JPH04156430A - Optical beam scanning element - Google Patents

Optical beam scanning element

Info

Publication number
JPH04156430A
JPH04156430A JP28098790A JP28098790A JPH04156430A JP H04156430 A JPH04156430 A JP H04156430A JP 28098790 A JP28098790 A JP 28098790A JP 28098790 A JP28098790 A JP 28098790A JP H04156430 A JPH04156430 A JP H04156430A
Authority
JP
Japan
Prior art keywords
domain wall
light beam
domain
single crystal
beam scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28098790A
Other languages
Japanese (ja)
Inventor
Hideo Adachi
日出夫 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP28098790A priority Critical patent/JPH04156430A/en
Publication of JPH04156430A publication Critical patent/JPH04156430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain light weight, compactness and high speed optical beam scanning by forming at least one domain wall or more for reflecting optical beams injected into a ferroelectric substance monocrystal, and moving this domain wall. CONSTITUTION:A ferroelectric substance monocrystal 1 is partitioned into a 180 deg. domain 2 and a 90 deg. domain 3, and the respective domains 2, 3 are formed laterally with 90 deg. domain wall 4 as a boundary. The light injected at a critical angle into the 90 deg. domain 3 is totally reflected by the 90 deg. domain wall 4. Accordingly, if the 90 deg. domain wall 4 is moved parallel in the direction 5, the totally reflected beams can be also scanned by the parallel migration length l part of the 90 deg. domain wall 4. The domain wall 4 for reflecting beams injected into such a ferroelectric substance monocrystal 1 can be moved in its position by applying an electric field and stress, and the beams outgoing by reflecting the incident beams can be scanned. Light weight and compactness, and high speed optical beam scanning can be thereby attained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光デスク等の記録媒体への書き込み、読み出し
に必要な光ピツクアップなとを構成する光ビーム走査素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light beam scanning element constituting an optical pickup necessary for writing to and reading from a recording medium such as an optical disk.

[従来の技術] 光デスクは磁気デスクに比べて、遥かに大きな記憶容量
をもっていなからその普及は磁気デスクに及んでいない
。その理由はアクセス時間の遅さにあり、重い光ピツク
アップに原因かある。すなわち、レーザビームの走査を
機械的に行うため、その機械部品の軽量化に限界があっ
たからである。
[Prior Art] Optical desks have a much larger storage capacity than magnetic desks, so they are not as popular as magnetic desks. The reason for this is slow access time, which may be due to heavy optical pickup. That is, since the scanning of the laser beam is performed mechanically, there is a limit to the weight reduction of the mechanical parts.

この欠点を改善するためレーザビーム走査機構の固体化
、具体的にはOE 1. C化の研究が進められている
。第7図にその一例を示す。これは導波路型光ピックア
ップで、光源としてのレーザダイオード45とスラブ導
波路46により光学系(光検出器(S i −PD) 
47、レンスであるF G C(Focusing G
ratjB Coupler) 48、ビームスプリッ
ター−CあるT G F B S (Twin Gra
tingFocusing Beam 5plitte
r) 49をSi基板50上に集積化したSiチップを
ハイブリッドに実装したものである。これによると従来
の光ピツクアップに較べて小型軽量化がなされる。しか
し、フォーカス誤差、トラッキング誤差の信号検出機能
はもつかサーボ機構はもたない。このため、アクチュエ
ータの機構を別途考える必要があるという欠点かある。
In order to improve this drawback, the laser beam scanning mechanism should be made solid, specifically OE 1. Research on conversion to C is progressing. An example is shown in FIG. This is a waveguide type optical pickup, and the optical system (photodetector (S i -PD)
47, F G C (Focusing G
ratjB Coupler) 48, Beam splitter-C T G F B S (Twin Gra
tingFocusing Beam 5plitter
r) A Si chip in which 49 is integrated on a Si substrate 50 is mounted in a hybrid manner. According to this, it is smaller and lighter than conventional optical pickups. However, it has a signal detection function for focus error and tracking error, but it does not have a servo mechanism. Therefore, there is a drawback that it is necessary to separately consider the mechanism of the actuator.

したかって、サーボ機構をメカ機+f/iとするのであ
れば相変わらず、光ピツクアップの軽量化は実現されず
、アクセス時間の短縮化は改善されないことになる。
Therefore, if the servo mechanism is mechanical + f/i, the weight of the optical pickup will not be reduced, and the access time will not be shortened.

