nissan Chem Ind Ltd | Frothing molded product |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101067136B1 (en) * | 2009-06-23 | 2011-09-22 | 김태성 | Joint or crack making method of concrete and rock |
JP2013517458A (en) * | 2009-11-27 | 2013-05-16 | アイシス イノベーション リミテッド | Energy concentration |
US9620247B2 (en) | 2009-11-27 | 2017-04-11 | Oxford University Innovation Limited | Energy focussing |
US9704603B2 (en) | 2009-11-27 | 2017-07-11 | Oxford University Innovation Limited | High velocity droplet impacts |
US10265674B2 (en) | 2010-05-07 | 2019-04-23 | Oxford University Innovation Limited | Producing a localized compression of gas between a concave surface and an impacting jet that is formed by using a shockwave to collapse a gas pocket |
US10315180B2 (en) | 2010-05-07 | 2019-06-11 | Oxford University Innovation Limited | Localised energy concentration |
US9530524B2 (en) | 2010-05-07 | 2016-12-27 | Oxford University Innovation Limited | Localised energy concentration |
CN101864961A (en) * | 2010-05-27 | 2010-10-20 | 武汉大学 | Method for actively preventing and controlling rock burst |
JP2013124509A (en) * | 2011-12-15 | 2013-06-24 | Penta Ocean Construction Co Ltd | Pile head treatment method and charge holder |
US10155212B2 (en) | 2012-05-21 | 2018-12-18 | Oxford University Innovation Limited | Producing a localized concentration of gas between a surface of a depression and an impacting jet that is formed by using static pressure to collapse a gas pocket |
US9984774B2 (en) | 2013-03-06 | 2018-05-29 | Oxford University Innovation Limited | Localised energy concentration |
US9984775B2 (en) | 2013-03-06 | 2018-05-29 | Oxford University Innovation Limited | Localised energy concentration |
JP2015129407A (en) * | 2014-01-08 | 2015-07-16 | 五洋建設株式会社 | Crushing method of structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0812040B2 (en) | 1996-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Numerical simulation of blasting-induced rock fractures | |
AP880A (en) | Method and apparatus for controlled small-charge blasting of hard rock and concrete by explosive pressurisation of the bottom of a drill hole. | |
CN103615941B (en) | The blasting method of modernized railway shallow-buried sector | |
JPH04158200A (en) | Fissure control exploding method | |
CN106225617B (en) | A kind of rock-burst prevention method based on quick-fried rammer hydrofracturing | |
Zhang et al. | Investigation of a non-explosive directional roof cutting technology for self-formed roadway | |
KR102131823B1 (en) | Method of excavation | |
CN215810502U (en) | Blast hole charging structure for energy-gathered water pressure blasting | |
CN108050902A (en) | A kind of tunnel blasting excavation method | |
JP4245614B2 (en) | Pile head processing method and simple charge holder | |
Li et al. | Study on the technology of permeability enhancement of deep hole pre-splitting blasting in a low-permeability coal seam | |
Cheng et al. | Study on the novel technique of straight hole cutting blasting with a bottom charged central hole exploded supplementally | |
CN111911164A (en) | Environment-friendly hard rock mass groove excavation method | |
JP5331567B2 (en) | Destruction method | |
KR910006768B1 (en) | The method of rock blast | |
Dally et al. | Fracture control in construction blasting | |
CN210242589U (en) | Anti-seepage heat insulation sleeve device adopting pin method | |
JP7061853B2 (en) | A method of manufacturing materials by collecting excavated materials from excavated parts of rocks as materials. | |
Wu et al. | Research on the Seam Formation Mechanism of Elliptical Bipolar Linear Directional Blasting Based on the SPH‐FEM Coupling Method | |
Schmidt et al. | In Situ Testing of Well-Shooting Concepts | |
KR102417586B1 (en) | Method for blasting contour hole of tunnel using paper pipe and detonating cord, road slope blasting method and urban bedrock blasting method | |
CN208419758U (en) | A kind of blasting cartridge | |
KR920005961B1 (en) | Blasting apparatus | |
JPH01155200A (en) | Blasting | |
CN118533013A (en) | Blasting method for greatly improving directional fracture effect |