JPH04156518A - Manufacture of space light modulation element and thin film - Google Patents

Manufacture of space light modulation element and thin film

Info

Publication number
JPH04156518A
JPH04156518A JP28211490A JP28211490A JPH04156518A JP H04156518 A JPH04156518 A JP H04156518A JP 28211490 A JP28211490 A JP 28211490A JP 28211490 A JP28211490 A JP 28211490A JP H04156518 A JPH04156518 A JP H04156518A
Authority
JP
Japan
Prior art keywords
light
thin film
layer
spatial light
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28211490A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Kuni Ogawa
小川 久仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28211490A priority Critical patent/JPH04156518A/en
Publication of JPH04156518A publication Critical patent/JPH04156518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform stable light switching and realize a high-speed action by laminating a stratified compound connected to a light conducting layer in the c-axis direction with the van der Waals force to constitute a space light modulation element. CONSTITUTION:A transparent conducting electrode 102 is formed on a transparent insulating substrate 101, a stratified compound 103 and a light conducting layer 104 are laminated on it, and a transparent conducting electrode 105 is formed. The stratified compound 103 is made of materials such as GaSe, GaS, PbI2, HgI2, InSe, InS, GaTe, HgTe, BiI2, CdI2, or it may be made of a single material among them, or two or more kinds of materials may be laminated. The material used for the light conducting layer 104 functions as a dielectric substance in darkness and loses the characteristic of the dielectric substance by photoconductivity when light is radiated, and an amorphous semiconductor made of at least one kind of element selected among C, Si, Ge and containing hydrogen is used for the material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 光演算装置あるいは投射型デイスプレィに用
いられる空間光変調素子、並びに高品質の薄膜を得るた
めの薄膜の製作方法に関するものであム 従来の技術 空間光変調素子(よ 光論理演算や光ニューロコンピユ
ーテイングなどの光演算を実現するための重要な素子で
あも 従来 光書き込み型の代表的な空間光変調素子として、
CdSe、  BSOまたは水素化非晶質シリコン(以
下、a−3i:Hと略記する)からなる光導電層と強誘
電液晶またはツイストネマチック液晶を積層したものが
あも まf:、、  1ll−Vl族化合物の薄膜の作製方法
としてハ分子線エピタキシー法が報告されている(寺L
](tl!、、′、:ヤバニーズ ジャーナル オブ 
アプライド フィジックス 28巻 12号 1989
年  L2134   L21.36頁、 N、Ter
aguchjet  a、]、、  Jj、A、P  
2j8(1,2ン (+989)  L2+34−L2
+36.   参照)。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a spatial light modulation element used in an optical processing device or a projection type display, and a thin film manufacturing method for obtaining a high quality thin film. Technology Spatial light modulator (Yo) It is an important element for realizing optical operations such as optical logical operations and optical neurocomputing.
A photoconductive layer made of CdSe, BSO or hydrogenated amorphous silicon (hereinafter abbreviated as a-3i:H) and a ferroelectric liquid crystal or twisted nematic liquid crystal are laminated together. The halide epitaxy method has been reported as a method for producing thin films of group compounds (Tera L.
](tl!,,′,: Yabanese Journal of
Applied Physics Volume 28 No. 12 1989
Year L2134 L21.36 pages, N, Ter
aguchjet a, ], Jj, A, P
2j8 (1,2n (+989) L2+34-L2
+36. reference).

発明か解決しようとする課題 上記の空間光変調素子において(よ 液晶層のスイチン
グ動作電界が101〜10 SV/c+nと高いため、
光導電層に印加される電界は同等もしくはそれ以上に大
きくなる。このため、光導電層の暗電流が大きくなり、
暗時においても液晶層がスイチングしてしましく 正し
い動作ができない問題があっ)4また 上記のIII−
Vl族薄膜の製作方法において(よ 閃亜鉛構造のもの
が成長しやすく、雲母を基板に用いても層状構造のII
I−Vl族薄膜は成長しないという問題があった 通驚
 機能素子は電界の印加によって動作するものが多い力
(雲母は絶縁性の基板であるたべ 上記の方法で雲母」
−に層状構造の薄膜成長ができてL 層状構造に充分な
電界の印加すること力丈 機能素子の作製が困難である
という問題もある。このたべ 層状構造の薄膜を得るた
めには ブリランマン法などの方法により成長させた結
晶を襞間により薄く剥して得る方法しかなかった 従っ
て、薄い膜厚の薄膜(例えば 1.7y、 m以下)、
あるいは異種の薄膜を多層に積層したベテロ接合などを
形成することか困難であり、層状構造のもつ特性を活か
した機能素子を作製することができないという問題があ
っf島上記の問題を解決するべく、本発明(よ 低電界
で動作する空間光変調素子を提供するものであり、また
 層状構造に電界の印加を容易できる導電性基板上てL
 層状構造の薄膜を成長させる薄膜の成長方法を提供す
るものである。
Problems to be Solved by the Invention In the spatial light modulator described above, since the switching operation electric field of the liquid crystal layer is as high as 101 to 10 SV/c+n,
The electric field applied to the photoconductive layer becomes equal to or greater than that. For this reason, the dark current in the photoconductive layer increases,
There is a problem that the liquid crystal layer switches even in the dark, making it impossible to operate correctly.
In the production method of Vl group thin films, those with a zinc blend structure are easy to grow, and even if mica is used as a substrate, a layered structure of II
There was a problem that I-Vl group thin films did not grow.Surprisingly, many functional devices operate by applying an electric field (mica is an insulating substrate).
Another problem is that it is difficult to apply a sufficient electric field to the layered structure, making it difficult to fabricate a functional device. The only way to obtain a thin film with a layered structure was to peel a crystal grown by a method such as the Brillant-Man method into thin layers between the folds.
Alternatively, it is difficult to form a veterinary junction in which different types of thin films are laminated in multiple layers, and it is difficult to create a functional element that takes advantage of the characteristics of the layered structure. , the present invention (provides a spatial light modulator that operates in a very low electric field, and also provides a spatial light modulator that can be used on a conductive substrate that can easily apply an electric field to a layered structure).
The present invention provides a method for growing a thin film having a layered structure.

