JPH04156119A - Optical space propagation communication equipment - Google Patents

Optical space propagation communication equipment

Info

Publication number
JPH04156119A
JPH04156119A JP2281406A JP28140690A JPH04156119A JP H04156119 A JPH04156119 A JP H04156119A JP 2281406 A JP2281406 A JP 2281406A JP 28140690 A JP28140690 A JP 28140690A JP H04156119 A JPH04156119 A JP H04156119A
Authority
JP
Japan
Prior art keywords
optical
signal
data
wavelength band
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2281406A
Other languages
Japanese (ja)
Inventor
Takahiko Mibu
壬生 孝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2281406A priority Critical patent/JPH04156119A/en
Publication of JPH04156119A publication Critical patent/JPH04156119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To transmit data without adding a preamble signal to transmission data by transmitting and receiving data among all stations based on the same timing. CONSTITUTION:The clock signal generated by an oscillator (10) is converted to an optical signal (120 having a second wavelength band lambda2 by a second optical transmitter (11) and is outputted to the space. This optical signal (12) is reproduced to the original clock signal by each of second optical receivers (57) of optical transmitter-receivers (7) provided on the ceiling and optical transmitter-receivers (9) provided on the floor and is outputted to stations (4) and (5). Each of stations (4) and (5) uses the clock signal outputted from the second optical receiver (57) and uses the optical signal having a first wavelength band lambda3 to transmit and receive data. Consequently, all stations perform the operation based on the same timing. Thus, data can be transmitted without adding a preamble signal (54) just before a data signal (53).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光信号を空間伝搬して情報通信を行う光9
間伝搬装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical system that performs information communication by spatially propagating optical signals.
This invention relates to an inter-propagation device.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭58−200646号公報にて示
された従来の光空間伝搬通信装置を示す図であり9図に
おいて(1)は部屋、(2)及び(6)は光送受信器、
(3)は上記光送受信器(2)から出力される光信号、
(4)及び(5)はステーションである。
Fig. 3 is a diagram showing a conventional optical space propagation communication device disclosed in, for example, Japanese Patent Application Laid-Open No. 58-200646. In Fig. 9, (1) is a room, and (2) and (6) are optical transceivers. ,
(3) is an optical signal output from the optical transceiver (2);
(4) and (5) are stations.

又、第4図は上記(2)及び(6)の光送受信器の構成
例を示す図であシ1図において(51)は電気信号を光
信号に変換する光送信器、  (52)は光信号より電
気信号を再生する光受信器である。さらに第5図は従来
の光空間伝搬装置においてステーション間で相互に伝送
される伝送信号のフォーマットを示す図であシ、  (
53)はステーション相互で授受を行うデータ信号、(
s4)!d上記データ信号(53)を受信側で正しく再
生するためのクロック信号成分を含んだプリアンプル信
号である。
FIG. 4 is a diagram showing an example of the configuration of the optical transceiver in (2) and (6) above. In FIG. 1, (51) is an optical transmitter that converts an electrical signal into an optical signal, and (52) is This is an optical receiver that regenerates electrical signals from optical signals. Furthermore, FIG. 5 is a diagram showing the format of transmission signals mutually transmitted between stations in a conventional optical space propagation device.
53) is a data signal exchanged between stations, (
s4)! d is a preamble signal containing a clock signal component for correctly reproducing the data signal (53) on the receiving side.

次に動作について説明する。ステーション(4)は床に
設けられたステーション(51K対して伝送するデータ
信号(53)が発生すると、受信@CZステーション(
5)にて正確にこのデータ信号(53を再生するため、
送信側である自局が使用し1いるクロック信号の成分を
多く含んだズリア)プル信号(54)をデータ信号(5
3)の直前にセ加して光送受信器(2)K出力する。プ
リアンプル信号(54)とデータ信号(53)から成る
伝送信号は、光送信器(51)にて光信号(3)に変換
さね部屋(1)の天井から床面Kt設された光送受信器
(6)の各党受信器(52) K向けて放射される。各
党受信器(52) li受信した光信号(3)のうち、
プリアンプル信号(54)よりクロック信号を再生し、
このクロック信号にもとづきデータ信号(53)を再生
してステーシコン(5)に出力する。
Next, the operation will be explained. When a data signal (53) to be transmitted to the station (51K) on the floor is generated, the station (4) transmits the signal to the receiving @CZ station (
In order to accurately reproduce this data signal (53) in 5),
The data signal (54) is converted into a Zria pull signal (54) that contains many components of the clock signal used by the own station on the transmitting side.
3) and outputs K to the optical transceiver (2). A transmission signal consisting of a preamble signal (54) and a data signal (53) is converted into an optical signal (3) by an optical transmitter (51).An optical transmitter/receiver is installed from the ceiling to the floor of the room (1). It is radiated towards each party receiver (52) K of the receiver (6). Of the optical signals (3) received by each party receiver (52),
Regenerate the clock signal from the preamble signal (54),
Based on this clock signal, a data signal (53) is reproduced and output to the station controller (5).

