JPH04157341A - Road surface condition detector for running vehicle - Google Patents

Road surface condition detector for running vehicle

Info

Publication number
JPH04157341A
JPH04157341A JP28095190A JP28095190A JPH04157341A JP H04157341 A JPH04157341 A JP H04157341A JP 28095190 A JP28095190 A JP 28095190A JP 28095190 A JP28095190 A JP 28095190A JP H04157341 A JPH04157341 A JP H04157341A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
measuring wheel
detected
surface condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28095190A
Other languages
Japanese (ja)
Inventor
Toshihiko Fukuhara
敏彦 福原
Mitsuo Takahashi
満雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP28095190A priority Critical patent/JPH04157341A/en
Publication of JPH04157341A publication Critical patent/JPH04157341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To detect a road surface condition for a road surface condition adapting apparatus by calculating the revolving velocity of a measuring wheel from a detected vehicle speed and a set slip ratio and calculating coefficient of friction from a detected load, a detected torque and the radius of a measuring shaft corresponding to the revolving velocity of the measuring wheel. CONSTITUTION:A measuring wheel 1 under a running vehicle 10 is brought into contact with a road surface under a pressure to be rotated by the road surface. A load surface condition detector outputs a detected vehicle speed V from a vehicle speed detector 2, a set slip ratio S from slip ratio setting means 3, the revolving velocity (v) of the measuring ring 1 of a vehicle 10, a detected load W from carrying load detection means 6 corresponding to the revolving velocity (v), a detected torque T from torque detection means 8, the radius R of the measuring ring 1 and coefficient of friction mu. In the velocity (v) and the coefficient of friction mu which constitute the points, the velocity (v) is computed by a microcomputer 4 according to an expression v=V(1+ or -S/100) in accordance with the case of driving or braking and the coefficient of friction mu is computed by the microcomputer 4 according to an expression mu=T/(WXR). The velocity (v) and the coefficient of friction mu are outputted as desired and constitute the source of input data of a road surface condition adapting apparatus.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、走行車両の路面状況検出装置に関する。 The present invention relates to a road surface condition detection device for a running vehicle.

【従来の技術】[Conventional technology]

走行路面の状況を把握しておくことは、車両の運転者に
とり、安全運転を行う上で重要なことである。例えば降
雨時、降雪時また凍結時、運転者ならば誰でも、走行前
又は走行を一旦停止した後、当該路面状況を観察するも
のである。このことは、走行輪(以下ホイールとする)
、走行路面、当該車両などの設計思想にも影響を与えて
いる。 ホイールならば各種仕様(例えばスノータイヤ)のもの
が準備され、走行路面でも状況に適応する各種仕様(例
えば融雪装置)のものが準備され、車両自体でも視界性
や運転性の面で該路面状況への各種仕様のものがある。 殊に車両自体のブレーキ制動時、従来のようにホイール
を完全にロックせず、最適制動が得られる回転域で該ホ
イールを回転せしめようとするABS装W (antj
−1ock brake 5yste+11)なるもの
があり、車両における上記路面状況への連合策の一つと
なっている。 そこで従来の路面状況検出装置について述べる。従来、
この種の路面状況検出装置は設置式が主であり、車載式
のものはほとんど知られていない。前者設置式は、路面
と車両との基礎連関データを得るために、例えば車両メ
ーカやホイールメーカなどがその試験場に常設する固定
式装置である。これに対し、後者車載式は例えば特開平
1−257242号で開示されたものが知られる程度で
ある。この技術は、制動時、ホイールをロックせしめて
該ホイールと該路面との摩擦係数μを検出するものであ
り、これを表示器によりビジュアルに表示するものであ
る。この結果、運転者は路面状況を視認しつつ、安全運
転できるようになる。
BACKGROUND ART It is important for a vehicle driver to understand the condition of the road surface in order to drive safely. For example, when it rains, snows, or freezes, any driver observes the road surface conditions before driving or after temporarily stopping driving. This means that the running wheels (hereinafter referred to as wheels)
, the driving road surface, and the design concept of the vehicle concerned. Wheels are prepared with various specifications (for example, snow tires), and wheels are prepared with various specifications (for example, snow melting devices) that adapt to the driving road conditions, and the vehicle itself is designed to suit the road conditions in terms of visibility and drivability. There are various specifications for this. In particular, when applying the brakes on the vehicle itself, the ABS system does not completely lock the wheels as in the past, but rather rotates the wheels in a rotation range that provides optimal braking.
-1ock brake 5yste+11), which is one of the measures that vehicles can take to cope with the above road surface conditions. Therefore, a conventional road surface condition detection device will be described. Conventionally,
This type of road surface condition detection device is mainly installed, and vehicle-mounted devices are hardly known. The former installed type is a fixed device that is permanently installed at a test site by, for example, a vehicle manufacturer or wheel manufacturer in order to obtain basic relationship data between the road surface and the vehicle. On the other hand, the latter vehicle-mounted type is only known, for example, as disclosed in Japanese Patent Laid-Open No. 1-257242. This technology locks the wheels during braking, detects the coefficient of friction μ between the wheels and the road surface, and visually displays this on a display. As a result, the driver can drive safely while visually checking the road surface conditions.