課題を解決するための手段 上記の目的を達成するため(二 本発明の空間光変調素
子ζよ 光導電層とC軸方向がファンデルワールス力で
結び付いた層状化合物を積層した構造を有する。
Means for Solving the Problems In order to achieve the above objects (2) The spatial light modulator ζ of the present invention has a structure in which a photoconductive layer and a layered compound in which the C-axis direction is connected by van der Waals force are laminated.

本発明の薄膜の成長方法において(よ 導電性基板上に
G a S e、  G a S、  P b I 2
.  Hg T 2.  In S e、  I n 
S、  G a T e、  Hg T e、  B 
II z、Cdl1から選ばれた少なくとも1つ以上か
らなる薄膜を気相成長法で作製する。
In the thin film growth method of the present invention (G a S e, G a S, P b I 2
.. HgT2. In S e, I n
S, G a T e, Hg T e, B
A thin film made of at least one selected from IIz and Cdl1 is produced by a vapor phase growth method.

作用 層状化合物11  c面と平行な方向は共有結合してい
る力(C軸方向は弱いファン・デル・ワールスカにより
結び付いている。従って、単一の材料からなる場合にお
いてL ファン・デル・ワールスギャップによる封じ込
めを行った疑偏超格子とみなすことができ、電子・正孔
およびそれらが結合した励起子は層内に2次元的に閉じ
込められる。
Working Layered Compound 11 The direction parallel to the c-plane is a covalent bonding force (the C-axis direction is bonded by a weak van der Waalska. Therefore, in the case of a single material, L van der Waals gap It can be regarded as a pseudopolarized superlattice with confinement, and electrons, holes, and excitons combined with them are confined two-dimensionally within the layer.

そのた嵌 励起子の束縛エネルギは大きく、室温付近で
も安定に存在できる。
In addition, excitons have a large binding energy and can exist stably even at room temperature.

このような層状化合物に 外部から電界を印加すると励
起子の吸収スペクトルが長波長側にシフトするたべ あ
る波長の光は電界がない場合に透過するが電界が印加さ
れると吸収されて透過しない現象を示す。また このよ
うな光変調は1o3v/ c m程度の低電界で、 し
かも高速動作できる。
When an external electric field is applied to such a layered compound, the absorption spectrum of excitons shifts to longer wavelengths. This is a phenomenon in which light of a certain wavelength is transmitted in the absence of an electric field, but is absorbed and not transmitted when an electric field is applied. shows. Moreover, such optical modulation requires a low electric field of about 1o3v/cm and can operate at high speed.

従って、このような層状化合物と光導電層を組み合わせ
て空間光変調素子を構成すると、光導電層にかかる電界
強度は小さく、安定な光スイッチングを行うことができ
るとともに 高速動作を実現できる。
Therefore, when a spatial light modulator is constructed by combining such a layered compound and a photoconductive layer, the electric field strength applied to the photoconductive layer is small, and stable optical switching can be performed and high-speed operation can be realized.

