JPH04157340A - Very small frictional force measuring instrument - Google Patents

Very small frictional force measuring instrument

Info

Publication number
JPH04157340A
JPH04157340A JP27901190A JP27901190A JPH04157340A JP H04157340 A JPH04157340 A JP H04157340A JP 27901190 A JP27901190 A JP 27901190A JP 27901190 A JP27901190 A JP 27901190A JP H04157340 A JPH04157340 A JP H04157340A
Authority
JP
Japan
Prior art keywords
spring
frictional force
measuring device
axis
force measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27901190A
Other languages
Japanese (ja)
Inventor
Masabumi Kanetomo
正文 金友
Tetsuya Hamaguchi
哲也 浜口
Yasuhiro Akiyama
靖浩 秋山
Matsuo Yamazaki
山崎 松夫
Genya Matsuoka
玄也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27901190A priority Critical patent/JPH04157340A/en
Publication of JPH04157340A publication Critical patent/JPH04157340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To measure a frictional force and an attracting force with high accuracy by forming a spring for measuring the frictional force and a pressing load acting on a probe from ceramics, making the spring an integral type parallel leaf spring system and building a two-staged parallel leaf spring. CONSTITUTION:A probe 32 is fixed to the upper surface of two-staged parallel leaf springs 33 and 34 and the quantity of the deformations of the leaf springs 33 and 34 are measured by displacement gages 35 and 36, respectively. An object 31 to be measured is fixedly mounted on a tripod 37 movable in three- dimensional directions X49, Y50 and Z51. Piezoelectric elements 38, 39 and 40 are provided on the tripod 37 in the directions X49, Y50 and Z51, respectively. In a measurement, a pressing force due to contact between the object 31 to be measured and the probe 32 is controlled by the spring 34, the quantity of its displacement is measured by the displacement gage 35 and the pressing force is obtained by multiplying the spring rigidity by the quantity of deformation. Then, when a given pressing force is obtained, the element 39 in the Y direction is driven and the surface of the object 31 to be measured is scratched by the probe 32. A force generated at this time is detected by the spring 34 and a frictional force is measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、触針間と測定物の微小領域の摩擦力分布を計
測する摩擦力測定装置に係り、測定系の固有振動数が高
く、測定精度の向上に好適な押し付け荷重を一定に保つ
手段と、押しつけ荷重を一定に保つためのフィードバッ
ク制御信号量を表示する手段と、圧電素子の非直線性を
補正する手段と、摩擦力測定時のX軸バネのたわみによ
るX軸座a!誤差を補正する手段と、摩擦力測定と吸着
力測定の両機能を有する微小摩擦力測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a friction force measuring device for measuring the friction force distribution between stylus probes and a minute area of a measuring object, and the present invention relates to a friction force measuring device that measures the friction force distribution between stylus probes and a minute region of a measuring object. A means for keeping the pressing load constant suitable for improving measurement accuracy, a means for displaying a feedback control signal amount to keep the pressing load constant, a means for correcting non-linearity of the piezoelectric element, and a means for measuring frictional force. X-axis seat a due to the deflection of the X-axis spring! The present invention relates to a means for correcting errors and a micro-frictional force measuring device having both functions of measuring frictional force and measuring adsorption force.

〔従来の技術〕[Conventional technology]

磁気ディスク、フロッピーディスク、磁気テープなどの
コンピュータの外部メモリーは、記録媒体の上をヘッド
が通過することによって書き込み読みだしを行う。近年
、記録密度の上昇に伴いヘッドと記録媒体の距離がサブ
ミクロンと小さくなってきており、両者が固体接触をし
て破損する現象が起きている。この現象の解明には、微
小領域の摩擦力を計測評価する必要がある。この目的で
利用されているのが、摩擦力顕微鏡である。
External memories for computers, such as magnetic disks, floppy disks, and magnetic tapes, are read and written by a head passing over the recording medium. In recent years, as the recording density has increased, the distance between the head and the recording medium has become smaller to submicron, and a phenomenon has occurred where the two come into solid contact and become damaged. To elucidate this phenomenon, it is necessary to measure and evaluate the frictional force in a microscopic area. A friction force microscope is used for this purpose.

摩擦力顕微鏡は、測定物に先端の尖った触媒を押しあて
ておき、測定物を押し付け方向とは、直角方向に動かし
てその押し付け力と、移動方向の力である摩擦力を測定
する。この測定を微小範囲を行うことで、その範囲内の
摩擦力分布を計測する。この測定結果をディスプレイ上
に出力し、測定範囲内の摩擦力を可視化して表示する事
が可能となる。力の値はバネの変形の計測で行い、その
感知する量はミリグラムオーダーである。このため、使
用するバネの剛性は計測する変形量を測定可能な値とす
るため小さい必要がある。また、被測定物の表面に凹凸
がある場合その表面形状に沿って測定を行うには、バネ
と触針で構成される測定系の固有振動数が高くなければ
ならない。またこの測定器を配置した環境の振動が測定
に悪影響を及ぼさないためには、同様に固有振動数を高
くする必要がある。
In a friction force microscope, a catalyst with a sharp tip is pressed against an object to be measured, and the object is moved in a direction perpendicular to the pressing direction to measure the pressing force and the frictional force in the moving direction. By performing this measurement over a minute range, the frictional force distribution within that range is measured. This measurement result is output on a display, making it possible to visualize and display the frictional force within the measurement range. The force value is determined by measuring the deformation of the spring, and the sensed amount is on the order of milligrams. Therefore, the rigidity of the spring used must be small in order to make the amount of deformation to be measured a measurable value. Furthermore, in order to perform measurements along the surface shape of an object to be measured when the surface has irregularities, the natural frequency of the measurement system consisting of a spring and a stylus must be high. Furthermore, in order to prevent vibrations in the environment in which this measuring instrument is placed from having an adverse effect on measurements, it is necessary to similarly increase the natural frequency.

この摩擦力顕微鏡の公知例としては、゛摩擦力顕微鏡(
FFM)による磁気ディスク表面の測定:日本潤滑学会
第33期全国大会予稿集(1988)P、377〜38
0 ”がある。この顕微鏡は、第2図に示すように触針
58を平行板バネ52の先端に取り付け、この部分の変
位量を変位計測器53で測定する構造となっている。測
定物54は、同様に平行板バネ52の先端に取り付けて
その一方のバネ端は、x、y、zの3次元に移動可能な
圧電素子55で駆動されるトライポット56の上に配置
されている。
A known example of this friction force microscope is the ``friction force microscope (
Measurement of magnetic disk surface by FFM): Proceedings of the 33rd National Conference of the Japanese Society of Lubrication (1988) P, 377-38
As shown in FIG. 2, this microscope has a structure in which a stylus 58 is attached to the tip of a parallel plate spring 52, and the displacement of this part is measured by a displacement measuring device 53. 54 is similarly attached to the tip of a parallel plate spring 52, and one spring end of the spring end is placed on a tripot 56 driven by a piezoelectric element 55 that can move in three dimensions of x, y, and z. .