【発明が解決しようとする課!li】[The problem that the invention tries to solve! li]

上述のとおり、車載式の路面監視装置で知られたものは
少ない。上記特開平1−257242号は、車載式では
あるが、ホイールロック時の摩擦係数μを得るのである
から、例えば上記ABS装置のように、ホイールロック
しないことを背景として制御される装置に対しては制御
用の基礎データ源となり得ない。これを第4図を参照し
て説明する。同図は各種路面状況における摩擦係数μと
スリップ率Sとの一般的関係を示すグラフである。同図
から分かるように、上記特開平1−257242号の技
術がホイールロック時(即ちスリップ率5=100%)
に検出する摩擦係数μは、スリップ率5=10〜30%
で得られる最大摩擦係数μ1.8より小さい値である。 これに対し、上記ABS装置は最大摩擦係数μm1aX
を利用しようとする技術であるから、上記特開平1−2
57242号では対応することはできないことになる。 本発明は、上記従来技術の問題点に鑑み、ABS装置な
どの路面状況適合装置に対し、それらの入力データ源と
なることができる、走行車両の路面状況検出装置を提供
することを目的とする。さらに、独立して走行路面状況
を運転者にビジュアルに知らしめることができる、走行
車両の路面状況検出装置を提供することを目的とする。
As mentioned above, there are few known vehicle-mounted road surface monitoring devices. Although the above-mentioned Japanese Patent Application Laid-open No. 1-257242 is an on-vehicle type, since it obtains the friction coefficient μ when the wheels are locked, it is suitable for devices that are controlled with the background that the wheels do not lock, such as the above-mentioned ABS device. cannot serve as a basic data source for control. This will be explained with reference to FIG. This figure is a graph showing the general relationship between the friction coefficient μ and the slip rate S under various road surface conditions. As can be seen from the figure, the technology of JP-A-1-257242 is effective when the wheel is locked (i.e., slip rate 5 = 100%).
The friction coefficient μ detected is slip ratio 5 = 10 to 30%
This value is smaller than the maximum friction coefficient μ1.8 obtained by On the other hand, the ABS device described above has a maximum friction coefficient μm1aX
Since it is a technology that attempts to utilize
No. 57242 will not be able to address this issue. SUMMARY OF THE INVENTION In view of the problems of the prior art described above, it is an object of the present invention to provide a road surface condition detection device for a running vehicle that can serve as an input data source for road surface condition adaptation devices such as ABS devices. . Another object of the present invention is to provide a road surface condition detection device for a vehicle that can independently visually notify a driver of the road surface condition.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明に係わる走行車両の路
面状況検出装置は、第1図を参照して説明すれば、走行
車両10において、該車両IOの下部に備えられて走行
路面20に圧接し回転する測定輪1と、車速検出手段2
と、すべり率設定手段3と、測定輪半径Rを予め記憶す
るマイコン4と、測定輪1を該路面20へ圧接せしめる
載荷手段5と、この載荷手段5による測定輪1への載荷
荷重検出手段6と、測定輪1を回転せしめるモータ7と
、測定輪1のトルク検出手段8とを備え、マイコン4は
、車速検出手段2からの検出車速■と、すべり率設定手
段3からの設定すべり率Sとを入力して制動時には V (1−3/l OO)−〇 また駆動時には V /’ (1+ 3 / 100 ) = uなる測
定輪1の回転速度υを演算してこの速度υに適合するよ
うにモータ7を回転せしめると共に、測定輪半径Rと、
前記回転速度υにおける載荷荷重検出手段6から入力し
た検出荷重W及びトルク検出手段8から入力した検出ト
ルクTとによりT/ (W×R)=μ なる摩擦係数μを演算し、この摩擦係数μと、上記諸デ
ータV、S、υ、R,W、、Tの内の所望データとを出
力する構成とした。さらに、上記構成において、路面温
度検出手段2Iを備え、この検出温度tも出力する構成
としてもよい。さらに、上記2つの構成そそれぞれにお
いて、表示器91を備え、請求項1の構成においては、
摩擦係数μと、諸データV、S、υ、R,W、Tの内の
所望データとを入力して、これらを所望の様式に表示す
る構成、また請求項2の構成においては、摩擦係数μと
、諸データV、S、υ、R,W、TS tの内の所望デ
ータとを入力して、これらを所望の様式に表示する構成
としてもよい。
In order to achieve the above object, the road surface condition detection device for a traveling vehicle according to the present invention will be described with reference to FIG. A rotating measuring wheel 1 and a vehicle speed detecting means 2
, a slip rate setting means 3, a microcomputer 4 that stores the measuring wheel radius R in advance, a loading means 5 that brings the measuring wheel 1 into pressure contact with the road surface 20, and a means for detecting the load applied to the measuring wheel 1 by the loading means 5. 6, a motor 7 for rotating the measuring wheel 1, and a torque detecting means 8 for the measuring wheel 1. Input S and calculate the rotational speed υ of the measuring wheel 1, which is V (1-3/l OO) - 〇 during braking and V /' (1 + 3 / 100) = u when driving, and adapt to this speed υ. The motor 7 is rotated so that the measuring wheel radius R and
Using the detected load W input from the applied load detection means 6 and the detected torque T input from the torque detection means 8 at the rotational speed υ, a friction coefficient μ of T/ (W×R)=μ is calculated, and this friction coefficient μ and desired data among the various data V, S, υ, R, W, . Furthermore, in the above configuration, a configuration may be adopted in which a road surface temperature detection means 2I is provided and the detected temperature t is also output. Furthermore, in each of the above two configurations, a display 91 is provided, and in the configuration of claim 1,
In a configuration in which the friction coefficient μ and desired data among various data V, S, υ, R, W, and T are input and displayed in a desired format, and in the configuration of claim 2, the friction coefficient It may be configured to input μ and desired data among various data V, S, υ, R, W, and TS t, and display these in a desired format.