一方、固体レーザビーム走査機構として音響光学(AO
)効果を利用したデバイスの研究も進められている。そ
の−例を第8図に示した。これはL i N b O3
(L N )単結晶表面にTi拡散させプレーナ型先導
波路51を形成し、この導波路端面52に配設したレー
ザダイオード(LD)53、先導波路51に導波路型フ
レネルレンズ(F L)54、音響表面波発生用変換電
極(SAW−IDT)55、及び集光グレーティングカ
プラー(FCC)56、光ビーム出射端57がらなって
いる。レーザダイオード53より発射されたレーザ光は
導波路レンズ54によって平行光にされた後、変換電極
55からの超音波による音響格子57によって回折され
、集光グレーティングカプラー56によって集光され、
導波路51の出射端57より出射1]的の媒体に照射さ
れる。このときの回折角は超詮波の周波数幅と(LN)
+1を結晶の音速によって決定される。
On the other hand, as a solid-state laser beam scanning mechanism, acousto-optical (AO)
) Research is also underway on devices that utilize this effect. An example of this is shown in FIG. This is L i N b O3
(L N ) A planar guide waveguide 51 is formed by diffusing Ti on the single crystal surface, a laser diode (LD) 53 is disposed on the end face 52 of this waveguide, and a waveguide Fresnel lens (F L) 54 is attached to the guide waveguide 51. , a surface acoustic wave generation conversion electrode (SAW-IDT) 55 , a condensing grating coupler (FCC) 56 , and a light beam output end 57 . The laser light emitted from the laser diode 53 is made into parallel light by the waveguide lens 54, then diffracted by the acoustic grating 57 due to the ultrasonic wave from the conversion electrode 55, and condensed by the condensing grating coupler 56.
The light is emitted from the output end 57 of the waveguide 51 onto the target medium. The diffraction angle at this time is the frequency width of the supersonic wave and (LN)
+1 is determined by the speed of sound in the crystal.

このようなAO素子は小型軽量化に寄与するか、\ 回折角が大きくても数度と小さく走査能力に欠ける。ま
た、反射光の検出ができないという問題があり、従来提
案された構造のままでは光ピツクアップには応用できな
い。
Such an AO element does not contribute to miniaturization and weight reduction, but even if the diffraction angle is large, it is only a few degrees and lacks scanning ability. There is also the problem that reflected light cannot be detected, and the structure proposed so far cannot be applied to optical pickup.

[発明が解決しようとする課題] 以上のようにこれまでのものでは小型軽量で光ビームを
高速走査できるデバイスとしては適当なものかなかった
[Problems to be Solved by the Invention] As described above, none of the conventional devices has been suitable as a device that is small and lightweight and can scan a light beam at high speed.

本発明の目的は全く新しい原理に基づいて上記機能を実
現できるとともに、小形軽量化か達成できて高速走査で
きる全く新しい光ビーム走査素子を提供することである
An object of the present invention is to provide a completely new optical beam scanning element that can realize the above functions based on a completely new principle, is small and lightweight, and can perform high-speed scanning.

[課題を解決する手段及び作用] 第1図を用いて本発明の基本的な原理を説明する。今、
第1図に示したように強誘電体単結晶1が、180度分
域2と90度分域3とに分かれ、それらの各分域2,3
が90度分域壁4を境にして左右に形成されている。こ
こで、180度分域2と90度分域3の屈折率をそれぞ
れ018(1+n90とすると、90度分域3に臨界角
で入射した光は90度分域壁4で全反射する。したがっ
て、もし90度分域壁4を矢印5の方向へ平行に移動で
きれば、全反射ビームも90度分域壁4の平行移動距離
gの分、走査できることになる。強誘電体単結晶1が正
方品族に族するとき、その分極軸は、x、y、zの十一
方向は(1,00)。
[Means and effects for solving the problem] The basic principle of the present invention will be explained using FIG. now,
As shown in FIG. 1, a ferroelectric single crystal 1 is divided into a 180 degree domain 2 and a 90 degree domain 3, and
are formed on the left and right sides with the 90-degree area wall 4 as a boundary. Here, if the refractive index of the 180 degree domain 2 and the 90 degree domain 3 is 018 (1+n90), then the light incident on the 90 degree domain 3 at the critical angle will be totally reflected by the 90 degree domain wall 4. Therefore. , if the 90-degree domain wall 4 can be moved in parallel in the direction of the arrow 5, the total internal reflection beam can also be scanned by the parallel movement distance g of the 90-degree domain wall 4.If the ferroelectric single crystal 1 is square When it belongs to a class, its polarization axes are (1,00) in the 11 directions of x, y, and z.