測定物54と触針58の押し付け力は、2方向51のト
ライポット56を用いて行う構造となっている。更に摩
擦力の計測は、押し付け方向と直角のX方向49、Y方
向50に測定物54を動かすことによって行う。摩擦力
は、板バネの端部の触針を取り付けた部分の変位を計測
し、この値にそのバネのバネ剛性を乗することで求める
構成となっている。
The structure is such that the pressing force between the measuring object 54 and the stylus 58 is applied using trypots 56 in two directions 51. Further, the frictional force is measured by moving the object 54 in the X direction 49 and the Y direction 50, which are perpendicular to the pressing direction. The frictional force is determined by measuring the displacement of the end of the leaf spring where the stylus is attached, and multiplying this value by the spring stiffness of the spring.

この摩擦力顕微鏡は、平行板バネ52の固有振動数が小
さいため、触針58を取り付けた部分の板バネ部にマグ
ネット59を配置し、これによってダンパーを形成し1
、測定時、測定物54の表面の凹凸に触針が追従しやす
いような構成としている。
In this friction force microscope, since the natural frequency of the parallel plate spring 52 is small, a magnet 59 is placed on the plate spring part where the stylus 58 is attached, thereby forming a damper.
The structure is such that the stylus can easily follow the irregularities on the surface of the object 54 during measurement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来発明は、測定系の固有振動数が低く、高速で計
測を行うには適していない。ただし、この固有振動数の
低い点をカバーするため測定時に次のように配慮をして
いる。被測定物の凹凸に触針が追従することができず振
動を始めたとき、にその制振を行うため、マグネットダ
ンパーを付加している。また、装置への振動を除振し、
外部の振動の悪影響が測定系に入ってこないようにして
いる。
The conventional invention described above has a low natural frequency of the measurement system and is not suitable for high-speed measurement. However, in order to compensate for this low natural frequency, the following considerations are taken during measurement. A magnetic damper is added to dampen vibrations when the stylus cannot follow the unevenness of the object to be measured and begins to vibrate. It also isolates vibrations to the equipment,
This prevents the harmful effects of external vibrations from entering the measurement system.

さらに、この従来発明は測定の際、その摩擦力のみを測
定し押し付け力については計測していない2すなわち、
被測定物表面の凹凸で触針の位置が押し付け方向に変化
しその押し付け力が変わっても制御計測することが出来
ない構造となっている。
Furthermore, this conventional invention measures only the frictional force and does not measure the pressing force2, that is,
The structure is such that the position of the stylus changes in the pressing direction due to irregularities on the surface of the object to be measured, and even if the pressing force changes, control measurement cannot be performed.

また、上記従来技術では、微小な領域で摩擦力が変化す
る要因の一つと考えられる試料片の表面形状を測定し、
表示する機能がなく、他の測定技術を利用して表面形状
を得なければならなかった。
In addition, in the above conventional technology, the surface shape of the sample piece is measured, which is considered to be one of the factors that cause the frictional force to change in a minute area.
There was no display capability and other measurement techniques had to be used to obtain the surface profile.

しかし、試料片上において摩擦力を測定する範囲は非常
に微小であり、摩擦力を測定後、他の装置で同範囲を測
定することは技術的に困難であった。
However, the range in which the frictional force is measured on a sample piece is extremely small, and it is technically difficult to measure the same range using another device after measuring the frictional force.

また、上記従来技術では、3方向の圧電素子制御信号に
対する非直線性の補正と、3軸方向に駆動可能なように
圧電素子を組み合わせた試料移動機構の構造に起因する
3軸相互干渉の補正について配慮がされておらず、3軸
方向の測定座標に位置ずれが生じるという問題があった
In addition, in the above-mentioned conventional technology, correction of non-linearity with respect to piezoelectric element control signals in three directions and correction of mutual interference in three axes due to the structure of a sample moving mechanism that combines piezoelectric elements so as to be able to drive in three axes directions. However, there was a problem in that the measurement coordinates in the three axial directions were misaligned.

さらに、上記従来技術では、微小な領域で摩擦力が変化
する要因の一つと考えられる、試料片表面における潤滑
剤の塗布分布を測定する機能は考慮されていなかった。
Furthermore, the above-mentioned conventional technology does not take into account the function of measuring the lubricant coating distribution on the surface of the sample piece, which is considered to be one of the factors that causes the frictional force to change in a minute area.

このような、従来の問題点を解決するため本発明は考案
された。以下に本発明の目的を述べる。
The present invention was devised to solve these conventional problems. The purpose of the present invention will be described below.

本発明の第1の目的は、測定系の剛性を上げて固有振動
数を高め、外乱に強く高速計測が可能な摩擦力分布計測
を行なうため、剛性の大きなバネを使用することにある
。また、試料片と探針間の押しつけ荷重を常に一定に保
つ機能を付加し、連続的に精度の高い摩擦力分布測定を
行う装置を提供することにある。
A first object of the present invention is to increase the rigidity of the measurement system to increase the natural frequency and to use a spring with high rigidity in order to perform friction force distribution measurement that is resistant to external disturbances and can be measured at high speed. Another object of the present invention is to provide an apparatus that continuously measures the frictional force distribution with high precision by adding a function of always keeping the pressing load between the sample piece and the probe constant.

本発明の第2の目的は、平行板バネで摩擦力と押し付け
力を同時に計測できるものとすることである。
A second object of the present invention is to enable simultaneous measurement of frictional force and pressing force using parallel plate springs.

また、測定しようとする摩擦力は、磁気ディスク試料片
の表面形状と密接な関係が予想され、試料片の形状を知
ることは摺動特性解明の重要な手掛かりどなる。そこで
、本発明の第3の目的は、摩擦力測定と同時に試料片の
表面形状を測定できる機能を提供することにある。
Furthermore, the frictional force to be measured is expected to be closely related to the surface shape of the magnetic disk specimen, and knowing the shape of the specimen is an important clue for elucidating the sliding characteristics. Therefore, a third object of the present invention is to provide a function that can measure the surface shape of a sample piece at the same time as measuring the frictional force.

本発明の第4の目的は、圧電素子の非直線性と3軸相互
干?5量による指示した試料片上の測定点と実際の測定
点との位置ずれを補正する手段を提供することにある。
The fourth object of the present invention is to solve the problem of nonlinearity of piezoelectric elements and mutual interaction of three axes. It is an object of the present invention to provide a means for correcting a positional deviation between a specified measurement point on a sample piece and an actual measurement point due to a quantity of 5.

本発明の第5の目的は、摩擦力測定時のX軸バネ自身の
たわみによるX軸座標の位置ずれを補正する手段を提供
することにある。
A fifth object of the present invention is to provide a means for correcting a positional shift in the X-axis coordinate due to the deflection of the X-axis spring itself when measuring frictional force.

また、磁気ディスクの表面には潤滑剤が塗布されており
、ディスクとヘッド間に生じる摩擦力とは密接な関係が
あると考えられる。そこで1本発明の第6の目的は、摩
擦力測定とともに潤滑剤の塗布分布状態を測定する吸着
力測定機能を提供することにある。
Furthermore, a lubricant is applied to the surface of the magnetic disk, and it is thought that there is a close relationship with the frictional force generated between the disk and the head. Therefore, a sixth object of the present invention is to provide a suction force measurement function that measures the lubricant application distribution state as well as the friction force measurement.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために以下の手段を採用した。 The following measures were adopted to achieve the above objectives.

1、上記測定系の固有振動数を高めることを達成するた
めに、平行板ばネの材質をセラミックス製とし、更にこ
れを一体構造とする方式とした。
1. In order to increase the natural frequency of the measurement system, the parallel plate springs are made of ceramics and are integrated into an integrated structure.