【作 用】[For use]

上記請求項1の走行車両の路面状況検出装置は、摩擦係
数μと、諸データV1S、υ、R,W、Tの内の所望デ
ータとを出力する。かかる諸データの内、殊にマイコン
4が演算する測定輪回転速度υと摩擦係数μとは上記構
成におけるポイントとなる。先ず、前者測定輪回転速度
Oは次の一般式(1)、(2)によるものである。 制動時のすべり率(S)は、 S=+(V−υ)/VIX100(%)、゛、 v =
V (+−5/ 100) ・・−−−−−111また
駆動時のすべり率(S)は、 S=+(V−υ)/υl X100 (%)、・、υ=
V/ (1+S/100)・・・・・・・・・・(2)
尚、■は車速、υは測定輪回転速度である。 次に、後者摩擦係数μは次の一般式(3)によるもので
ある。 μ =F/W   又  T=F−R 1゛、μ=T/ (W×R)・・・・・・・・・・・・
・・・・・・(3)尚、Fは測定輪の接線力、Tはトル
ク、Rは予めマイコン4に記憶された測定輪半径である
。上記すべり率Sはすべり率設定手段3により任意の値
に設定され、逐次マイコン4に入力される。車速Vは、
車速検出手段2により検出され、逐次マイコン4に入力
される。測定軸回転速度υは、すべり率Sと、車速■と
、式(1)、(2)とにより、逐次マイコン4で演算さ
れ、モータ7を介して該測定輪■を該測定輪回転速度υ
で回転せしめる。他方、上記により回転速度υで回転中
の測定輪1には載荷手段5によって荷重Wが載荷される
が、この荷重Wは、載荷荷重検出手段6により検出され
、マイコン4に入力される。同時に、測定輪1の回転ト
ルクTもトルク検出手段8により検出され、マイコン4
に入力される。摩擦係数μは、マイコン4により、これ
らデーターV、T×Rが上式(3)で演算された結果で
ある。尚、実務的には、制動時の0%〜100%(ホイ
ールロック時)と駆動時の0%〜−100%(ホイール
空転)との−100%〜100%の間において選択され
た幾つかの代表的なすべり率S又は連続的なすべり率S
と、様々な車速Vとにおいて、各々の摩擦係数μが順に
出力される。さらに尚、上述のとおり、この記摩擦係数
μと、その条件なる諸データV、S、υ、R,W、、T
とは所望により出力される。 次に、上記請求項2の走行車両の路面状況検出装置は、
請求項1の構成に路面温度検出手段21を備え、この検
出温度tを、諸データV、S1υ、R,W、T、μに加
え、これらの内の所望データを出力するものである。路
面温度りは路面に与える影響は大きいものであるが、こ
れらの因果関係は本請求項2の出力によって解明され得
る。尚、本請求項2は上記請求項1の利用の一態様であ
り、例示的に掲げたものに過ぎない。即ち、路面状況に
影響を与える他の要因、例えばホイール温度、風力、風
向、登板、降板、走行路の蛇行、車両の横滑りなどとの
因果関係は、これらを検出する温度検出手段、風力検出
手段、風向検出手段、勾配検出手段、ステアリング角度
検出手段、横滑り角度検出手段なども請求項1への追設
することにより、これらのデータと請求項1のデータと
を有機的に結合して出力できるようになるからである。 次に、上記請求項3の走行車両の路面状況検出装置は、
請求項1又は請求項2の構成において、表示器91を備
え、摩擦係数μと、諸データV、Ssu、R,W、T又
は諸データv、、S1υ、RlW、T、tの内の所望デ
ータとを人力して、これらを所望の様式でビジュアルに
表示するものである。この結果、運転者は路面状況を視
認しつつ、安全運転できるようになる。
The road surface condition detection device for a traveling vehicle according to the first aspect outputs the friction coefficient μ and desired data among various data V1S, υ, R, W, and T. Among these data, the measured wheel rotational speed υ and the friction coefficient μ calculated by the microcomputer 4 are particularly important in the above configuration. First, the former measurement wheel rotational speed O is based on the following general formulas (1) and (2). The slip rate (S) during braking is: S = + (V-υ) / VIX100 (%), ゛, v =
V (+-5/ 100)...----111 Also, the slip rate (S) during driving is: S=+(V-υ)/υl X100 (%),..., υ=
V/ (1+S/100)・・・・・・・・・(2)
In addition, ■ is the vehicle speed, and υ is the measurement wheel rotation speed. Next, the latter friction coefficient μ is based on the following general formula (3). μ=F/W or T=F−R 1゛, μ=T/ (W×R)・・・・・・・・・・・・
(3) In addition, F is the tangential force of the measuring wheel, T is the torque, and R is the radius of the measuring wheel stored in the microcomputer 4 in advance. The slip ratio S is set to an arbitrary value by the slip ratio setting means 3, and is sequentially input to the microcomputer 4. The vehicle speed V is