また このような層状化合物 たとえばGaSe、Ga
SなどのIII−Vl族化合物の場合、 この結晶構造
はVI−III−111−Vrの4層で1つの閉殻構造
をとっていム III−VI族層状薄膜を作製する場合
、VI族原子を1層積層した後、 III族および■■
族原子を2層ずつ積層すればよい。気相成長を用いると
、III族元素を含むガスおよびVl族元素を含むガス
を基板上に交互に流し かつ基板温度の操作により基板
表面の吸着原子あるいは分子の吸着量を制御することに
より、 1層ずつあるいは2層ずつ原子層を堆積するこ
とができも 従って、この方法を用いれは 薄膜が層状
である故に 層状化合物以外の物質、例えば金属やIT
Oなどの導電性基板の上にも容易に結晶成長できも 実施例 本発明の実施例について、図面を参照しながら説明すも 第1図に本発明の空間変調素子の一実施例を示す。第1
図は透過型の一例を示している。
Also, such layered compounds such as GaSe, Ga
In the case of III-Vl group compounds such as S, this crystal structure has one closed-shell structure with four layers of VI-III-111-Vr. When producing a III-VI group layered thin film, one group VI atom is After layer lamination, group III and ■■
Two layers of group atoms may be stacked. When vapor phase growth is used, a gas containing group III elements and a gas containing group Vl elements are alternately flowed onto the substrate, and the amount of adsorbed atoms or molecules on the substrate surface is controlled by controlling the substrate temperature. Although it is possible to deposit atomic layers one layer at a time or two layers at a time, this method can be used to deposit materials other than layered compounds, such as metals or IT, since the thin film is layered.
Crystals can be easily grown on conductive substrates such as O.Example: Examples of the present invention will be described with reference to the drawings. Fig. 1 shows an example of the spatial modulation element of the present invention. 1st
The figure shows an example of a transmission type.

素子の構成(よ 透明絶縁性基板101(例えばガラス
板)上に透明導電性電極(例えば ITO,Snow、
Zn0x、AuまたはPt)102を形成しており、そ
の上に層状化合物層103および光導電層104を積層
し さらに透明導電性電極105を形成している。
Element configuration (i.e. transparent conductive electrode (e.g. ITO, Snow, etc.) on transparent insulating substrate 101 (e.g. glass plate)
A layered compound layer 103 and a photoconductive layer 104 are laminated thereon, and a transparent conductive electrode 105 is further formed.

空間光変調素子の動作について述べも 透明導電性電極
105より光照射するものとし かつ透明導電性電極1
02.105間に外部電圧Vが印加されているものとす
る。光照射前は光導電層104の電気インピーダンスが
太きいた敢 電圧Vはおもに光導電層104にかかつて
いも ここで光導電層104に光が照射されると光導電
層104の電気インピーダンスが低下し 電圧Vは主に
層状化合物層103に印加されるようになム 層状化合
物(よ 第2図に示すように電界によって吸収スペクト
ルが変化すも 従って、光導電層104への入射光強度
によって、層状化合物層103を透過する光量が変化す
も 例えば 第2図に示す波長において、 λ1の光を光導
電層104はよく吸収し λ2の光が層状化合物層10
3で変調されるものとする。まな λ2の光は読み出し
光として常にこの透明導電性電極105より入射されて
おり、信号光としてλ1の光を用いるものとする。この
場合 λ1の光強度か小さい場合はλ2の光は透明導電
性電極102より透過してくる力\λ1の光強度か大き
くなるとλ2の光はほとんど透過しなくな4 これ(よ
 光アドレス型空間光変調素子の動作であ4 まな λ2に対して光感度を有する光導電層104を用
(X、かつλ2の波長の入射光を透明導電性電極102
より照射する場合、層状化合物層103に電界がかかっ
ていないときは光導電層104に入射光が到達し 層状
化合物層103に電界がかかるようになり、λ2の光が
層状化合物層103で吸収されるので光導電層104に
光が到達しなくなる。従って、層状化合物103にかか
る電界が減少するたぬ λ2の光は光導電層に到達する
ようになも このように この素子に一定強度のλ2の
光を照射するだけで、上述のサイクルを繰り返すた敦 
光導電層104からの透過光はパルス状になも 従って
、この空間光変調素子は光パルス発生器としても動作す
る。
The operation of the spatial light modulator will also be described. Light is irradiated from the transparent conductive electrode 105, and the transparent conductive electrode 1
It is assumed that the external voltage V is applied between 02.105 and 0.02.105. Before irradiation with light, the electrical impedance of the photoconductive layer 104 was large. Even though the voltage V is mainly applied to the photoconductive layer 104, when the photoconductive layer 104 is irradiated with light, the electrical impedance of the photoconductive layer 104 increases. As a result, the voltage V is applied mainly to the layered compound layer 103.As shown in FIG. Although the amount of light transmitted through the layered compound layer 103 changes, for example, at the wavelength shown in FIG.
3. It is assumed that the light of λ2 is always incident on the transparent conductive electrode 105 as the readout light, and the light of λ1 is used as the signal light. In this case, if the light intensity of λ1 is small, the light of λ2 will be transmitted through the transparent conductive electrode 102\If the light intensity of λ1 is large, the light of λ2 will hardly be transmitted. In the operation of the light modulation element, a photoconductive layer 104 having photosensitivity to λ2 is used (X, and incident light with a wavelength of λ2 is transferred to the transparent conductive electrode 104).
When the layered compound layer 103 is irradiated with more light, the incident light reaches the photoconductive layer 104 when no electric field is applied to the layered compound layer 103, an electric field is applied to the layered compound layer 103, and the light of λ2 is absorbed by the layered compound layer 103. Therefore, light does not reach the photoconductive layer 104. Therefore, the electric field applied to the layered compound 103 decreases, and the λ2 light reaches the photoconductive layer.In this way, by simply irradiating this element with λ2 light of a constant intensity, the above cycle is repeated. Atsushi
The transmitted light from the photoconductive layer 104 is pulsed. Therefore, this spatial light modulator also operates as a light pulse generator.