この製作には、CVD (気相から化学的に安定な物質
を成長させる技術)の技術を用いる。また、このバネを
一体構造で製作する他の技術として、その材質を金属と
して、メッキの電鋳技術を用いる。
This production uses CVD (a technology for growing chemically stable substances from the gas phase). In addition, as another technique for manufacturing this spring as an integral structure, the material is metal, and electroplating technique of plating is used.

2、この平行板バネを2段、3段に重ねてX、Yの2方
向、x、y、zの3方向の力を測定可能としたものであ
る。
2. By stacking these parallel leaf springs in two or three stages, it is possible to measure forces in two directions, X and Y, and in three directions, x, y, and z.

3、摩擦力測定中のZ軸方向のバネ変位量を検出するZ
軸変位量検出器を設け、Z軸方向のバネ変位量が常に一
定の位置、つまり常に一定の押しつけ加重となるように
検出した変位量を電気的信号に変換してZ軸圧電素子邸
動部へフィードバックを行うようにした。
3. Z to detect the amount of spring displacement in the Z-axis direction during friction force measurement
A shaft displacement amount detector is provided, and the detected displacement amount is converted into an electrical signal so that the spring displacement amount in the Z-axis direction is always at a constant position, that is, the pressing load is always constant. Feedback was provided to

4、二次元走査時に、試料片の表面形状に応じて出力さ
れる、押しつけ荷重一定制御のためのZ軸圧型素子への
フィードバック制御信号量を、表示装置に出力し、試料
の表面形状を表示するようにした。
4. During two-dimensional scanning, the feedback control signal amount to the Z-axis pressure type element for constant pressing load control, which is output according to the surface shape of the sample piece, is output to the display device to display the surface shape of the sample. I decided to do so.

5.圧電素子の非直線性および3軸相互干渉補正のため
、車軸の電圧制御に対する各軸の変位量特性を調べ、3
軸の制御電圧から軸干渉量成分を打ち消し、かつ非直線
性を直線性に補正するような軸干渉補正回路を圧電素子
乱動回路内に設けた。
5. In order to correct the nonlinearity of the piezoelectric element and the mutual interference of the three axes, we investigated the displacement characteristics of each axis with respect to the voltage control of the axle.
An axis interference correction circuit that cancels the axis interference amount component from the axis control voltage and corrects nonlinearity to linearity is provided in the piezoelectric element disturbance circuit.

6、摩擦力測定時のX軸バネのたわみによるX軸座標の
位置ずれは、サンプリングした測定点毎に、その時点の
摩擦力から座標補正量を求め、測定点のX軸座標補正を
行いながら摩擦力分布表示を行うようにした。
6. The positional deviation of the X-axis coordinate due to the deflection of the X-axis spring when measuring the frictional force is determined by calculating the coordinate correction amount from the frictional force at that point for each sampled measurement point, and correcting the X-axis coordinate of the measurement point. Frictional force distribution display is now available.

7、試料片表面における潤滑剤の塗布分布を測定するた
めに吸着力測定の機能を設けた。本測定方法は、試料片
を一度探針に目標とする荷重量となるまで押しつけた後
、試料片を探針から徐々に離して行く制御を行うように
し、この時探針が試料片にどこまで吸着するかをZ軸バ
ネの変位量で測定するようにした。以後、同様の手順で
微小な二次元範囲の吸着力分布として測定するようにし
た。
7. A suction force measurement function was provided to measure the lubricant coating distribution on the surface of the sample piece. In this measurement method, the sample piece is once pressed against the probe until the target load is reached, and then the sample piece is gradually separated from the probe. The adsorption is measured by the amount of displacement of the Z-axis spring. Thereafter, the same procedure was used to measure the adsorption force distribution in a minute two-dimensional range.

〔作用〕[Effect]

上記技術手段による作用を以下に述べる。 The effects of the above technical means will be described below.

1、平行板バネの材質をセラミックスとし更にこれを一
体構造とすることで固有振動数を高くすることが可能と
なる。セラミックスの一種類であるSiCの物性値を用
いてその固有振動数を計算してみると、SiCの密度は
3.2g/alで、ヤング率は43,000kg/mn
2である。金属(例えばステンレス)と比較するとヤン
グ率が約2倍で、密度が約2.5分の1となっている。
1. By using ceramic as the material of the parallel leaf spring and making it an integral structure, it is possible to increase the natural frequency. Calculating the natural frequency using the physical properties of SiC, a type of ceramic, reveals that the density of SiC is 3.2 g/al and the Young's modulus is 43,000 kg/mn.
It is 2. Compared to metals (for example, stainless steel), the Young's modulus is about twice, and the density is about 1/2.5.

固有振動数は五フiで表される。ここでMは質量で、K
ばバネ定数を表す。バネ定数はヤング率と比例関係にあ
るので金属材料で平行板バネを作った場合、比較のため
その質量を1、ヤング率を1とすると固有振動数はlと
なる。
The natural frequency is expressed by five i. Here M is mass and K
represents the spring constant. Since the spring constant is proportional to Young's modulus, when a parallel plate spring is made of a metal material, and for comparison, assuming its mass to be 1 and Young's modulus to be 1, the natural frequency will be l.

一方、セラミックスの固有振動数を求めると質量は0.
4 、バネ剛性は2となる。この結果、固有振動数は2
.2 となる。セラミックスと金属の平行板バネを同形
状とした場合、2.2倍の高い固有振動数が得られるわ
けである。
On the other hand, when determining the natural frequency of ceramics, the mass is 0.
4, the spring stiffness is 2. As a result, the natural frequency is 2
.. It becomes 2. If the parallel plate springs made of ceramic and metal have the same shape, a natural frequency 2.2 times higher can be obtained.

2、セラミックスを材料として一体型の平行板バネをC
VDの方法を用いて作る場合は、接合方式で作る場合と
比較して、接合部に余分な肉が必要無くなり、軽量化が
図れるのでさらに固有振動数の増加には有利となる。
2.C is an integrated parallel plate spring made of ceramics.
When manufacturing using the VD method, compared to manufacturing using the joining method, there is no need for extra meat at the joint, and the weight can be reduced, which is further advantageous in increasing the natural frequency.

金属材料のメッキを利用する電鋳技術で同様な一体構造
の軽量化された平行板バネを製作することが可能となる
Electroforming technology that utilizes plating of metal materials makes it possible to manufacture a similar lightweight parallel plate spring with an integral structure.

3、一体型平行板バネのうち上部のバネはX軸方向のみ
にたわむことができ、下部のバネはZ軸方向にのみたわ
むことができる構造となっている。また、それぞれのバ
ネ変位量を検出するX軸、Z軸の変位検出器が設置され
ている。これにより、X軸方向のバネ変位量とZ軸バネ
の変位量を同時に測定することが可能となった。さらに
、剛性が比較的大きなバネを用いても、Z軸方向のバネ
変位量が一定となるように連続的にZ軸圧電素子を制御
することで、Z軸方向の押しつけ荷重を常に一定にする
ことができ、微小な範囲の微小な摩擦力を精度良く測定
することが可能となった。
3. The upper spring of the integrated parallel plate spring can be bent only in the X-axis direction, and the lower spring can be bent only in the Z-axis direction. Additionally, X-axis and Z-axis displacement detectors are installed to detect the amount of displacement of each spring. This makes it possible to simultaneously measure the amount of spring displacement in the X-axis direction and the amount of displacement of the Z-axis spring. Furthermore, even if a spring with relatively high rigidity is used, by continuously controlling the Z-axis piezoelectric element so that the amount of spring displacement in the Z-axis direction is constant, the pressing load in the Z-axis direction can always be kept constant. This makes it possible to accurately measure minute frictional forces in a minute range.