(01,0)、(001)の上方向の計6つがあり得る
。このことは分極軸が互いに直交する分域ができ得るこ
とを意味している。−膜内には分域のでき方は結晶全体
の静電エネルギーと両分城門にできる分域壁の弾性エネ
ルギーの総和が最小になるように分布する。しかも、強
誘電体単結晶]に電界ベクトルや応力ベクトルを印加す
ることによってこの分域分布を変えることができる。第
2図においてこの様子を示す。第2図(a)上側のもの
は、強誘電体単結晶1の両面に電極8a、8bを取り付
け、その電極8a、8bを通じて直流定電圧Vを印加し
た結果、]880度分域を均一に= 6− 形成したものを示[7ている。また、第2図(a)上側
のものは、その強誘電体単結晶1に電極8a。
There can be a total of six in the upward direction of (01,0) and (001). This means that there may be domains in which the polarization axes are orthogonal to each other. - Within the film, the domains are distributed in such a way that the sum of the electrostatic energy of the entire crystal and the elastic energy of the domain walls formed in both branch gates is minimized. Furthermore, this domain distribution can be changed by applying an electric field vector or stress vector to the ferroelectric single crystal. This situation is shown in FIG. In the upper part of Fig. 2 (a), electrodes 8a and 8b are attached to both sides of the ferroelectric single crystal 1, and a constant DC voltage V is applied through the electrodes 8a and 8b. = 6- shows what was formed [7. The upper part of FIG. 2(a) has an electrode 8a on the ferroelectric single crystal 1.

8bを通して逆向きの直流定電圧−V (1,8fl、
)度分極反転電圧−電界)をパルス的に印加した結果、
強1誘電体単結晶1には部分的に180度反転81′i
域10を形成したことを示している。なお、11はその
境界であり、この反転分域10は矢印1′、2の方向に
拡がる。
Direct current constant voltage -V in the opposite direction through 8b (1,8fl,
) As a result of applying a pulsed polarization inversion voltage - electric field),
Strong 1 dielectric single crystal 1 has a partially 180 degree inversion 81'i
This shows that region 10 was formed. Note that 11 is its boundary, and this inversion domain 10 expands in the directions of arrows 1' and 2.

−b1第2図(b)は、強誘電体tli結晶1に90度
分極回転を応力印加で実施している様子を示している。
-b1 FIG. 2(b) shows a state in which polarization rotation of 90 degrees is performed on the ferroelectric TLI crystal 1 by applying stress.

すなわち、第2図(b)上側のものでは、」二連した場
合と同様、強誘電体i11、結晶]の両面に設けた各電
極8a、8bを通じて直流定電圧Vを印加り、 −(]
、 80度分域7を形成したものである。第2図(b)
  上側のものは、その強誘電体111−結晶1に電極
8a、8b側から応力Fを印加して加圧した結果、90
度反転領域14を形成した状態を示している。なお、こ
の−二うな90度反転領域14は上記応力Fに直角な向
きの引張り応力を加えても同じ効果が得られる。さらに
、このような90度反転分域]4はその90度反転方向
へ電界ヘクトルを印加しても形成できる。
That is, in the upper part of FIG. 2(b), a constant DC voltage V is applied through the electrodes 8a and 8b provided on both sides of the ferroelectric material i11 and the crystal, as in the case of two series, -(]
, 80 degree domain 7 is formed. Figure 2(b)
The upper one is 90% as a result of applying stress F to the ferroelectric 111-crystal 1 from the electrodes 8a and 8b side.
A state in which a degree inversion region 14 is formed is shown. Note that the same effect can be obtained even if a tensile stress in a direction perpendicular to the stress F is applied to this -2 90 degree inversion region 14. Further, such a 90-degree inverted domain] 4 can also be formed by applying an electric field hector in the 90-degree inverted direction.

ここで、注1」ずべきは上述した90度回転の場合であ
って、第2図(b)での応力Fを少し小さくすることに
よって、第2図(C)で示すように、両分域7.]4の
境界面、すなわち、90度分域壁16が45度の角度で
形成される。この分域壁形成手段としては第2図(a)
でのように電界をかけるものでもよい。
Note 1: What should be done here is the case of the 90 degree rotation mentioned above, and by slightly reducing the stress F in Fig. 2(b), the two parts can be divided as shown in Fig. 2(C). Area 7. ] 4, that is, the 90 degree domain wall 16 is formed at an angle of 45 degrees. The means for forming this domain wall is shown in Fig. 2(a).
It may also be one that applies an electric field, as in

そして、このように形成された90度分域壁]6は、例
えば電極8a、8bに直流定電圧−■を印加して強誘電
体!1i、結晶1に電界をかける制御手段によって、そ
の90度分域壁16を平行に移動させることができるの
である。
Then, the 90-degree domain wall] 6 formed in this way is made into a ferroelectric material by, for example, applying a constant DC voltage -■ to the electrodes 8a and 8b. 1i, by means of a control means that applies an electric field to the crystal 1, the 90 degree domain wall 16 can be moved in parallel.

なお、この90度分域壁面は平面平滑性か良好であるこ
とが必要であり、そのためには強1秀電体単結晶1内の
欠陥を極力少なくする必要があり、その単結晶の製造に
は充分な注意を要する。
Note that this 90 degree domain wall surface needs to have good planar smoothness, and for this purpose, it is necessary to minimize defects in the strong 1-excellent electric material single crystal 1. requires sufficient attention.