ココテ、層状化合物層103はGaSe、GaS。Here, the layered compound layer 103 is made of GaSe or GaS.

P b I 2.  Hg I *、  I n S 
e、  I n S、  G a T e。
P b I 2. Hg I *, I n S
e, I n S, G a T e.

HgTe、  BiIa、Cd Itなどの材料で構成
され これらのなかの単一の材料で構成してもよいり、
、2種類以上の材料を積層してもよい。
It is composed of materials such as HgTe, BiIa, and CdIt, and may be composed of a single material among these, or
, two or more types of materials may be laminated.

光導電層104に使用する材料(よ 暗時では誘電体と
して動作し 光照射時には光導電性により誘電体の特性
を失うものである。例えif、CdS、CdTe、  
CdSe、  ZnS、  Zn5e、  GaAs。
The material used for the photoconductive layer 104 (a material that acts as a dielectric in the dark and loses its dielectric properties due to photoconductivity when irradiated with light; for example, if, CdS, CdTe,
CdSe, ZnS, Zn5e, GaAs.

GaN、GaP、  GaAlAs、  InP等の化
合物半導体S e、  S e T e、  A s 
S e等の非晶質半導K  S 1.  Ge、  S
 1l−xcx、S l+−xGex。
Compound semiconductors such as GaN, GaP, GaAlAs, InP, S e, S e T e, A s
Amorphous semiconductor K S such as S e etc. 1. Ge, S
1l-xcx, S l+-xGex.

Q 6 +−wCX(0<X<1)の多結晶または非晶
質半導恢t?、:、(1)フタロシアニン顔料(PCと
略す)例えば無金属Pc、  XPc  (X=Cu、
  Ni、  Co、  Tie、  Mg、  Si
  (OH)2など)、AICIPccl、  Ti0
CIPcC1,InClPcC1,InClPc、  
  InBrPcBr  な とミ   (2)モノア
ゾ色素 ジスアゾ色素などのアゾ系色黒 (3)ペニレ
ン酸無水化物およびペニレン酸イミドなどのペニレン系
顔粁 (4)インジゴイド染粁 (5)キナクリドン顔
料 (6)アントラキノン類 ピレンキノン類などの多
環牛ノン類(7)シアニン色黒 (8)キサンチン染粁
 (9)PVK/TNFなどの電荷移動錯体 (10)
ビリリウム塩染料とポリカーボネイト樹脂から形成され
る共晶錯&(11)アズレニウム塩化合物など有機半導
体があム また 非晶質(’)、  S 1.  Ge、  S 
II−XCX、  Sl +−wG e x、  Ge
 I−XC×(以下、a−3i、a−G e、  a−
5i+−++C++、  a−S i+−xGex、 
 a −Qe+−xCxのように略す)を光導電層10
4に使用すると、これらの材料は可視領域での量子効率
が大きく有効であム また この場合これらの材料に水
素またはハロゲン元素を含めるとさらに光感度を向りで
き、さらに誘電率を小さくするおよび抵抗率の増加のた
め酸素または窒素を含めてもよ(−抵抗率の制御にはp
型不純物であるB、AI、Gaなどの元素を、またはn
型不純物であるP、  As、Sbなどの元素を添加し
てもよL%  このように不純物を添加した非晶質材料
を積層してp / n。
Polycrystalline or amorphous semiconductor structure of Q 6 +-wCX (0<X<1)? , :, (1) Phthalocyanine pigment (abbreviated as PC), for example, metal-free Pc, XPc (X=Cu,
Ni, Co, Tie, Mg, Si
(OH)2, etc.), AICIPccl, Ti0
CIPcC1, InClPcC1, InClPc,
InBrPcBr natomi (2) Monoazo pigments Azo color blacks such as disazo pigments (3) Penylene pigments such as penylene acid anhydride and penylene acid imide (4) Indigoid pigments (5) Quinacridone pigments (6) Anthraquinones Polycyclic bovine nones such as pyrenequinones (7) Cyanine dark in color (8) Xanthine dyed porcelain (9) Charge transfer complexes such as PVK/TNF (10)
Eutectic complexes formed from biryllium salt dyes and polycarbonate resins and (11) organic semiconductors such as azulenium salt compounds are also amorphous ('), S 1. Ge, S
II-XCX, Sl+-wGex, Ge
I-XC× (hereinafter a-3i, a-G e, a-
5i+-++C++, a-S i+-xGex,
a -Qe+-xCx) is the photoconductive layer 10
4, these materials have a large quantum efficiency in the visible region and are effective. In this case, the inclusion of hydrogen or halogen elements in these materials can further increase the photosensitivity, and can further reduce the dielectric constant and Oxygen or nitrogen may be included to increase resistivity (- p
type impurities such as B, AI, Ga, or n
Elements such as P, As, and Sb, which are type impurities, may also be added. L% By laminating amorphous materials doped with impurities in this way, p/n.