4、前記のように摩擦力を連続的に測定する際に、探針
への押しつけ荷重を常に一定に保つためには、試料片の
表面形状に応じてZ軸圧電素子を制御する技術が必要と
なる。この時のZ軸圧型素子制御用のフィードバック制
御信号量は、試料片表面の凹凸の大きさを反映している
。従って、このフィードバック制御信号量を表示装置に
表示することで、摩擦力測定と同時に試料片上における
同範囲の表面形状を得ることが可能となった。
4. When continuously measuring frictional force as mentioned above, in order to keep the pressing load on the probe constant, a technology is required to control the Z-axis piezoelectric element according to the surface shape of the sample piece. becomes. The amount of feedback control signal for controlling the Z-axis pressure type element at this time reflects the size of the unevenness on the surface of the sample piece. Therefore, by displaying this feedback control signal amount on a display device, it has become possible to measure the frictional force and simultaneously obtain the surface shape of the same range on the sample piece.

5、圧電素子の電圧制御に対する非直線性と、3軸相互
干渉に起因する試料上の指定した測定点と実際の測定点
との位置ずれを補正するため、車軸の圧電素子を制御し
た際の印加電圧に対する変位誤差量、および3軸間の干
渉量を予め測定し、これを補正の予備データとした。さ
らに、3軸圧電素子にそれぞれ制御電圧を与えたとき、
予備データをもとに各軸の制御電圧から変位誤差量分と
軸干渉量分に相当する電圧を差し引くように動作する軸
干渉補正回路を圧電素子開動回路内に設けた。これによ
り、リアルタイムに圧電素子の非直線性と3軸相互干渉
量を補正することが可能となった。
5. In order to correct the non-linearity of piezoelectric element voltage control and the positional deviation between the specified measurement point on the sample and the actual measurement point due to three-axis mutual interference, we The amount of displacement error with respect to the applied voltage and the amount of interference between the three axes were measured in advance and used as preliminary data for correction. Furthermore, when applying control voltages to each of the three-axis piezoelectric elements,
An axis interference correction circuit that operates to subtract a voltage corresponding to the displacement error amount and the axis interference amount from the control voltage of each axis based on preliminary data was provided in the piezoelectric element opening circuit. This makes it possible to correct the nonlinearity of the piezoelectric element and the amount of three-axis mutual interference in real time.

6、摩擦力測定時のX軸方向のバネのたわみによる測定
点の位置ずれ量は、個々の測定点での摩擦力の大きさと
X軸バネのバネ定数から求めることができる。そこで摩
擦力分布表示時に測定点の位置ずれ量を補正しながら表
示する機能を設けた。これにより、摩擦力測定における
X軸方向の測定位置精度向上が実現した。
6. The amount of positional deviation of a measurement point due to the deflection of the spring in the X-axis direction when measuring the frictional force can be determined from the magnitude of the frictional force at each measurement point and the spring constant of the X-axis spring. Therefore, when displaying the frictional force distribution, we have provided a function that displays the amount of positional deviation of the measurement point while correcting it. This has made it possible to improve the measurement position accuracy in the X-axis direction in frictional force measurement.

7、本装置にはZ軸バネ変位量を測定するために、X軸
変位検出器の他に、X軸方向にも変位検出器が設けであ
る。よって、2方向の探針に対する試料片の押しつけ荷
重量検出の他に、Z方向の試料片に対する探針の吸着力
の測定が可能である。これにより、本装置では試料片の
摩擦力分布および吸着力分布の2種類の力分布測定を行
うことが可能となる。
7. In order to measure the amount of Z-axis spring displacement, this device is equipped with a displacement detector in the X-axis direction in addition to the X-axis displacement detector. Therefore, in addition to detecting the amount of load pressing the sample piece against the probe in two directions, it is possible to measure the adsorption force of the probe on the sample piece in the Z direction. As a result, this device can measure two types of force distributions: the frictional force distribution and the adsorption force distribution on the sample piece.

[実施例〕 本発明の一実施例を第1図により説明する。この図は、
摩擦力R微鏡の摩擦力測定時を示したもので、測定物3
1と触針32が接触している。触針32は、平行板バネ
33.34を二段に積み上げた上に固定している。平行
板バネ33.34の変形量を測定するために変位計35
.36が配置されている。一方、測定物1はその位置を
X49゜Y2O,251の3次元方向に移動可能なトラ
イポット37の上に取り付いている。トライポット37
にはX49.Y51,251(7)それぞれの方向に圧
電素子38,39,40が取り付ついている。
[Example] An example of the present invention will be described with reference to FIG. This diagram is
Frictional force R This shows the frictional force measured by the microscope.Measurement object 3
1 and the stylus 32 are in contact with each other. The stylus 32 is fixed to parallel plate springs 33 and 34 stacked in two stages. A displacement meter 35 is used to measure the amount of deformation of the parallel plate springs 33 and 34.
.. 36 are arranged. On the other hand, the object 1 to be measured is mounted on a tripod 37 whose position can be moved in the three-dimensional direction of X49°Y2O, 251. Tripot 37
X49. Piezoelectric elements 38, 39, and 40 are attached to Y51, 251 (7) in respective directions.

測定時の動きを説明すると測定物31と触針32の接近
した状態でトライポット37のZ方向51の圧電素子3
8を註動して両者を接触させる。
To explain the movement during measurement, when the object to be measured 31 and the stylus 32 are close to each other, the piezoelectric element 3 of the trypot 37 moves in the Z direction 51.
Note 8 to bring them into contact.

ここで、その接触による押し付け力は2方向51の力を
検知する平行板バネ34によって制御する。
Here, the pressing force due to the contact is controlled by a parallel leaf spring 34 that detects the force in two directions 51.

測定物31と触針32の接触が開始されると平行板バネ
34が変形を始める。この変形量を変位計35によって
測定し、平行板バネ34のバネ剛性をこの変形量に乗じ
て押し付け力を求めるわけである。続いて、所定の押し
付け力が得られたらY方向50の圧電素子39を暉動し
て、触針32で測定物31の表面を引っかく、この時発
生する力を平行板バネ34で検知しこの力を摩擦力とす
る。
When the object 31 and the stylus 32 begin to come into contact with each other, the parallel leaf spring 34 begins to deform. This amount of deformation is measured by the displacement meter 35, and the pressing force is determined by multiplying this amount of deformation by the spring rigidity of the parallel plate spring 34. Next, when a predetermined pressing force is obtained, the piezoelectric element 39 in the Y direction 50 is moved to scratch the surface of the object 31 with the stylus 32. The force generated at this time is detected by the parallel plate spring 34, and the force generated at this time is detected by the parallel plate spring 34. Force is frictional force.