また、上記90度分域壁の初期的形成方法として、全面
、または部分的に電極が(−1与された強誘電体t11
結晶をそのキューリー点Tc以上に加熱し、自発分極を
消滅させ、この状態で電極面に垂直方向に全面、または
部分的に圧力を作用させながら室温まで冷却し、圧力作
用部分を圧力印加方向と垂直方向に自発分h P s 
+が向くようにする。かかる後、電極にパルス電圧を印
加し、その電極下に1′Is 、と垂直方向の自発分極
Ps2を形成し、その結果、00度分域壁を発生せしめ
る)jn:が考えられる。
In addition, as an initial method of forming the above-mentioned 90 degree domain wall, it is possible to completely or partially form an electrode using a ferroelectric material t11 given (-1).
The crystal is heated above its Curie point Tc to extinguish its spontaneous polarization, and in this state, it is cooled to room temperature while applying pressure to the entire surface or part in a direction perpendicular to the electrode surface, and the pressure applied part is aligned with the direction of pressure application. Spontaneous part h P s in the vertical direction
Make sure the + side faces. After that, a pulse voltage is applied to the electrode to form a vertical spontaneous polarization Ps2 of 1'Is under the electrode, resulting in the generation of a 00 degree domain wall)jn:.

以」−のようにしてできた分域壁]6の移動速度は印加
電圧Vにもよるが副速並といわれている。
The moving speed of the domain wall] 6 formed as described above is said to be about the same as the sub-speed, although it depends on the applied voltage V.

音速的7000 m/seeとして1. cmを移動す
るのに1/700000sec =14μsという高速
で移動する。また、この移動の制御能力を高めるため、
例えばに記電極8a、8bの部分をその移動方向に沿−
)で複数に分け、その複数対の電極部分に順次、または
交互にパルス電圧を印加して、パルス数で光ビームの走
査位置を正確に制御するもできる。
1 as the speed of sound 7000 m/see. It moves at a high speed of 1/700000 sec = 14 μs to move cm. In addition, in order to increase the ability to control this movement,
For example, if the electrodes 8a and 8b are moved along the moving direction,
), and by sequentially or alternately applying a pulse voltage to the plural pairs of electrode portions, the scanning position of the light beam can be accurately controlled by the number of pulses.

[実施例] 第3図ないし第5図は、本発明の第1の実施例のものを
示す。
[Embodiment] FIGS. 3 to 5 show a first embodiment of the present invention.

まず、この実施例に用いる単結晶の製造手順を説明する
。炭酸バリウム(純度: 99.99%)と酸化チタン
(純度ニゲレード1)をモル比で35:65で秤量し、
30分間、雷潰機で攪拌して混合し、高純度さやで10
0 D C・2Hr仮焼する。この仮焼粉末に2wt%
ポリビニルアルコールをバインダーとして混合粉砕し、
乾燥造粒した後、油圧プレスで直径3 cmの円盤を作
り、これを酸素雰囲気中で1200℃で2Hr再仮焼し
、これを粉砕したものを出発原料とする。単結晶の育成
は米国ADL社のMP炉と国際電気製テ400kl(z
 。
First, the manufacturing procedure of the single crystal used in this example will be explained. Barium carbonate (purity: 99.99%) and titanium oxide (purity Nigerade 1) were weighed at a molar ratio of 35:65,
Stir and mix with a thunder crusher for 30 minutes, and mix with a high-purity pod for 10 minutes.
Calcinate at 0 DC for 2 hours. 2wt% in this calcined powder
Mix and grind polyvinyl alcohol as a binder,
After drying and granulation, a disk with a diameter of 3 cm is made using a hydraulic press, and this is calcined again at 1200° C. for 2 hours in an oxygen atmosphere, and the resulting powder is used as a starting material. The single crystal was grown using an MP furnace manufactured by ADL in the United States and a 400 kl (z
.