The vehicle speed is detected by the vehicle speed detection means 2 and sequentially inputted to the microcomputer 4. The measuring shaft rotational speed υ is calculated by the microcomputer 4 sequentially using the slip rate S, the vehicle speed ■, and equations (1) and (2), and the measuring wheel ■ is rotated through the motor 7 to adjust the measuring wheel rotational speed υ.
Rotate it with . On the other hand, as described above, a load W is applied by the loading means 5 to the measuring wheel 1 which is rotating at the rotational speed υ, and this load W is detected by the applied load detection means 6 and inputted to the microcomputer 4. At the same time, the rotation torque T of the measuring wheel 1 is also detected by the torque detection means 8, and the microcomputer 4
is input. The friction coefficient μ is the result of the microcomputer 4 calculating these data V and T×R using the above equation (3). In addition, in practice, some values are selected between -100% and 100% between 0% and 100% during braking (wheel lock) and 0% and -100% during driving (wheel spinning). Typical slip rate S or continuous slip rate S
At various vehicle speeds V, the respective friction coefficients μ are sequentially output. Furthermore, as mentioned above, this friction coefficient μ and its conditional data V, S, υ, R, W, ,T
is output as desired. Next, the road surface condition detection device for a traveling vehicle according to the second aspect is as follows:
The present invention includes a road surface temperature detection means 21, which adds the detected temperature t to various data V, S1υ, R, W, T, and μ, and outputs desired data among these. Although the road surface temperature has a great influence on the road surface, the causal relationship between them can be clarified by the output of the present invention. Note that this claim 2 is one mode of utilization of the above claim 1, and is merely cited as an example. That is, the causal relationship with other factors that affect the road surface condition, such as wheel temperature, wind force, wind direction, climbing, descending, meandering of the running road, skidding of the vehicle, etc., is determined by the temperature detection means and wind force detection means that detect these factors. By adding wind direction detection means, slope detection means, steering angle detection means, sideslip angle detection means, etc. to claim 1, these data and the data of claim 1 can be organically combined and output. This is because it becomes like this. Next, the road surface condition detection device for a traveling vehicle according to the third aspect of the invention includes:
The configuration of claim 1 or 2 includes a display 91, and displays the friction coefficient μ, various data V, Ssu, R, W, T, or desired data among various data v, , S1υ, RlW, T, t. It is a system that manually displays data in a desired format visually. As a result, the driver can drive safely while visually checking the road surface conditions.