ここで、2段に積み上げたシェル構造の平行板バネ33
.34がそれぞれの方向の力を検知している。平行板バ
ネ33.34は、その板厚が数十ミクロンで、高さが数
ミリメートルである。この寸法で材質をセラミックスと
すれば、測定方向のバネ剛性はIK/200nm程度で
、低次の固有振動数は500Hz程度とすることができ
る。
Here, parallel plate springs 33 with a shell structure stacked in two stages
.. 34 detects the force in each direction. The parallel leaf springs 33 and 34 have a thickness of several tens of microns and a height of several millimeters. If the material is ceramic with these dimensions, the spring stiffness in the measurement direction can be approximately IK/200 nm, and the low-order natural frequency can be approximately 500 Hz.

続いてこのセラミックス環の平行板バネをCVDの技術
を用いて製作する方法を第3図を用いて説明する。まず
、直方体のブロック41を作っておき(a)、この周り
にS i C42を平行板バネの板厚43となる所定の
寸法だけ成長させる(b)。
Next, a method of manufacturing this ceramic ring parallel plate spring using CVD technology will be explained with reference to FIG. First, a rectangular parallelepiped block 41 is made (a), and S i C 42 is grown around it by a predetermined dimension corresponding to the plate thickness 43 of the parallel leaf spring (b).

そして直方体のブロック41の向いあった2面の5iC
42を機械加工等で取り去り(C)、続いてその内部の
ブロックを抜取ったのち残ったものが平行板バネとなる
(d)。
And 5iC on two opposite sides of the rectangular parallelepiped block 41
42 is removed by machining or the like (C), and then the block inside it is extracted, and what remains becomes a parallel leaf spring (d).

また、金属のメッキ技術を用いて同様な平行板バネを製
作することが可能とぼる。上記したCVDでSiCを付
ける変わりに金属メッキで直方体のブロック表面に付け
、この後、SiCと同様の方法を用いて平行板バネを作
る。
It is also possible to manufacture similar parallel plate springs using metal plating technology. Instead of attaching SiC by the above-mentioned CVD, it is attached to the surface of the rectangular parallelepiped block by metal plating, and then a parallel plate spring is made using the same method as for SiC.

この操作で製作した平行板バネを2段に重ねればX49
.Y方向5oのカを検知可能な力検出器ができる。
If you stack the parallel plate springs made in this way into two layers, it will become X49.
.. A force detector capable of detecting force in the Y direction 5o can be created.

本発明による別の実施例を第4図に示す。この構造は平
行板バネ43,44,45を3段に重ねて、それぞれ3
方向の方を検知する構造としたものである。触針32は
、ji−上部に配置した、2方向51の平行板バネ43
上に取り付けられている。
Another embodiment according to the invention is shown in FIG. This structure has parallel leaf springs 43, 44, and 45 stacked in three stages, each with three
It has a structure that detects the direction. The stylus 32 is connected to a parallel plate spring 43 in two directions 51 arranged at the top of the ji-
mounted on top.

それぞれの平行板バネ43,44,45に対応して変位
の検出器46.47.48が取り付いた構成となってい
る。この構造とすることで、X49゜Y方向50の摩擦
力が同時に測れる構造となる。
Displacement detectors 46, 47, and 48 are attached to each of the parallel plate springs 43, 44, and 45, respectively. With this structure, the friction force in the X49° and Y directions 50 can be measured simultaneously.

この時押し付け方向は、Z方向51となる。At this time, the pressing direction is the Z direction 51.

第5図は本発明を適用した微小摩擦力測定装置の全体構
成図であり、制御信号バス15で接続された制御パソコ
ン1.D/Aコンバータ2.ディジタイザ3と、圧電素
子駆動回路4.試料片16(例えば磁気ディスク片)を
取り付けた試料移動機構部5.X軸バネ7とZ軸バネ8
および探針9で構成されたバネ機構部6、およびX軸バ
ネ、2軸バネの変位検出器10,11で構成される。ま
た、圧電素子駆動回路4は、X軸、Y軸圧型素子駆動部
12(二次元走査部)、Z軸圧型素子を制御するZ軸圧
型素子駆動部13.X軸、Y軸圧電素子駆動部12とZ
軸圧型素子乱動部13の制御電圧から、二次元走査の位
置ずれを補正する軸相互干渉補正回路17、および押し
つけ荷重を目標値に一定に保つフィードバック回路部1
4で構成される。
FIG. 5 is an overall configuration diagram of a microfrictional force measuring device to which the present invention is applied, and shows a control personal computer 1. D/A converter 2. Digitizer 3, piezoelectric element drive circuit 4. A sample moving mechanism section 5 to which a sample piece 16 (for example, a magnetic disk piece) is attached. X-axis spring 7 and Z-axis spring 8
A spring mechanism section 6 includes a probe 9, and displacement detectors 10 and 11 for an X-axis spring and a biaxial spring. The piezoelectric element drive circuit 4 also includes an X-axis and a Y-axis pressure type element drive section 12 (two-dimensional scanning section), and a Z-axis pressure type element drive section 13 that controls the Z-axis pressure type element. X-axis, Y-axis piezoelectric element drive section 12 and Z
An axial mutual interference correction circuit 17 that corrects positional deviation in two-dimensional scanning based on the control voltage of the axial pressure type element disturbance section 13, and a feedback circuit section 1 that keeps the pressing load constant at a target value.
Consists of 4.

試料移動機構部5をあらかじめ探針と接触する直前の位
置に手動操作等で設定した後、制御パソコン1からD/
Aコンバータ2を介し、X、Y軸圧型素子の駆動範囲、
Z軸圧型素子の押しつけ荷重目標値およびX軸方向走査
速度をそれぞれ設定する。圧電素子駆動回路4は、X軸
方向走査速度が設定された時点から試料移動機構部5へ
駆動信号を送品し、摩擦力の二次元分布測定を開始する
After setting the sample moving mechanism section 5 manually to a position immediately before contacting the probe, the D/
Through the A converter 2, the drive range of the X and Y axis pressure type elements,
The pressing load target value and the scanning speed in the X-axis direction of the Z-axis pressure type element are respectively set. The piezoelectric element drive circuit 4 sends a drive signal to the sample moving mechanism section 5 from the time when the X-axis scanning speed is set, and starts measuring the two-dimensional distribution of frictional force.

同時にX軸およびZ軸変換検出器10.11の検出信号
は、圧電素子の制御信号とともにディジタイザ3でデジ
タル値に変換、−時記憶した後、制御パソコン1に取り
込む。以上の操作により、摩擦力の二次元測定が可能で
ある。
At the same time, the detection signals of the X-axis and Z-axis conversion detectors 10 and 11 are converted into digital values by the digitizer 3 along with the control signals of the piezoelectric elements, and after being stored in the digital value, they are taken into the control personal computer 1. The above operations enable two-dimensional measurement of frictional force.

第6図は、上記装置に採用した二次元走査時に探針9と
試料片16間の押しっけ荷重を一定に保つための回路構
成を示した図である。本回路は、Z軸変位検出器11で
Z軸バネ8の変位量を連続して測定し、圧電素子駆動回
路4のフィードバック回路14、Z軸圧電素子耗動部1
3および軸干渉補正回路17を介して試料移動機構部5
の2軸圧電素子のZ軸バネ8の変位量を補正するように
動作する。
FIG. 6 is a diagram showing a circuit configuration employed in the above apparatus for keeping the pushing load between the probe 9 and the sample piece 16 constant during two-dimensional scanning. In this circuit, the Z-axis displacement detector 11 continuously measures the amount of displacement of the Z-axis spring 8, and the feedback circuit 14 of the piezoelectric element drive circuit 4 and the Z-axis piezoelectric element wear section 1
3 and the sample moving mechanism section 5 via the axis interference correction circuit 17.
It operates to correct the displacement amount of the Z-axis spring 8 of the two-axis piezoelectric element.