30kWの発振器、及びコントローラによる高周波誘導
加熱による。発熱体を兼ねた白金坩堝にB a T 1
03粉末を入れiJi結晶育成装置にセラ1〜し、粉末
か溶けたところにシードを漬け、そこへ結晶が析出する
ようにする。液面からの距離に対する#L度勾配か40
度/ cmm磨面以下なるように−1,c)− し、かつ坩堝の底の温度で1400〜1600℃の範囲
で1°C以内の精度に保つ。シードはB a T 10
3バタフライ結晶を用いる。シード付けのタイミング(
温度)に注意してシード付けして結晶が析出して来るの
が分かると引き上げを開始する。その条件は 引き上げ速度        0.3 mm / Il
r回転速度        50〜60rPI11育成
後の坩堝の冷却速度 0,5〜2°C/fir液面上の
温度勾配      40℃/ cmが好ましかった。
By high frequency induction heating using a 30kW oscillator and controller. B a T 1 in a platinum crucible that also serves as a heating element
Pour the 03 powder into the iJi crystal growth apparatus and soak the seeds in the melted powder so that the crystals will precipitate there. #L degree slope relative to the distance from the liquid level or 40
-1,c)- below the polished surface, and keep the temperature at the bottom of the crucible within 1°C in the range of 1400 to 1600°C. Seed is B a T 10
3 Butterfly crystals are used. Seeding timing (
Seed the seeds carefully (temperature), and when you see crystals precipitating, start pulling. The condition is a pulling speed of 0.3 mm/Il
r Rotation speed: 50 to 60 r Cooling rate of crucible after PI11 growth: 0.5 to 2 °C/fir Temperature gradient on liquid surface: 40 °C/cm was preferable.

このようにして得られた結晶をC軸に平行にカットシて
その両面に電極として金を蒸着して誘電特性とヒステリ
シス特性を測定すると、誘電率が約ε =300、ε 
−4000で第5図で示すza 略角形のPEカーブが得られた。次に、この引上げ結晶
18を第3図(1))で示すC軸に平行な面と、C軸に
垂直な面が出るように、10*1*1mm 3の寸法に
カットし、第3図(a)で示すように、その対向する各
対の各端面それぞれに透明な一コ]− 電極24a、24b、25a、25bを付し、これを2
00℃に加熱した状態で第2図(b)で示す応力Fの向
きに1.0 kg/ cm 2の圧力を加え、その状態
で温度をドげる。これらの操作によって分極は第2図(
C)で示すものに相当する状態で電極25a、25bに
沿った方向の向きの単分域になる。
The crystal obtained in this way was cut parallel to the C axis, gold was deposited as an electrode on both sides, and the dielectric properties and hysteresis properties were measured. The dielectric constant was approximately ε = 300, ε
-4000, a za approximately rectangular PE curve shown in FIG. 5 was obtained. Next, this pulled crystal 18 is cut into a size of 10*1*1 mm 3 so that a plane parallel to the C-axis and a plane perpendicular to the C-axis as shown in FIG. 3 (1)) are exposed. As shown in Figure (a), one transparent electrode 24a, 24b, 25a, 25b is attached to each end face of each pair of opposing
While heated to 00°C, a pressure of 1.0 kg/cm 2 is applied in the direction of the stress F shown in FIG. 2(b), and the temperature is lowered in that state. By these operations, the polarization can be changed as shown in Figure 2 (
A state corresponding to that shown in C) results in a single domain oriented in the direction along the electrodes 25a, 25b.

ここで、電極24a、24b間に電圧Vaを印加すると
その電界ベクI・ルの方向へ分極が向き、90度分域壁
19が形成される。電極24aのある端面からその90
度分域壁19にレーザビーム221を入射し、電極25
a、25b間にパルス状の電圧vbを印加すると、その
パルス数に応じて90度分域壁19は、]、 9 aま
たは19bで示す位置に移動し、レーザビーム221は
この移動する分域壁19で全反射し、23aから23b
の範囲で走査されることになる。なお、このとき、電極
24a、24bに前記パルス状の印加電圧vbと交互に
パルス状電圧Vaを印加することによって移動速度を制
御し、走査の位置決めをし易くすることができる。また
、90度分域壁19の移動を停止させるためには後者の
パルス電圧Vaを前者よりも大きくする。90度分域壁
19を逆方向に移動させるには電極24a、24bに第
4図(b)のような向きの電圧を印加する。
Here, when a voltage Va is applied between the electrodes 24a and 24b, polarization is directed in the direction of the electric field vector I·le, and a 90-degree domain wall 19 is formed. 90 from the end face of the electrode 24a
The laser beam 221 is incident on the domain wall 19, and the electrode 25
When a pulsed voltage vb is applied between a and 25b, the 90 degree domain wall 19 moves to the position indicated by ], 9a or 19b according to the number of pulses, and the laser beam 221 moves to the position shown by this moving domain. Total reflection from wall 19, from 23a to 23b
The range will be scanned. Note that at this time, by applying a pulsed voltage Va alternately with the pulsed applied voltage Vb to the electrodes 24a and 24b, the moving speed can be controlled and positioning for scanning can be facilitated. Further, in order to stop the movement of the 90-degree domain wall 19, the latter pulse voltage Va is made larger than the former. In order to move the 90 degree domain wall 19 in the opposite direction, a voltage in the direction as shown in FIG. 4(b) is applied to the electrodes 24a and 24b.