【実施例】【Example】

本発明に係わる走行車両の路面状況検出装置の好適な実
施例を第1図〜第3図を参照して以下詳しく説明する。 第1図は実施例を搭載する走行車両10と該実施例の模
式構成とを示す図である。 請求項1の実施例は、同図右上に示されるように、走行
車両10において、その下部に測定輪1と、車速検出手
段2と、測定輪1を該路面20へ圧接せしめる載荷手段
5と、測定輪1を回転せしめるモータ7とを装着すると
共に、車内にすべり率設定手段3と、マイコン4とを搭
載している。詳しくは、測定輪1は等速ジ日インド81
.81及びトクシャフト82を介してモータ7の出力軸
に連結されて、該モータ7によって回転せしめられると
共に、載荷手段5なる油圧カシンダによって走行路面2
0に圧接せしめられている。モータ7の出力軸にはトル
ク検出手段8なる磁歪式トルクセンサが装着されており
、測定輪1の回転トルクTを検出してこれをマイコン4
に出力している。 油圧シリンダ5のロンドには載荷荷重検出手段6なる荷
重センサが装着されており、測定輪Iの該走行路面に対
する垂直荷重Wを検出してこれをマイコン4に出力して
いる。尚、油圧カシンダ5を縮めることにより、測定輪
1を該路面20から離間せしめることも自由である。車
速検出手段2は、レーザ式や超音波式などの速度センサ
であるが、該車両の走行車速■を逐次高精度に検出して
これをマイコン4に出力している。すべり率設定手段3
は、ダイヤル式などのものであるが、制動時と駆動時と
におけるホイールと該路面とのすべり率Sを自在に設定
するものであって、この設定信号(設定すべり率S)を
マイコン4に出力する。 マイコン4は測定輪半径Rを予め記憶しており、上記検
出値T、W、■と、上記設定値Sとを入力して次の演算
を行い、モータ7及び出力機器9にその結果を出力する
。先ずモータ7への出力及びその演算であるが、演算は
、車速Vとすべり率Sとにより、制動時には 弐V(I  S/100)=υ、 また駆動時には 式v/ (]+S/100)=υ となる。次りごモータ7への出力υは、前記演算結果で
あって測定輪1の回転速度υとして与えれるものである
。部ちモータ7への出力υはこの回転速度υが維持され
るような制御信号である。そこでモータ7はこの制御信
号を入力して測定輪1を回転速度υで回転せしめるでい
る。次に出力機器9への出力であるが、これは、測定軸
半径Rと、荷重Wと、トルクTと、これらRSW、Tに
より式T/ (W・R)=μ と演算されてなろ摩Ifl係数μと、上記他の検出値S
SV、oとである。尚、この出力機器9とは、へBS装
置のような路面状況適合装置や1a求項3の表示器91
を指し1.これらは適宜選択することができる。次に本
実施例の効果を述べる。出力機器9が仮にABS装置で
ある場合、本実施例によれば、これを駆動せしめるに充
分なデータが該ABS装置に出力されている。即ちAB
S装置は、実施例装置から、各種の設定すべり率Sにお
りる各々の摩擦係数μと測定輪の回転速度υとを入力す
る。そごでABS装置はこれら摩擦係数μの内から最大
摩擦係数μsaにを選び、かつ、その摩擦係数μ1la
Kの基となったすべりり率Sにおける測定輪回転速度υ
を当該車両の走行ホイールの制動時の回転速度とするよ
うに制動制御すれば、該ABS装置は目的を達成するこ
ができるようになる。即ち、本実施例によれば、車両と
路面との関係における基礎データを出力できるため、基
本的には他の路面状況適合装置に対しても連用ずろごと
ができるようになる。 決に請求項2の走行車両のU&向壮況検出装置の実施例
は、これも第1図に基づき説明すれば、上記請求項】の
実施例に路面温度検出手段2】苓車載し1.この検出温
度tを上記請求ri41の構成における出力V、SSo
、R、W 、 T 、 /J C’hi エL ヨうに
したものである。尚、作用の欄で説明!、たように、本
請求項2のmsは請求項1の構成の−利用聾様である5
、従って、ホイール温度、風力、風向、登板、降板、走
行路の蛇行、車面(”+横滑りなどを検出するホイール
・温度@出丁段、胆力検出手段、風向検出手段、勾配検
出手段、スー・アリング角度検出手段、横滑り角度検出
f1つなども適宜追設すること1.:より、そ)1ぞれ
1−ノデータを出力することができる、 次に!N求*:3の走行車両の路面状況検出装置の実施
i?l’ lj  、−れも第1図に椅−ブき説明vh
ば、上に!詔+項l又は請求項2の・”−・太施炉に、
表示器91を備え(又は上記請求項1の実施例1′、、
−おける出力機719が本表示器91である)、摩擦係
数lIと、諸データt/、、S、υ、R,、W、°1゛
又はV、S。 υ、R,W、、Tい 重の内の所望データとを入力して
、これらを所望の様式r、:表1iす丁橘成とj7たも
のである。この表示器91による表示は、例えば第2図
に示されるよ)に、すイリ・1;S(横軸)と9擦係数
tt(R@)との路面状況グラフであるとか、又は第3
図に示されるように、所定の路面温度+ (本例ではt
−20″)とすべり率S(本例では5−30%)とにお
ける車速■(横軸)と摩擦係数μ(縦軸)との路面状況
グラフとかである。もっともこの表示器つIは任のデー
タυ、RlW、T、も入力するのであるから、前記デー
タS、μ、し、■ト適ff組み合わ一ドア、名種イー1
様の表示をさせることができて)、入ζ、ぽ、L、Jc
”請、Y項2の他の態様でt・る、ホ4、−ル温度検出
オー段、風力検出手段、風向検出手L2、勾?、[検出
、1段、ステ/リング角度検出手段、+z、 i:l”
iすtQ 1.2検出f−fiξども追設すれば、こね
・、)の?−企と前記デー4′ノを組!・合わせて広範
囲な指6 t′)表iモをすることもでき?、ようにな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the road surface condition detection device for a traveling vehicle according to the present invention will be described in detail below with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a traveling vehicle 10 equipped with an embodiment and a schematic configuration of the embodiment. In the embodiment of claim 1, as shown in the upper right corner of the figure, in a running vehicle 10, a measuring wheel 1, a vehicle speed detecting means 2, and a loading means 5 for pressing the measuring wheel 1 against the road surface 20 are provided at the lower part thereof. , a motor 7 for rotating the measuring wheel 1, and a slip rate setting means 3 and a microcomputer 4 inside the vehicle. For details, please refer to the measurement wheel 1 for constant velocity di-day India 81
.. It is connected to the output shaft of the motor 7 via the torque shaft 81 and the torque shaft 82, and is rotated by the motor 7, and the traveling road surface 2 is
0. A magnetostrictive torque sensor, which is torque detection means 8, is attached to the output shaft of the motor 7, which detects the rotational torque T of the measuring wheel 1 and transmits it to the microcomputer 4.
It is output to. A load sensor, which is a loaded load detection means 6, is attached to the rond of the hydraulic cylinder 5, and detects the vertical load W of the measuring wheel I with respect to the traveling road surface, and outputs this to the microcomputer 4. Note that it is also possible to move the measuring wheel 1 away from the road surface 20 by contracting the hydraulic cylinder 5. The vehicle speed detection means 2, which is a speed sensor such as a laser type or an ultrasonic type, sequentially detects the traveling speed of the vehicle with high precision and outputs it to the microcomputer 4. Slip rate setting means 3