第7図は、探針9と試料片16間の押しつけ荷重一定制
御を行っている際の、圧電素子駆動回路4のZ軸圧型素
子駆動部13に与えられるフィードバック制御信号量V
zを表示する機能を示した図である。二次元走査中にお
けるX軸方向の1走査分のフィードバック制御信号量1
8を一枚の表示装置19に表示することによって、試料
片16の表示形状分布図として得ることができる。
FIG. 7 shows the amount of feedback control signal V given to the Z-axis pressure type element drive section 13 of the piezoelectric element drive circuit 4 when performing constant pressing load control between the probe 9 and the sample piece 16.
FIG. 3 is a diagram showing a function of displaying z. Feedback control signal amount 1 for one scan in the X-axis direction during two-dimensional scanning
8 on one display device 19, it is possible to obtain a display shape distribution map of the sample piece 16.

第8図は、試料移動機構部5の3軸相互干e量を補正す
る軸干渉補正回路17の回路図である。
FIG. 8 is a circuit diagram of an axial interference correction circuit 17 that corrects the three-axis mutual drying amount of the sample moving mechanism section 5.

本回路はX、Y軸圧型素子駆動部および2軸圧電素子駆
動部から出力される3軸の制御信号Vx。
This circuit uses a three-axis control signal Vx output from an X- and Y-axis piezoelectric element drive unit and a two-axis piezoelectric element drive unit.

Vy、Vzから、次に示す補正式によって導かれる軸干
渉補正信号Vx’ + Vy’ 、Vz’ となるよう
に制御信号変換を行う。
Control signal conversion is performed from Vy and Vz so that axis interference correction signals Vx' + Vy' and Vz' are derived by the following correction formula.

Vx’ =aVx+bVy+cVz    −=(1)
Vy’ ==dVx+eVy+fVz    =42)
Vx’ =gVx+hVy+iVz    −(3)こ
こで、補正定数a−1は使用する試料移動機構部5の構
造ごとに一義的に決まる値であり、変位誤差量分と軸干
渉量分の和がプラスであれば補正定数は負の値に、和が
マイナスであれば正の値となる。可変抵抗VRI〜VR
9と固定抵抗R1〜R11は、制御信号V x 、 V
 y 、 V z ニ上記の補正定数a = iを乗じ
た値が補正信号Vx’。
Vx' =aVx+bVy+cVz -=(1)
Vy'==dVx+eVy+fVz=42)
Vx' = gVx + hVy + iVz - (3) Here, the correction constant a-1 is a value that is uniquely determined for each structure of the sample moving mechanism section 5 used, and the sum of the displacement error amount and the axis interference amount is positive. If so, the correction constant will be a negative value, and if the sum is negative, it will be a positive value. Variable resistance VRI~VR
9 and fixed resistors R1 to R11 are connected to control signals V x , V
The value obtained by multiplying y, Vz by the above correction constant a = i is the correction signal Vx'.

Vy’、Vz’ となるように回路を構成する。The circuit is configured so that Vy' and Vz'.

第9図は、二次元走査時に摩擦力によるばね機構部6の
X軸ばね7がX軸方向にたわむため、摩擦力分布を画面
に表示する際にX軸の座標位置ずれを補正することを示
した図である。同図(a)。
FIG. 9 shows that since the X-axis spring 7 of the spring mechanism 6 is deflected in the X-axis direction due to frictional force during two-dimensional scanning, it is necessary to correct the X-axis coordinate position shift when displaying the frictional force distribution on the screen. FIG. Same figure (a).

(b)においてP、はX軸座標補正前の一定点、P o
Lは測定点P。のX軸座標補正後の測定点、X、は測定
点P、のX軸座標、Xo′は測定点P。′のX軸座標、
Foは測定点P0およびP0′の摩擦力の大きさを、そ
れぞれ示している。
In (b), P is a fixed point before X-axis coordinate correction, P o
L is the measurement point P. The measurement point after the X-axis coordinate correction, X is the X-axis coordinate of the measurement point P, and Xo' is the measurement point P. ’ X-axis coordinate,
Fo indicates the magnitude of the frictional force at measurement points P0 and P0', respectively.

同図(a)はX軸座標補正前の摩擦力分布図の一例を示
ており、測定点P。のX座標X。は摩擦によるX軸ばね
たわみ量によるX座標誤差が含まれている。他の測定点
についても同様に摩擦力の大きさに比例したX座標誤差
が含まれており、例えば測定点P0 におけるX軸ばね
のたわみ量は、で表すことができる。ここで、kはX軸
ばねのばね定数である。このX軸ばねのたわみ量は、す
なわちX座標誤差であり、また、 測定点P、のX座標誤差[m]=X、[m]−X。’ 
[m]・・(5) という関係式から、補正後のX座標X。′は、で求める
ことができる。
FIG. 5(a) shows an example of a friction force distribution diagram before X-axis coordinate correction, and measurement point P is shown in FIG. X coordinate of includes the X-coordinate error due to the amount of X-axis spring deflection due to friction. Similarly, the other measurement points include an X-coordinate error proportional to the magnitude of the frictional force, and for example, the amount of deflection of the X-axis spring at the measurement point P0 can be expressed as follows. Here, k is the spring constant of the X-axis spring. The amount of deflection of this X-axis spring is the X-coordinate error, and the X-coordinate error of the measurement point P [m]=X, [m]-X. '
[m]...(5) From the relational expression, the corrected X coordinate X. ′ can be found by

第10図は、本装置が試料片の微小な二次元領域で微小
な摩擦力と吸着力を測定し、分布図を表示する機能を有
することを示す図である。吸着力測定は2軸圧電素子を
駆動し、試料片16を一定の押しつけ荷重で探針9に押
し当てた後、Z軸圧型素子を徐々に元に戻す制御を行な
った時、探針9が吸着力によってどこまで試料片16に
吸着するかをZ軸ばね8の変位量として、Z軸変位検出
器8で測定するものである。
FIG. 10 is a diagram showing that the present device has a function of measuring minute frictional force and adsorption force in a minute two-dimensional area of a sample piece and displaying a distribution map. The adsorption force measurement is performed by driving the two-axis piezoelectric element, pressing the sample piece 16 against the probe 9 with a constant pressing load, and then controlling the Z-axis piezoelectric element to gradually return to its original position. The amount of displacement of the Z-axis spring 8 is measured by the Z-axis displacement detector 8 to determine how far the sample piece 16 is attracted by the attraction force.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように構成されるので以下に記載
するような効果を得ることが出来る。
Since the present invention is configured as described above, it is possible to obtain the effects described below.