p/i、  i/n、  p/i/nなどの接合を形成
し光導電層103内に空乏層を形成するようにして誘電
率および暗抵抗あるいは動作電圧極性を制御してもよ(
℃ このような非晶質材料たけでなく、上記の材料を2種類
以上積層してヘテロ接合を形成して光導電層104内に
空乏層を形成してもよしもまた 光導電層104の膜厚
は0.01〜100μmが望ましL〜 本発明における反射型の空間光変調素子の一実施例を第
3図に示す。構造(よ 第1図のものとほとんど同じて
 透明絶縁性基板201、透明導電性電極202.層状
化合物層20a、光導電層204および透明導電性電極
205からなり、異なる点は層状化合物層203と光導
電層204の間に反射層206を有していることである
。動作L 基本的には第1図の透過型のものと同様であ
る力文 書き込み光(信号光)は透明導電性電極205
側から人射し 読み出し光は透明導電性電極202側か
ら入射し 反射層206で反蝕出力光は透明導電性電極
202側から出射する。
The dielectric constant and dark resistance or operating voltage polarity may be controlled by forming junctions such as p/i, i/n, p/i/n and forming a depletion layer within the photoconductive layer 103.
In addition to these amorphous materials, it is also possible to form a depletion layer in the photoconductive layer 104 by laminating two or more of the above materials to form a heterojunction. The thickness is desirably from 0.01 to 100 μm. An embodiment of the reflective spatial light modulator according to the present invention is shown in FIG. The structure (almost the same as that in Figure 1) consists of a transparent insulating substrate 201, a transparent conductive electrode 202, a layered compound layer 20a, a photoconductive layer 204, and a transparent conductive electrode 205, with the difference being that the layered compound layer 203 and A reflective layer 206 is provided between the photoconductive layers 204. Operation L is basically the same as the transmission type shown in FIG. 205
Human radiation from the side, readout light enters from the transparent conductive electrode 202 side, and the reflected output light is emitted from the transparent conductive electrode 202 side by the reflection layer 206.

この反射型の場合においてL 入射光強度か増加すると
、出力光か減少し 空間光変調素子として働く。
In the case of this reflective type, when the intensity of the incident light L increases, the output light decreases, and it functions as a spatial light modulator.

また 反射層206 i;L  反射率の高いAI、C
r。
Also, the reflective layer 206 i;L AI, C with high reflectance
r.

Agなどの金属薄A あるいは誘電体薄膜を多数積層し
た誘電体ミラーで形成する。
The dielectric mirror is formed by laminating a large number of thin metal A such as Ag or dielectric thin films.

このように 本発明の空間光変調素子は 透過型および
反射型いずれの場合においても同様な動作を得ることが
出来も 以下に具体的な実施例について説明する。
In this way, the spatial light modulation element of the present invention can obtain the same operation in both the transmissive type and the reflective type. Specific examples will be described below.

実施例1 ガラス基板上に0.1〜0.5μm厚のITOをスパッ
タ法により成膜し 透明導電性電極を形成しtら次E 
 G e CI 2およびH2S eを用いた気相成長
法により1〜3μm厚のGaSe膜を積層した後、プラ
ズマCVD法により光導電層としてa−3i:H膜を0
. 5〜2μmを形成した 続いて、0゜1〜0,5μ
m厚のIT○電極パターンを形成して第1図と同様の透
過型の空間光変調素子を作製し旭この空間光変調素子に
直流電圧を印加して、光導電層に光を照射したとこ&G
aSe膜を透過していた620〜6.40 n mの波
長の光が透過しなくなるのを確認し九 実施例2 ブリッジマン法により作製したGaSe結晶上に反射層
401としてAI電極アレイを蒸着した後、プラズマC
VD法により光導電層402としてa−5i +−xQ
x: H膜(x:  O〜0.3)を積層した 続いて
、へき開を使ってG a、、 S e層403を100
〜200μm厚とした後、対向するプラチナ半透明電極
404、.405を形成して反射型空間光変調素子アレ
イを作製した この断面図を第4図に示す。
Example 1 A film of ITO with a thickness of 0.1 to 0.5 μm was formed on a glass substrate by sputtering to form a transparent conductive electrode.
After laminating a GaSe film with a thickness of 1 to 3 μm by vapor phase epitaxy using G e CI 2 and H S e, an a-3i:H film was deposited as a photoconductive layer by plasma CVD method.
.. Formed 5~2μm, then 0゜1~0.5μm
A transmissive spatial light modulator similar to that shown in Fig. 1 was fabricated by forming an IT○ electrode pattern with a thickness of m, and a direct current voltage was applied to the spatial light modulator to irradiate the photoconductive layer with light. &G
After confirming that the light with a wavelength of 620 to 6.40 nm that had been transmitted through the aSe film was no longer transmitted, Example 2 An AI electrode array was deposited as a reflective layer 401 on the GaSe crystal prepared by the Bridgman method. After, plasma C
a-5i +-xQ as photoconductive layer 402 by VD method
x: H film (x: O~0.3) was laminated. Next, using cleavage, Ga, S e layers 403 were stacked to 100
After forming a thickness of ~200 μm, facing platinum translucent electrodes 404, . 405 is formed to produce a reflective spatial light modulator array. A cross-sectional view of this is shown in FIG.