is a dial type or the like, and is used to freely set the slip ratio S between the wheel and the road surface during braking and driving, and this setting signal (set slip ratio S) is sent to the microcomputer 4. Output. The microcomputer 4 stores the measuring wheel radius R in advance, inputs the detected values T, W, ■ and the set value S, performs the following calculation, and outputs the results to the motor 7 and output device 9. do. First, regarding the output to the motor 7 and its calculation, the calculation is based on the vehicle speed V and the slip rate S. When braking, the formula is 2V (I S/100) = υ, and when driving, the formula is v/ (] + S/100) = υ. The output υ to the secondary motor 7 is the result of the above calculation and is given as the rotational speed υ of the measuring wheel 1. The output υ to the motor 7 is a control signal that maintains this rotational speed υ. Therefore, the motor 7 receives this control signal and rotates the measuring wheel 1 at a rotational speed υ. Next is the output to the output device 9, which is calculated using the measurement shaft radius R, load W, torque T, and these RSW and T as the formula T/ (W・R)=μ. Ifl coefficient μ and the other detected value S
SV, o. Note that this output device 9 may be a road surface condition adapting device such as a BS device or the display device 91 of claim 3 of 1a.
Pointing to 1. These can be selected as appropriate. Next, the effects of this embodiment will be described. If the output device 9 is an ABS device, according to this embodiment, data sufficient to drive the device is output to the ABS device. That is, AB
The S device inputs each friction coefficient μ and rotational speed υ of the measurement wheel at various set slip rates S from the embodiment device. Then, the ABS device selects the maximum friction coefficient μsa from among these friction coefficients μ, and selects the maximum friction coefficient μsa from among these friction coefficients μ, and
Measuring wheel rotation speed υ at slip rate S, which is the basis of K
The ABS device can achieve its purpose by controlling the braking so that the rotational speed of the running wheels of the vehicle is the same as the rotational speed of the running wheels of the vehicle during braking. That is, according to this embodiment, since basic data regarding the relationship between the vehicle and the road surface can be output, it is basically possible to perform multiple operations on other road surface condition adaptation devices. Finally, the embodiment of the U & condition detection device for a traveling vehicle according to claim 2 will be explained based on FIG. This detected temperature t is the output V in the configuration of claim ri41, SSo
, R, W, T, /J C'hi E L Yo. In addition, it is explained in the action column! , the ms of claim 2 is the configuration of claim 1 - usage deaf-like 5
,Therefore, wheel temperature, wind force, wind direction, climbing, descending, meandering of the running road, vehicle surface (" + wheel temperature for detecting skidding, etc. @ exit step, force detection means, wind direction detection means, gradient detection means, speed)・Appropriately add one steering angle detection means, one sideslip angle detection f, etc. 1.: From 1) to 1) each can output 1-no data. Next! The implementation of the road surface condition detection device i?l' lj, - also the explanation given in Figure 1 vh
B-on top! In the imperial edict + clause l or claim 2,
A display device 91 (or embodiment 1' of claim 1 above) is provided.
-, the output device 719 is the main display 91), the friction coefficient lI, and various data t/, S, υ, R,, W, °1゛ or V, S. Input the desired data of υ, R, W, , T, and format them in the desired format: Table 1i. The display by the display 91 may be, for example, a road surface condition graph of Suiri・1;S (horizontal axis) and 9 friction coefficient tt (R@) (as shown in FIG. 2), or a third
As shown in the figure, the predetermined road surface temperature + (t in this example)
-20'') and slip rate S (5-30% in this example), a road surface condition graph of vehicle speed (horizontal axis) and friction coefficient μ (vertical axis).However, this indicator I is optional. Since the data υ, RlW, T, are also input, the data S, μ, and
), input ζ, po, L, Jc
In addition, in other aspects of item 2, there is a temperature detection stage, wind force detection means, wind direction detection means L2, slope?, [detection, 1 stage, steering/ring angle detection means, +z, i:l”
If I add 1.2 detection f-fiξ, knead...)? -Participate in the above day 4' with Kaku!・Can you also use a wide range of fingers 6 t')? , it becomes like that.