本発明によれば、セラミックス製の平行板バネとするこ
とにより固有振動数を増加させることが出来る。またC
VD、電鋳の技術を用いて平行板バネを製作することで
、軽量化した平行板バネとすることが可能となり、固有
振動数を増加させることが出来る。このため、外乱の影
1!!を受けにくいばね機構部となり、試料片と探針間
の押しっけ荷重を精度よく一定に保つことができる。平
行板バネを2個重ねることでX、Y2方向の力が検知可
能となる。さらに3個重ねることでx、y、z3方向の
力が検出可能となる。
According to the present invention, the natural frequency can be increased by using a ceramic parallel plate spring. Also C
By manufacturing parallel plate springs using VD and electroforming techniques, it is possible to make the parallel plate springs lightweight, and the natural frequency can be increased. For this reason, the shadow of disturbance 1! ! It becomes a spring mechanism that is not easily affected, and the pushing load between the sample piece and the probe can be kept constant with high precision. By stacking two parallel plate springs, it is possible to detect forces in two directions, X and Y. By stacking three more, it becomes possible to detect forces in three directions: x, y, and z.

さらに、試料表面の微小な摩擦力測定と同時に表面形状
の測定が可能である。さらに、試料移動機構部の3軸相
互干渉を補正することと、摩擦力測定時のX軸方向の位
置ずれを補正することができる。また、摩擦力測定と吸
着力測定も行なうことができる。この結果、摩擦力およ
び吸着力の高精度な測定が実現できる。
Furthermore, it is possible to measure the surface shape at the same time as measuring the minute frictional force on the sample surface. Furthermore, it is possible to correct three-axis mutual interference of the sample moving mechanism and to correct positional deviation in the X-axis direction during frictional force measurement. It is also possible to measure frictional force and adsorption force. As a result, highly accurate measurement of frictional force and adsorption force can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の摩擦力顕微鏡の斜視図、
第2図は、従来の技術による摩擦力顕微鏡を示す斜視図
、第3図は、本発明によるセラミックス製の平行板バネ
の製造方法を示した斜視図、第4図は、本発明の他の実
施例の摩擦力顕微鏡の斜視図、第5図は、本発明を用い
た微小摩擦力測定装置の全体構成を示す図、第6図は、
探針と試料間の押しつけ荷重を一定に保つための回路構
成を示す図であり、第7図は、前記押しつけ荷重−定制
御を行っている時の圧電素子駆動回路の2軸圧電素子廓
動部に与えられるフィードバック信号量を表示する機能
を示した図、第8図は、試料移動機構部の3軸相互干渉
量を補正する軸干渉補正回路の一回路例を示す図、第9
図(’a)、(b)は、それぞれ摩擦力分布を画面に表
示する際にX軸の座標位置ずれを補正することを示す図
、第10図は、本装置が摩擦力を測定する機能と吸着力
を測定する機能を備えたことを示す図である。 1・・・制御ハソコン、2・・・D/Aコンバータ、3
・・ディジタイザ、4・・・圧電素子駆動回路、5・・
試料移動機構部、6・・・ばね機構部、7・・・X軸ば
ね、8・・・Z軸ばね、9・・・探針、10・・・X軸
変位検出器、11・・・2軸変位検出器、12・・・X
、Y軸圧電素子廓動部、13・・・2軸圧電素子卵動部
、14・・フィードバック回路、15・・・制御信号バ
ス、16・・・試料片、17・・・軸相互干渉補正回路
、18・・・1走査のフィードバック信号量の一例、1
9・・・表示装置、31・・・測定物、32・・・触針
、33・・・平行板バネ、35・・・変位計、37・・
・トライポット、38・・・圧電素子、41・・・ブロ
ック、42・・・SiC,Vx・・・X軸圧型素子の制
御電圧、Vy・・・y軸圧型素子の制御電圧、Vz・・
・Z軸圧型素子の制御電圧、Vx’・・・X軸圧型素子
の補正電圧、vy′・・・Y軸圧型素子の補正電圧、V
z’・・・Z軸圧型素子の補正電圧、VRI〜VR9・
・・可変抵抗、R1−R35・・・固定抵抗、OP 1
〜OP 5 ・・・オヘアンプ、a −i−9補正定数
、Po・・・X軸座標補正前の測定点、pH′・・・X
軸座標補正後の測定点、xo・・・測定点P0のX軸座
標、X 、 l・・・測定点P。′のX軸座標、Fo・
・測第 1 口 、第4  堵打ス友lで不   50  Y方間35 
 麦位針 第2 図 藁 仝 図 ′45 口 第 7 図 /I  ’l軸工’(IIff叉器 S         す      Nシ 19口 (α)
FIG. 1 is a perspective view of a friction force microscope according to an embodiment of the present invention;
FIG. 2 is a perspective view showing a friction force microscope according to the prior art, FIG. 3 is a perspective view showing a method for manufacturing a parallel plate spring made of ceramics according to the present invention, and FIG. FIG. 5 is a perspective view of a friction force microscope according to an embodiment, and FIG. 6 is a diagram showing the overall configuration of a minute friction force measurement device using the present invention.
FIG. 7 is a diagram showing a circuit configuration for keeping the pressing load between the probe and the sample constant, and FIG. 7 shows the biaxial piezoelectric element rotation of the piezoelectric element drive circuit when performing the pressing load constant control FIG. 8 is a diagram showing a function of displaying the amount of feedback signal given to the sample moving mechanism, and FIG.
Figures ('a) and (b) respectively show how to correct the X-axis coordinate position shift when displaying the frictional force distribution on the screen, and Figure 10 shows the function of this device to measure the frictional force. It is a figure showing that it is equipped with a function of measuring adsorption force. 1... Control computer, 2... D/A converter, 3
... Digitizer, 4... Piezoelectric element drive circuit, 5...
Sample moving mechanism section, 6... Spring mechanism section, 7... X-axis spring, 8... Z-axis spring, 9... Probe, 10... X-axis displacement detector, 11... 2-axis displacement detector, 12...X
, Y-axis piezoelectric element moving part, 13... Two-axis piezoelectric element moving part, 14... Feedback circuit, 15... Control signal bus, 16... Sample piece, 17... Axis mutual interference correction Circuit, 18...Example of feedback signal amount for one scan, 1
9...Display device, 31...Measurement object, 32...Stylus, 33...Parallel plate spring, 35...Displacement meter, 37...
-Tripot, 38...Piezoelectric element, 41...Block, 42...SiC, Vx...Control voltage of the X-axis pressure type element, Vy...Control voltage of the y-axis pressure type element, Vz...
・Control voltage of Z-axis pressure type element, Vx'... Correction voltage of X-axis pressure type element, vy'... Correction voltage of Y-axis pressure type element, V
z'...Correction voltage of Z-axis pressure type element, VRI~VR9・
・・Variable resistance, R1-R35 ・・Fixed resistance, OP 1
~OP 5...Oheamp, a-i-9 correction constant, Po...Measuring point before X-axis coordinate correction, pH'...X
Measurement point after axis coordinate correction, xo... X-axis coordinate of measurement point P0, X, l... Measurement point P. ’ X-axis coordinate, Fo・
・Measurement 1st mouth, 4th hit friend l de 50 Y direction 35
Fig. 7/I 'l shaft' (IIff fork S Nshi 19 (α)

Claims (1)