以上の説明から分かるように光ビームの入出射か電極2
4b、25bを通して行なわれるので、少なくともその
電極24b、25bを透明なものとする必要がある。な
お、入射側と出射側にそれぞれシリンドリカルレンズ2
6.27を設置し、その一対のシリンドリカルレンズ2
6.27を直交させれば、出射ビーム222を集束させ
ることができる。
As can be seen from the above explanation, whether the light beam enters or exits the electrode 2
4b and 25b, it is necessary that at least the electrodes 24b and 25b be transparent. In addition, cylindrical lenses 2 are installed on the incident side and the output side, respectively.
6.27 and its pair of cylindrical lenses 2
If 6.27 are perpendicular to each other, the output beam 222 can be focused.

第6図は本発明の第2の実施例を示すものである。この
実施例に使用する結晶の製法は上述した第1の実施例の
場合と同じである。棒状で50*1 * 0.5 mm
 3の寸法に加工して強誘電体単結晶1を得る。この結
晶片の両面には、その結晶片を挟むように、両面にそれ
ぞれITO透明電極32゜33.36.37の付いたP
LZT透明圧電体30.31を接着して配設する。IT
O透明電極32.33.36.37を通じて強誘電体単
結晶1および圧電体30.31に対して電圧を印加でき
るようになっている。PLZT透明圧電体30゜31の
各外側部分を機械的に固定する。つまり、圧電体30.
31に電圧を印加することにより上記強誘電体単結晶1
に圧縮応力、軸方向へは引張り応力の作用を加えてる手
段を構成している。
FIG. 6 shows a second embodiment of the invention. The method of manufacturing the crystal used in this example is the same as in the first example described above. 50*1*0.5 mm in rod shape
3 to obtain a ferroelectric single crystal 1. On both sides of this crystal piece, ITO transparent electrodes 32°, 33, 36, 37 are attached on both sides, sandwiching the crystal piece.
LZT transparent piezoelectric bodies 30 and 31 are bonded and disposed. IT
A voltage can be applied to the ferroelectric single crystal 1 and the piezoelectric material 30.31 through the O transparent electrodes 32, 33, 36, 37. Each outer portion of the PLZT transparent piezoelectric body 30°31 is mechanically fixed. In other words, the piezoelectric body 30.
By applying a voltage to 31, the ferroelectric single crystal 1
It constitutes a means for applying compressive stress to the shaft and a tensile stress to the shaft in the axial direction.

また、ITO透明電極32.3B、36.37を通じて
PLZT透明圧電体30.31に電圧を印加できるよう
になっている。電圧を印加するとそのPLZT透明圧電
体30.31は35で示す向きにそれぞれ伸び、強誘電
体単結晶1は34で示す矢印の向きでの引張応力を受け
る。このとき、単結晶1には電極32.33.36.3
7の方向に沿っての向きの分極21を示す分極分域21
を形成し、90度分域壁は16から17で示す位置まで
左側へ移動する。このときに形成される90度分域壁1
6.17の位置は単結晶]と圧電体30.3]への各々
の電圧Vp、vの印加の仕方によっ−〇決まる。なお、
この構造においてはときとして単一の分域かできること
がある。
Further, a voltage can be applied to the PLZT transparent piezoelectric body 30.31 through the ITO transparent electrodes 32.3B and 36.37. When a voltage is applied, the PLZT transparent piezoelectric bodies 30 and 31 extend in the directions shown by 35, and the ferroelectric single crystal 1 receives tensile stress in the direction of the arrow shown by 34. At this time, the single crystal 1 has electrodes 32, 33, 36, 3
Polarization domain 21 showing polarization 21 oriented along direction 7
, and the 90 degree domain wall moves to the left from 16 to 17. 90 degree domain wall 1 formed at this time
The position of 6.17 is determined by the manner in which the voltages Vp and v are applied to the single crystal and the piezoelectric material 30.3, respectively. In addition,
This structure sometimes allows for a single domain.

そこで、電極’、36. 37に第6図て示すような極
性で電圧■を印加すると、180度分域20ができ易く
なり、Q Oa分域壁16は右h゛向へ移動する。この
ようにして90度分域壁16を左右に走査することがで
きる。この場合、結晶1の長さか長いので光ビームの、
h査距離ρは例えば光デスクのラジアル方向のアクセス
が可能な程度となり、メカニノノルなアクセス機(14
が不要となる。このことは光デスクのもっていた従来の
欠点を敗訴するものであり、先デスクの普及に寄1’J
するところ大である。
Therefore, electrode', 36. When a voltage (2) is applied to 37 with the polarity shown in FIG. 6, a 180 degree domain 20 is easily formed, and the QOa domain wall 16 moves to the right h. In this way, the 90 degree wall 16 can be scanned left and right. In this case, since the length of crystal 1 is long, the light beam
For example, the scanning distance ρ is such that it is possible to access the optical desk in the radial direction, and a mechanical access device (14
becomes unnecessary. This defeats the conventional drawbacks of optical desks, and it will contribute to the spread of the previous desks.
It's a big deal.