この空間光変調素子において(よ 1っのAI電極内に
入射する光量の和に対してGaSe層403の透過率が
変化することを確認できた 実施例3 導電性基板501(ガラス基板または半導体ウェーハ上
に金属またはITO,ZnO,、SnO,などの透明導
電性薄膜を形成した場合も含む)上にGaSe、  G
aS、  InSe、  InS、  GaTe。
In this spatial light modulator, it was confirmed that the transmittance of the GaSe layer 403 changes with respect to the sum of the amounts of light incident on one AI electrode.Example 3: Conductive substrate 501 (glass substrate or semiconductor wafer) GaSe, G
aS, InSe, InS, GaTe.

HgTeなどのIII−VI族層状化合物を気相成長す
るために使用した製作装置の一例の概略図を示す。
A schematic diagram of an example of a fabrication apparatus used for vapor phase growth of a group III-VI layered compound such as HgTe is shown.

導電性基板501(よ 石英管502内のカーボンサセ
プター503上に配置し九 カーボンサセプター503
は石英管502の周囲に設けた誘導加熱コイル504で
加熱しf、  これにIII族元素を含むガス(例えば
 Ga(CHs)*、Ga(CPHs)s、In(Cp
H6)s、Gaclaなど)をバブラー505を通して
、石英管502内に導入した このときキャリヤガスと
して(よHe、N2.He、Ar、Neなどを使用し 
供給量の調節は流量計506を使用しな また VI 
族元素を含むガス(例えi;CHis、  HtSeな
ど)はガスボンベ507から流量計508を通して石英
管502内に導入し九 但L  5e(CH婁)2.T
e(CH*)aなど蒸気圧の低いものを使用する場合(
よ IIII元素ガスの導入系と同様にバブラーを使用
した 基板加熱の方法として(よ 誘導コイル504の
代わりに電気炉を使用してもよL% 上記の製作装置において、 ITO薄膜を蒸着したガラ
ス基板(ITO基板)をセットL  GaCl2および
H2Sを交互に石英管502内に導入し■TO基板上に
GaS薄膜を成長させtラ  この膜をRHE E D
観察したとこへ 層状構造であることが判明し九 さら
(ミ このGaS薄膜上にIT○電極を積層し 対向す
るITO電極間に電界を印加したとこへ 吸収スペクト
ルが長波長側にシフトすることが確認でき、空間光変調
素子として動作することが確認でき九 実施例4 実施例3で使用した製作装置において、 IT○基板上
にCaF2膜を積層して同じようにGaS薄膜を成長さ
せた その結JLCaF2膜を用いない場合に比べて広
い基板温度範囲で層状構造の結晶が成長することが判明
しf。
A conductive substrate 501 (a carbon susceptor 503 placed on a carbon susceptor 503 inside a quartz tube 502)
is heated by an induction heating coil 504 installed around a quartz tube 502, and a gas containing a group III element (for example, Ga(CHs)*, Ga(CPHs), In(Cp
H6)s, Gacla, etc.) was introduced into the quartz tube 502 through the bubbler 505.At this time, as a carrier gas (He, N2.He, Ar, Ne, etc.) was introduced into the quartz tube 502.
Do not use the flow meter 506 to adjust the supply amount.
A gas containing group elements (for example, CHis, HtSe, etc.) is introduced into the quartz tube 502 from a gas cylinder 507 through a flowmeter 508. T
When using a substance with low vapor pressure such as e(CH*)a (
As a substrate heating method using a bubbler in the same way as the III element gas introduction system (an electric furnace may be used instead of the induction coil 504), in the above manufacturing apparatus, a glass substrate on which an ITO thin film is deposited is used. (ITO substrate) is introduced into the quartz tube 502 alternately with GaCl2 and H2S, and a GaS thin film is grown on the TO substrate.
When observed, it was found that it had a layered structure.9 Furthermore, when IT○ electrodes were stacked on this GaS thin film and an electric field was applied between the opposing ITO electrodes, the absorption spectrum shifted to the longer wavelength side. Example 4 Using the manufacturing equipment used in Example 3, a CaF2 film was laminated on an IT○ substrate and a GaS thin film was grown in the same way. It was found that crystals with a layered structure grow over a wider substrate temperature range than when no JLCaF2 film is used.

この原因として41!、CaFpのCa−F間の結合エ
ネルギが非常に大きく、Ca−Fの結合を切断して、V
I族凍原子この場合はS原子)がCa原子と結合しにく
くなるためと思われる。
41 as the cause of this! , the bonding energy between Ca-F of CaFp is very large, and the Ca-F bond is broken and V
This seems to be because group I frozen atoms (in this case, S atoms) become difficult to bond with Ca atoms.