【特許請求の範囲】 1、X、Y、Zの3軸方向に駆動可能な圧電素子で構成
された試料移動機構と、各圧電素子を駆動回路で動かし
、試料片表面に触針を押し付け、試料片表面と触針間で
相対移動を行い、押し付け力とその直角方向の力である
摩擦力をバネの変形で測定し、ディスプレイ上にその結
果を表示する微小摩擦力測定装置において、相対運動時
、触針に働く摩擦力と押しつけ荷重を計測するバネの材
質をセラミックスとし、さらにその形状をシェル構造の
一体型平行板バネ方式とし、当該平行板バネを2段に重
ねることを特徴とする微小摩擦力測定装置。 2、請求項1記載の微小摩擦力測定装置において、セラ
ミックスのバネをCVDの方法を用いて製作することを
特徴とする微小摩擦力顕微鏡。 3、請求項1記載の微小摩擦力測定装置において、バネ
の材質を金属材料とし、メッキを用いて製作することを
特徴とする微小摩擦力装置。 4、請求項1記載の微小摩擦力測定装置において、平行
板バネを3段に重ねることによって、3方向の力を検出
することを特徴とする摩擦力測定装置。 5、請求項1記載の微小摩擦力測定装置において、押し
つけ力方向のバネ変位量をその方向の圧電素子駆動量に
連続的にフィードバックし、バネ変位量を一定に保つ手
段を持つことを特徴とする微小摩擦力測定装置。 6、請求項1記載の微小摩擦力測定装置において、試料
片の表面形状を表示するため、押しつけ荷重を一定に保
つためその方向の圧電素子のフィードバック制御信号量
を表示する手段を持つことを特徴とする微小摩擦力測定
装置。 7、請求項1記載の微小摩擦力測定装置において、圧電
素子の非直接性および3軸方向の相互干渉による測定点
の位置ずれを補正する手段を設けたことを特徴とする微
小摩擦力測定装置。 8、請求項1記載の微小摩擦力測定装置において、測定
時、バネのたわみによる測定点の位置ずれを補正する手
段を設けたことを特徴とする微小摩擦力測定装置。 9、請求項1記載の微小摩擦力測定装置において、磁気
ディスク試料片と探針間の摩擦力分布と吸着力分布を測
定する手段を両立させたことを特徴とする微小摩擦力測
定装置。
[Claims] 1. A sample moving mechanism composed of piezoelectric elements that can be driven in three axes of X, Y, and Z, and each piezoelectric element is moved by a drive circuit to press a stylus onto the surface of a sample piece, A microfrictional force measuring device that performs relative movement between the surface of a sample piece and a stylus, measures the pressing force and the frictional force in the direction perpendicular to it by the deformation of a spring, and displays the results on a display. The material of the spring that measures the frictional force and pressing load acting on the stylus at the time is ceramic, and the shape is an integrated parallel plate spring type with a shell structure, and the parallel plate springs are stacked in two stages. Microfrictional force measuring device. 2. The micro-frictional force measuring device according to claim 1, wherein the ceramic spring is manufactured using a CVD method. 3. The micro-frictional force measuring device according to claim 1, wherein the spring is made of a metal material and is manufactured using plating. 4. The minute frictional force measuring device according to claim 1, wherein forces in three directions are detected by stacking parallel plate springs in three stages. 5. The minute frictional force measuring device according to claim 1, further comprising means for continuously feeding back the amount of spring displacement in the direction of the pressing force to the amount of drive of the piezoelectric element in that direction to keep the amount of spring displacement constant. Micro friction force measuring device. 6. The microfrictional force measuring device according to claim 1, further comprising means for displaying the feedback control signal amount of the piezoelectric element in that direction in order to keep the pressing load constant in order to display the surface shape of the sample piece. Microfrictional force measurement device. 7. The micro-frictional force measuring device according to claim 1, characterized in that the micro-frictional force measuring device is provided with means for correcting positional deviation of the measurement point due to indirectness of the piezoelectric element and mutual interference in three axial directions. . 8. The minute frictional force measuring device according to claim 1, further comprising means for correcting positional deviation of the measuring point due to deflection of a spring during measurement. 9. The micro-frictional force measuring device according to claim 1, characterized in that the micro-frictional force measuring device has a means for measuring both the frictional force distribution between the magnetic disk sample piece and the probe and the adsorption force distribution.
JP27901190A 1990-10-19 1990-10-19 Very small frictional force measuring instrument Pending JPH04157340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27901190A JPH04157340A (en) 1990-10-19 1990-10-19 Very small frictional force measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27901190A JPH04157340A (en) 1990-10-19 1990-10-19 Very small frictional force measuring instrument

Publications (1)

Publication Number Publication Date
JPH04157340A true JPH04157340A (en) 1992-05-29

Family

ID=17605159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27901190A Pending JPH04157340A (en) 1990-10-19 1990-10-19 Very small frictional force measuring instrument

Country Status (1)

Country Link
JP (1) JPH04157340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151753A (en) * 2006-12-20 2008-07-03 Toyota Motor Corp Friction tester, frictional load applying method and frictional load inspecting method
JP2009145140A (en) * 2007-12-12 2009-07-02 National Institute For Materials Science Friction measuring device
JP2011180089A (en) * 2010-03-03 2011-09-15 Fukuoka Univ Shaft body support device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151753A (en) * 2006-12-20 2008-07-03 Toyota Motor Corp Friction tester, frictional load applying method and frictional load inspecting method
JP2009145140A (en) * 2007-12-12 2009-07-02 National Institute For Materials Science Friction measuring device
JP2011180089A (en) * 2010-03-03 2011-09-15 Fukuoka Univ Shaft body support device

Similar Documents

Publication Publication Date Title
US7685868B2 (en) Measuring head for nanoindentation instrument and measuring method using same
US5869751A (en) Multi-dimensional capacitive transducer
JP4980541B2 (en) Method and apparatus for correcting coordinate measurement error due to vibration of coordinate measuring machine (CMM)
US7246448B2 (en) Method for calibrating a probe
CN103968790B (en) Method and measurement apparatus for providing the static and dynamic location information of specified point
Richard et al. Friction identification for haptic display
US20030009898A1 (en) Characterization of compliant structure force-displacement behavior
US20080028626A1 (en) Use Of Surface Measurement Probes
JPH0348102A (en) Detecting apparatus of very small displacement, piezoelectric actuator having this detecting apparatus and scanning probe microscope having this piezoelectric actuator
Li et al. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines
Li et al. In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques
Thomsen-Schmidt Characterization of a traceable profiler instrument for areal roughness measurement
Chetwynd et al. A controlled-force stylus displacement probe
Mazzeo et al. Atomic force microscope for accurate dimensional metrology
Oiwa et al. Three-dimensional touch probe using three fibre optic displacement sensors
JPH04157340A (en) Very small frictional force measuring instrument
Dai et al. Measurement of micro-roughness using a metrological large range scanning force microscope
Li et al. Design of three-dimensional isotropic microprobe based on three-flexible-hinge suspension for measurement of microstructures
CN110017803A (en) A kind of REVO gauge head B axle error of zero scaling method
JPS62245131A (en) Scratch testing machine
Oiwa et al. Miniaturized three-dimensional touch trigger probe using optical fibre bundle
Kühnel et al. National comparison of spring constant measurements of atomic force microscope cantilevers
JP3177681B2 (en) Evaluation device for impact response of force sensor
Bos Tactile 3D probing system for measuring MEMS with nanometer uncertainty: aspects of probing, design, manufacturing and assembly
Hermann et al. Design of tactile measuring probes for coordinate measuring machines