なお、上記各実施例では強誘電体単結晶に゛電界をイ・
jIjする電極、応力を(J”jする圧電素r二5の分
域移動り段か、その強誘電体単結晶に対して中−のもの
であったか、それらを複数に分割して強誘電体単結晶に
作用する部位をすらずようし7てもよ(1o例えば、分
域壁を移動させるための電界を発11さ且−る複数の電
極対に順次、または交亙にバルー 15 = スミ圧を印加することによって、より確実な走査制御を
行うことができるものである。
In each of the above embodiments, an electric field is applied to the ferroelectric single crystal.
The ferroelectric material can be divided into multiple electrodes, stress (J"j), piezoelectric element r25 domain moving stage, or intermediate to the ferroelectric single crystal, or by dividing them into multiple pieces. It is also possible to remove the parts that act on the single crystal (for example, by sequentially or alternately applying a balloon to multiple pairs of electrodes that generate an electric field to move the domain wall). By applying pressure, more reliable scanning control can be performed.

[発明の効果] 以上説明したように本発明は、強誘電体単結晶に光ビー
ムを反射する分域壁を形成し、この分域壁の位置を電界
や応力を印加することによって移動させ、その分域壁で
入射した光ビームを反q、]させることによって出射す
る光ビームを走査させる新規な先ビーム走査素子を実現
させることかできる。そして、これによれば、晶速で走
査できるとともにその走査範囲を長くてきる。しかも、
軽量小型の光ビーム走査素子を構成できる。したかって
、従来の光走査素子のもっていた種々の欠点を解消して
例えば光デスクの普及に寄Jjすることがてきる。
[Effects of the Invention] As explained above, the present invention forms a domain wall that reflects a light beam in a ferroelectric single crystal, moves the position of this domain wall by applying an electric field or stress, It is possible to realize a novel forward beam scanning element that scans the outgoing light beam by reflecting the incident light beam at the domain wall. According to this, scanning can be performed at a crystal speed and the scanning range can be lengthened. Moreover,
A lightweight and compact optical beam scanning element can be constructed. Therefore, various drawbacks of conventional optical scanning devices can be solved, and optical disks, for example, can be popularized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を小ず説明図、第7図(、a)(
b)(c)はその作用の説明図、第3図は本発明の第1
の実施例の611.y造を概略的に示す図、第4図(a
)(b)は第1の実施例のf′[用の説明図、第5図は
PEヒステリシス特性を示す図、第6図(a)  U)
)は本発明の第2の実施例の構造を概略的に示し、第6
図(a)は正面図、第6図(b)(よ側面図、完()7
図および第8図はそれぞれ異なる従来の光ピツクアップ
の概略的な構成を示す6z1社1(図である。 1・・・強誘電体単結晶、2・・・180度分域、3・
90度う)域、7−、180度分域、8a、8b−電極
、]0・・00度分域、M・・00度分域、■・印加電
圧。 出願人代理人 弁理上 ISP月  淳−/;X− r  「−一一一−] 、O Dの 田 ■  = \ \ ト                   x^   
      匡 1)      飄↑
Figure 1 is a small explanatory diagram of the principle of the present invention, Figure 7 (, a) (
b) (c) is an explanatory diagram of the action, and Figure 3 is the first diagram of the present invention.
Example 611. A diagram schematically showing the Y structure, Fig. 4 (a
)(b) is an explanatory diagram of f′[ of the first embodiment, FIG. 5 is a diagram showing PE hysteresis characteristics, and FIG. 6(a) U)
) schematically shows the structure of the second embodiment of the present invention, and the sixth embodiment
Figure (a) is a front view, Figure 6 (b) is a side view, complete (7).
Figures 1 and 8 are diagrams showing the schematic configurations of different conventional optical pickups. 1... Ferroelectric single crystal, 2... 180 degree domain, 3...
90 degree domain, 7-, 180 degree domain, 8a, 8b-electrode, ]0...00 degree domain, M...00 degree domain, ■-Applied voltage. Applicant's attorney Patent attorney ISP Tsuki Jun -/;
匡1) 飄↑

Claims (6)