また このGaS薄膜上に プラズマCVD法によりa
−3i:H薄膜およびITO電極を積層し 空間光変調
素子を作製したとこ&a−Si:Hに光照射することに
より、透過光が変調されることを確認し九 発明の効果 本発明によれば 低電圧駆動可能でかつ高速動作する空
間光変調素子が得られ 導電性基板上でも容易に層状化
合物薄膜が成長する薄膜の製作方法が得られも
In addition, on this GaS thin film, a
A spatial light modulation element was fabricated by laminating -3i:H thin films and ITO electrodes, and it was confirmed that transmitted light was modulated by irradiating light onto a-Si:H.9 Effects of the InventionAccording to the present invention. A spatial light modulator that can be driven at low voltage and operates at high speed can be obtained, and a method for manufacturing a thin layered compound film that can be easily grown even on a conductive substrate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は 本発明の一実施例における空間光変調素子の
断面図 第2図1よ 層状化合物の電界に対する吸収ス
ペクトルの変化の代表例を示すグラフ、第3図(瓜 本
発明の一実施例における反射型空間光変調素子の断面は
 第4図(よ 本発明の一実施例における空間光変調素
子アレイの断面医第5図は 本発明一実施例における薄
膜の製作方法で使用した薄膜作製装置を示す模式図であ
る。 101・・・透明絶縁性基板、102.105・・・透
明導電性電機103・・・層状化合物J!  104・
・・光導電[301・・・透明絶縁性基板、302.3
05・・・透明導電性型i  303・・・層状化合物
販304・・・光導重恩 306・・・反射恩 4゜1
・・・反射凰 402・・・光導電71. 403・・
・Ga5eli!404、405・・・プラチナ半透明
風501・・・導電性基板、502・・・石英管、50
3・・・カーボンサセプター、504・・・誘導加熱コ
イt’v、  505・・・バブラー、506.508
・・・流量計、507・・・ガスボンベ 代理人の氏名 弁理士 小鍜治 明 はが2名tof−
−−透叩杷1し匣基板 tOE!、m5−−− 通91厚電性を尊103−−−
層状イヒ春吻眉 第1 rlA     to4−k 基t J第2図 30 I−一一遼Q配J象性基訳 80ξ昶5−一一遭曜港を性を待 ao3−−一1技化春物層 :?o4−犬巻党1 石 3 図          :j06−−−尺 財
 層40+L−−反肘贋 402−−一兇$電眉 403−−− Go、Se層 404.405−−−ブラチぢト平逮!可嘴ヒ極第4図 5ol−−−11−党d11板 5(:12−m=石英管 503−−一カーボンブセブター 504−−−3腎厚美口惠コイン 505−−−バブ′ラー 5o6.so8−−一流1いけ
FIG. 1 is a cross-sectional view of a spatial light modulator according to an embodiment of the present invention. FIG. The cross-section of the reflective spatial light modulator in FIG. 4 is shown in FIG. 101...Transparent insulating substrate, 102.105...Transparent conductive electrical machine 103...Layered compound J! 104.
...Photoconductive [301...Transparent insulating substrate, 302.3
05...Transparent conductive type i 303...Layered compound sales 304...Light guiding layer 306...Reflection layer 4゜1
...Reflection 402...Photoconductivity 71. 403...
・Ga5eli! 404, 405... Platinum translucent wind 501... Conductive substrate, 502... Quartz tube, 50
3... Carbon susceptor, 504... Induction heating coil t'v, 505... Bubbler, 506.508
...Flowmeter, 507...Name of gas cylinder agent Patent attorney Akira Koka 2 people tof-
---Open loquat 1 and box board tOE! , m5 --- 91 thick electric conductivity 103 ---
Layered Ihi spring proboscis eyebrow 1st rlA to4-k group t J2nd figure 30 I-11 Liao Q arrangement J elephant character base translation 80ξ昶5-11 Encounter port to wait for sex ao3--11 technique conversion Spring layer:? o4-Inumaki Party 1 Stone 3 Diagram: j06--Shaku Wealth layer 40+L--Anti-elbow counterfeit 402--One liter $ Denbyou 403--Go, Se layer 404.405--Brachito flat arrest ! 5ol --- 11-party d11 plate 5 (: 12-m = quartz tube 503 --- carbon buccinator 504 --- 3 kidney atsumi mouth coin 505 --- bubbler 5o6.so8--first class 1 go

Claims (6)