【発明の効果】【Effect of the invention】

以上説明したように、本化ル1の請求項10走行車両の
路面状況検出装置によれば一1A B S装置などの路
面状況連合:6fの人カデーク源となることができる。 また請求項291走行車両の路面状況検出装置によれば
、 Cth :すす記請求項10走行車両の路面状況検
出’J ′:Fl+?)−利用q!、様であっご、路面
温度もABSP:l!などの路面状況適合装置の人IH
データとすることができるようになる。また本発明の請
求項3の走行車両の路面状況検出装置によれば、表示器
がABS装置などの路面状況適合装置に代わり、又は併
設されて、運転者に路面状況をビジ1了ルに知らしめろ
ことかできる91うになる。
As explained above, according to the road surface condition detection device for a traveling vehicle according to claim 10 of the present invention, it can serve as a source for detecting road surface conditions such as a 11A B S device. Further, according to the road surface condition detection device for a traveling vehicle in Claim 291, Cth: Soot; Claim 10 Road surface condition detection for a traveling vehicle 'J': Fl+? ) - Use q! , and the road surface temperature is ABSP: l! Human IH with road surface condition adaptation equipment such as
It becomes possible to use it as data. Further, according to the road surface condition detection device for a traveling vehicle according to claim 3 of the present invention, the display device is provided in place of or in conjunction with a road surface condition adapting device such as an ABS device, so that the driver can easily inform the driver of the road surface condition. It becomes 91 that can do something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図本よ請求項1〜請求項、3・つ実施例を搭載する
走行重両と該実施例の模式構成図、第2図及び第3図は
請求項2の表示器における一表示例であって、第2図は
すべり名Sと12瞭係数μとの路面状況グラフ、第3図
は所定の路面温度とすべり率Sとにおける車速■とI9
擦係数μとの路面状況グラフ、第4図は各41路面状況
におけるI擦係数μとスリップ率Sとの一般的関係を示
゛セグラフであるゆ 1 、・・測定輪、2・・・・車速検出手段、21・・
・・路面温度検出手段、3・、・・(゛べり率設定手段
、4・・・・マイコン、5・・・・載荷手りり、6・・
・・載荷荷重検出手段、7・・・・モータ、8. ・ト
ルク検出手段、9・・・・トルク検出手段、91・・・
・、シ記器、R・。
Figure 1 is a schematic configuration diagram of a traveling heavy vehicle equipped with claims 1 to 3 embodiments, and Figures 2 and 3 are examples of display on the display of claim 2. Fig. 2 is a road surface condition graph of slip name S and 12 coefficient μ, and Fig. 3 is a graph of vehicle speed ■ and I9 at a predetermined road surface temperature and slip rate S.
Figure 4 shows the general relationship between the friction coefficient μ and the slip ratio S in each of the 41 road conditions. Vehicle speed detection means, 21...
・・Road surface temperature detection means, 3.
... Applied load detection means, 7... Motor, 8. - Torque detection means, 9...Torque detection means, 91...
・, Shikiki, R.

Claims (3)