【特許請求の範囲】[Claims] (1)光ビームを入射する強誘電体単結晶体と、この強
誘電体単結晶体内に入射する光ビームを反射する少なく
とも一つ以上の分域壁を形成する手段と、この分域壁を
移動させる走査制御手段とを具備したことを特徴とする
光ビーム走査素子。
(1) A ferroelectric single crystal into which a light beam is incident; a means for forming at least one domain wall that reflects the light beam incident into the ferroelectric single crystal; 1. A light beam scanning element, comprising a scanning control means for moving the light beam.
(2)上記分域壁形成手段は上記強誘電体単結晶体に機
械的応力を付加して分域壁を形成するものであることを
特徴とする請求項1に記載の光ビーム走査素子。
(2) The light beam scanning element according to claim 1, wherein the domain wall forming means applies mechanical stress to the ferroelectric single crystal to form the domain wall.
(3)上記分域壁形成手段は上記強誘電体単結晶に電界
を作用させて上記分域壁を形成することを特徴とする請
求項1に記載の光ビーム走査素子。
(3) The light beam scanning element according to claim 1, wherein the domain wall forming means forms the domain wall by applying an electric field to the ferroelectric single crystal.
(4)上記走査制御手段は上記強誘電体単結晶に電界を
作用させる電界印加用電極を設けてその印加電圧を制御
して上記分域壁を移動させるものであることを特徴とす
る請求項1に記載の光ビーム走査素子。
(4) The scanning control means is characterized in that it is provided with an electric field applying electrode that applies an electric field to the ferroelectric single crystal, and controls the applied voltage to move the domain wall. 1. The light beam scanning element according to 1.
(5)上記強誘電体単結晶がペロブスカイト型で正方晶
に属し、かつ、上記分域壁が90度分域壁であることを
特徴とする請求項1に記載の光ビーム走査素子。
(5) The light beam scanning element according to claim 1, wherein the ferroelectric single crystal is a perovskite type and belongs to a tetragonal crystal, and the domain wall is a 90 degree domain wall.
(6)上記強誘電体単結晶の結晶軸(100)がC軸に
一致しており、入射光ビームが180度分域に対して垂
直に入射し、上記180度分域と90度分域との界面た
る90度分域壁で入射ビームを入射方句に対し90度の
方向へ向けて反射する分極状態に設定することを特徴と
する請求項1に記載の光ビーム走査素子。
(6) The crystal axis (100) of the ferroelectric single crystal coincides with the C axis, and the incident light beam is incident perpendicularly to the 180 degree domain, and the 180 degree domain and the 90 degree domain are 2. The light beam scanning element according to claim 1, wherein the light beam scanning element is set to a polarized state in which the incident beam is reflected in a direction 90 degrees with respect to the direction of incidence at a 90 degree domain wall that is an interface with the light beam scanning element.
JP28098790A 1990-10-19 1990-10-19 Optical beam scanning element Pending JPH04156430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28098790A JPH04156430A (en) 1990-10-19 1990-10-19 Optical beam scanning element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28098790A JPH04156430A (en) 1990-10-19 1990-10-19 Optical beam scanning element

Publications (1)

Publication Number Publication Date
JPH04156430A true JPH04156430A (en) 1992-05-28

Family

ID=17632680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28098790A Pending JPH04156430A (en) 1990-10-19 1990-10-19 Optical beam scanning element

Country Status (1)

Country Link
JP (1) JPH04156430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310104A (en) * 2006-05-17 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> Electrooptic element and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310104A (en) * 2006-05-17 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> Electrooptic element and manufacturing method thereof
JP4663578B2 (en) * 2006-05-17 2011-04-06 日本電信電話株式会社 Electro-optic element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4124273A (en) Variable vergency focussing apparatus
Yamada et al. Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals
US4520484A (en) Coherent radiation source generating a beam with a regulatable propagation direction
Lotspeich Electrooptic light-beam deflection
GB1563113A (en) Variable focus liquid crystal lens
CA1149511A (en) Optical device for access to a track carried by a data carrier and optical memory system incorporating such a device
Ohmachi et al. Vitreous As2Se3; investigation of acousto‐optical properties and application to infrared modulator
JPH0573989A (en) Electrostriction/magnetostriction thin film memory
US5191624A (en) Optical information storing apparatus and method for production of optical deflector
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
CN102449536B (en) Variable focus lens and microscope
US3958863A (en) Tl3 TaS4 and Tl3 TaSe4 crystals and acousto-optical devices
GB1412618A (en) Optical system with holographic pattern formed within an electro-optic photoexcitable plate
JPH0316040A (en) Optical device for optical storage device
EP0259832A2 (en) Optical head
JPH04156430A (en) Optical beam scanning element
Redfield et al. Data storage in photorefractives revisited
US3746866A (en) Acousto-optical systems
US4006444A (en) Acoustic imaging apparatus
JP2594970B2 (en) Thin-film optical waveguide type optical head
JP2851935B2 (en) Collinear optical deflector, method of manufacturing the same, optical deflector, optical integrated head, and optical information recording / reproducing device
JPS61131288A (en) Solid-state memory
JPS6318533A (en) Lens for optical disk pickup
JP2000258741A (en) Aberration correcting element and optical pickup using the same
US5850308A (en) Scanning arrangement for fast access of memory and display