【特許請求の範囲】[Claims] (1)光導電層とc軸方向がファンデルワールス力で結
び付いた層状化合物を積層した構造を有することを特徴
とする空間光変調素子。
(1) A spatial light modulation element characterized by having a structure in which a photoconductive layer and a layered compound in which the c-axis direction is connected by a van der Waals force are laminated.
(2)層状化合物が、GaSe、GaS、PbI_2、
HgI_2、InSe、InS、GaTe、HgTe、
BiI_2、CdI_2から選ばれた少なくとも1種か
らなることを特徴とする請求項1に記載の空間光変調素
子。
(2) The layered compound is GaSe, GaS, PbI_2,
HgI_2, InSe, InS, GaTe, HgTe,
The spatial light modulation element according to claim 1, comprising at least one selected from BiI_2 and CdI_2.
(3)光導電層が、C、Si、Geから選ばれた少なく
とも1種の元素からなる非晶質半導体でかつ水素を含有
することを特徴とする請求項1に記載の空間光変調素子
(3) The spatial light modulator according to claim 1, wherein the photoconductive layer is an amorphous semiconductor made of at least one element selected from C, Si, and Ge and contains hydrogen.
(4)光導電層と層状化合物の間に反射層を有すること
を特徴とする請求項1に記載の空間光変調素子。
(4) The spatial light modulator according to claim 1, further comprising a reflective layer between the photoconductive layer and the layered compound.
(5)導電性基板上にGaSe、GaS、InSe、I
nS、GaTe、HgTeから選ばれた少なくとも1種
からなる薄膜を気相成長法で作製することを特徴とする
薄膜の製作方法。
(5) GaSe, GaS, InSe, I
A method for producing a thin film, comprising producing a thin film made of at least one selected from nS, GaTe, and HgTe by a vapor phase growth method.
(6)導電性基板上にCaF_2膜を積層することを特
徴とする請求項5に記載の薄膜の製作方法。
(6) The method for manufacturing a thin film according to claim 5, characterized in that a CaF_2 film is laminated on a conductive substrate.
JP28211490A 1990-10-19 1990-10-19 Manufacture of space light modulation element and thin film Pending JPH04156518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28211490A JPH04156518A (en) 1990-10-19 1990-10-19 Manufacture of space light modulation element and thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28211490A JPH04156518A (en) 1990-10-19 1990-10-19 Manufacture of space light modulation element and thin film

Publications (1)

Publication Number Publication Date
JPH04156518A true JPH04156518A (en) 1992-05-29

Family

ID=17648314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28211490A Pending JPH04156518A (en) 1990-10-19 1990-10-19 Manufacture of space light modulation element and thin film

Country Status (1)

Country Link
JP (1) JPH04156518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527118A (en) * 2014-08-28 2017-09-14 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Two-dimensional layered material quantum well junction device, multiple quantum well device, and method of manufacturing quantum well device
JP2018519664A (en) * 2015-06-18 2018-07-19 ナノコ 2ディー マテリアルズ リミテッドNanoco 2D Materials Limited Heterostructure and electronic device derived from the heterostructure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527118A (en) * 2014-08-28 2017-09-14 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Two-dimensional layered material quantum well junction device, multiple quantum well device, and method of manufacturing quantum well device
US10446705B2 (en) 2014-08-28 2019-10-15 Konica Minolta Laboratory U.S.A., Inc. Two-dimensional layered material quantum well junction devices
JP2018519664A (en) * 2015-06-18 2018-07-19 ナノコ 2ディー マテリアルズ リミテッドNanoco 2D Materials Limited Heterostructure and electronic device derived from the heterostructure

Similar Documents

Publication Publication Date Title
Rao et al. In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband‐photodetectors
Khan et al. Electrical properties and ion implantation of epitaxial GaN, grown by low pressure metalorganic chemical vapor deposition
Pathinettam Padiyan et al. Electrical and photoelectrical properties of vacuum deposited SnSe thin films
KR100274521B1 (en) Single Quantum Well II-VI Laser Diode Without Cladding Layer
JPH0519289A (en) Spatial optical modulating element
Weiser Absorption and electroabsorption on amorphous films of polyvinylcarbazole and trinitrofluorenone
CN110085688A (en) Self-powered type photodetection structure, device and the preparation method mutually tied based on graphene-gallium oxide
US6761986B2 (en) Thin film infrared transparent conductor
CN104656302B (en) A kind of liquid crystal light valve and preparation method thereof
Alkis et al. UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes
Lin et al. Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates
Nasher et al. Linear and nonlinear optical properties of irradiated Toluidine Blue thin films
CN108682703B (en) Fully-electrically-controlled spin luminescence detection integrated device and preparation method thereof
Ganesh et al. Detailed investigation of optical linearity and nonlinearity of nanostructured Ce-doped CdO thin films using Kramers–Kronig relations
Kudo et al. Spectrum‐controllable color sensors using organic dyes
JPH04156518A (en) Manufacture of space light modulation element and thin film
JPS6091627A (en) Method of producing pin semiconductor device
Mahmoud et al. Elaboration of ZnO nanowires by solution based method, characterization and solar cell applications
Sharma et al. Oxygen induced enhanced photoanodic response of ZnTe: O thin films: modifications in optical and electronic properties
Kamanina et al. Nanostructured materials and their optical features
Ohta et al. Application of a transparent conductive substrate with an atomically flat and stepped surface to lateral growth of an organic molecule: vanadyl phthalocyanine
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
JPH05121770A (en) Organic photovoltaic element
Suto et al. Luminescence quenching of an ultrathin tetraphenylporphyrin film on a conductive SnO 2 substrate
Nastas et al. Effect of electric field on photoinduced changes in the optical properties of chalcogenide glassy semiconductors