【特許請求の範囲】[Claims] (1)走行車両10において、該車両10の下部に備え
られて走行路面20に圧接し回転する測定輪1と、車速
検出手段2と、すべり率設定手段3と、測定輪半径Rを
予め記憶するマイコン4と、測定輪1を該路面20へ圧
接せしめる載荷手段5と、この載荷手段5による測定輪
1への載荷荷重検出手段6と、測定輪1を回転せしめる
モータ7と、測定輪1のトルク検出手段8とを備え、マ
イコン4は、車速検出手段2からの検出車速Vと、すべ
り率設定手段3からの設定すべり率Sとを入力して制動
時には V(1−S/100)=υ また駆動時には V/(1+S/100)=υ なる測定輪1の回転速度υを演算してこの速度υに適合
するようにモータ7を回転せしめると共に、測定輪半径
Rと、前記回転速度υにおける載荷荷重検出手段6から
入力した検出荷重W及びトルク検出手段8から入力した
検出トルクTとによりT/(W×R)=μ なる摩擦係数μを演算し、この摩擦係数μと、上記諸デ
ータV、S、υ、R、W、Tの内の所望データとを出力
する構成を特徴とする走行車両の路面状況検出装置。
(1) In the traveling vehicle 10, the measuring wheel 1, which is provided at the lower part of the vehicle 10 and rotates in pressure contact with the traveling road surface 20, the vehicle speed detecting means 2, the slip rate setting means 3, and the measuring wheel radius R are stored in advance. a microcomputer 4 that presses the measuring wheel 1 against the road surface 20; a load detecting means 6 applied to the measuring wheel 1 by the loading means 5; a motor 7 that rotates the measuring wheel 1; The microcomputer 4 inputs the detected vehicle speed V from the vehicle speed detecting means 2 and the set slip rate S from the slip rate setting means 3, and calculates V(1-S/100) during braking. = υ During driving, the rotational speed υ of the measuring wheel 1 is calculated as V/(1+S/100)=υ, and the motor 7 is rotated to match this speed υ, and the measuring wheel radius R and the rotational speed are From the detected load W input from the applied load detection means 6 at υ and the detected torque T input from the torque detection means 8, a friction coefficient μ of T/(W×R)=μ is calculated, and this friction coefficient μ and the above A road surface condition detection device for a running vehicle, characterized by a configuration that outputs desired data among various data V, S, υ, R, W, and T.
(2)請求項1の構成において、路面温度検出手段21
を備え、この検出温度をを出力する構成を特徴とする走
行車両の路面状況検出装置。
(2) In the configuration of claim 1, the road surface temperature detection means 21
A road surface condition detection device for a running vehicle, characterized by a configuration that outputs the detected temperature.
(3)請求項1又は請求項2の構成において、表示器9
1を備え、摩擦係数μと、諸データV、S、υ、R、W
、T又はV、S、υ、R、W、T、tの内の所望データ
とを入力して、これらを所望の様式に表示する構成を特
徴とする走行車両の路面状況検出装置。
(3) In the configuration of claim 1 or claim 2, the display device 9
1, friction coefficient μ, and various data V, S, υ, R, W
, T or desired data of V, S, υ, R, W, T, and t, and displays the data in a desired format.
JP28095190A 1990-10-19 1990-10-19 Road surface condition detector for running vehicle Pending JPH04157341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28095190A JPH04157341A (en) 1990-10-19 1990-10-19 Road surface condition detector for running vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28095190A JPH04157341A (en) 1990-10-19 1990-10-19 Road surface condition detector for running vehicle

Publications (1)

Publication Number Publication Date
JPH04157341A true JPH04157341A (en) 1992-05-29

Family

ID=17632180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28095190A Pending JPH04157341A (en) 1990-10-19 1990-10-19 Road surface condition detector for running vehicle

Country Status (1)

Country Link
JP (1) JPH04157341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628711U (en) * 1992-09-10 1994-04-15 北海道開発局建設機械工作所長 Sliding friction coefficient measuring device
JP2006518461A (en) * 2003-01-27 2006-08-10 ハリデイ、ドナルド・アール Road surface friction tester and road surface friction test method
JP2007333703A (en) * 2006-06-19 2007-12-27 Yokohama Rubber Co Ltd:The Apparatus for measuring frictional coefficient
JP2010507803A (en) * 2006-10-23 2010-03-11 ジョン サミュエル バチェルダー Surface energy measuring device and measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628711U (en) * 1992-09-10 1994-04-15 北海道開発局建設機械工作所長 Sliding friction coefficient measuring device
JP2006518461A (en) * 2003-01-27 2006-08-10 ハリデイ、ドナルド・アール Road surface friction tester and road surface friction test method
JP2007333703A (en) * 2006-06-19 2007-12-27 Yokohama Rubber Co Ltd:The Apparatus for measuring frictional coefficient
JP2010507803A (en) * 2006-10-23 2010-03-11 ジョン サミュエル バチェルダー Surface energy measuring device and measuring method

Similar Documents

Publication Publication Date Title
Jiang et al. An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS
JP4015848B2 (en) Misalignment detection apparatus and method for vehicle steering system using torque of steering wheel
JP2003081076A (en) Method and device for estimating coefficient of friction between tire and road surface
JP3939612B2 (en) Road friction estimation device
JP2001514992A (en) Method and apparatus for determining a reference speed of a motor vehicle
JP2000507179A (en) How to determine the quantity that indicates the running state of a vehicle
EP0982206A3 (en) Method of estimating vehicle yaw rate
JP3515040B2 (en) Road surface friction coefficient determination method
JPH07123532A (en) Open-loop and closed-loop control methods for electric driving circuit of vehicle
JP2003160044A (en) Brake control device, brake control method and recording medium
JPH0611434A (en) Road surface situation judging device
JPH02504620A (en) Brake pressure control method in anti-lock vehicle brake system
JPS5993560A (en) Slip preventing apparatus
JPH04157341A (en) Road surface condition detector for running vehicle
US4819168A (en) Train control having improved wheel wear adjustment for more accurate train operation
JPH1076922A (en) Driving operation support device
US6304807B1 (en) Method for determining the yaw velocity of a vehicle
JPH11103507A (en) Speed controller for car
JP2785390B2 (en) Electric power steering device
JP3557508B2 (en) Direction detection device
JPH0649450B2 (en) Pseudo signal output device for anti-skidding evaluation
JP4107988B2 (en) Road surface state determination device and method, and road surface state determination program
JP3505572B2 (en) In-vehicle road patrol sensor
JPH0390808A (en) Road surface slope detector
JP3129555B2 (en) Tire pressure abnormality detection method and device