このようにしてステーション(4)から天井に設けられ
た光送受信器(2)を用いて床面に設けられたステーシ
ョン(5)への光信号の空間伝搬による情報通信が行わ
れ同様に、床に設けられたステーション(5)からステ
ーション(4)への光信号の空間伝搬による情報通信も
行われる。
In this way, information communication is performed by spatial propagation of optical signals from the station (4) to the station (5) installed on the floor using the optical transceiver (2) installed on the ceiling. Information communication is also performed by spatial propagation of optical signals from station (5) provided in station (4) to station (4).

ゝ    ところで、プリアンプル信号(54)は送信
側)   IIJのステーションの動作クロック信号と
受信側′  のステーションの動作クロック信号がそれ
ぞれ′  独立で異なるため、受信側でデータ信号(5
3)L  を正しく再生するための送信側クロック信号
を′  伝送する之めにのみ用いられる6そしてデータ
1  信号(53)の量によらず常に一定量のブリアン
′   プル信号(54)が必要である。
By the way, the preamble signal (54) is the data signal (54) on the receiving side because the operating clock signal of the station IIJ on the transmitting side and the operating clock signal of the station on the receiving side are independent and different.
3) A constant amount of Brian' pull signal (54) is always required, regardless of the amount of data 1 signal (53), which is used only to transmit the transmitter's clock signal for correctly reproducing L. be.

このため、%えば1ビツトのデータ信号を伝送するため
[64ビットものプリアンプル信号が必要な場合もある
Therefore, in order to transmit, for example, a 1-bit data signal, a 64-bit preamble signal may be necessary.

データの伝送効率はプリアンプル信号のビット数とデー
タ信号のビット数との比で決まシ。
Data transmission efficiency is determined by the ratio of the number of bits of the preamble signal to the number of bits of the data signal.

1回の伝送に周込られるプリアンプル信号のビット数と
1回に伝送できるデータ信号の最大ビット数の比以上如
伝送効率が向上することはない。つまり、ステーション
相互の情報伝送において、プリアンプル信号を付加して
データ信号を伝送している限りある一定値以上に伝送効
率が向上することはない。
Transmission efficiency cannot be improved as much as the ratio between the number of bits of a preamble signal that can be transmitted in one transmission and the maximum number of bits of a data signal that can be transmitted in one transmission. In other words, in information transmission between stations, as long as a preamble signal is added to the data signal, the transmission efficiency will not be improved beyond a certain value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光空間伝搬通信装置は以上のように構成されてい
るので、伝送データの直前に必ずプリアンプル信号を付
加させなければならず、このためデータの伝送効率はあ
る一定値以上には同上しないという課題があった。
Since conventional optical space propagation communication devices are configured as described above, a preamble signal must be added immediately before the transmitted data, and therefore the data transmission efficiency does not exceed a certain value. There was a problem.

この発F!AFi上記のような課題を解消するためにな
されたもので、伝送データの直前にプリアンプル信号を
付加させないでデータ伝送を達成できる光空間伝搬通信
装置を優ることを目的とする。
This departure F! AFi was developed to solve the above-mentioned problems, and its purpose is to improve an optical space propagation communication device that can achieve data transmission without adding a preamble signal immediately before transmission data.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る光空間伝搬通信装置は、唯一のタイミン
グ基準を設け、このタイミング基準をデータ伝送と/I
i異なる波長帯の光信号に変換し空間に出力し各ステー
シコンに供給すると共に、各ステーションはこのタイミ
ング基準を再生し、これに従ってデータの送信及び受信
を行うものである。
The optical space propagation communication device according to the present invention provides a unique timing reference, and uses this timing reference for data transmission and /I/I.
The optical signal is converted into an optical signal of a different wavelength band, outputted into space, and supplied to each station controller, and each station regenerates this timing reference and transmits and receives data in accordance with it.

〔作用〕[Effect]

この発明における光空間伝搬通信装置は、全てのステー
ションが唯一のタイミング基準に従ってデータの送信及
び受信を行うから、データ送信側のステーシコンの動作
タイミングとデータ受信側のステーションの動作タイミ
ングは同一となシ、データ送信側のステーションの動作
タイミング信号を伝送するためのプリアンプル信号を伝
送データの直前に付加させることなく、データ伝送が達
成される。
In the optical space propagation communication device according to the present invention, since all stations transmit and receive data according to a unique timing standard, the operation timing of the station controller on the data transmission side and the operation timing of the station on the data reception side are not the same. Data transmission is achieved without adding a preamble signal immediately before the transmission data for transmitting the operation timing signal of the station on the data transmission side.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、 (13,+4. +51は上記従来装置
と全く同一のものであるう (7)及び(9)は光送受信器、(8)Vi第1の波長
帯λ□の光信号、 (IQは所定の周波数で発振する発
振器、Q1+はこの発振器αQから入力されるクロック
信号を第2の波長帯λ、の元信号に変換する第2の光送
信器、a2は第2のtHL長帯)、の光信号でめる又、
第2図は上記(7)及び(9)の光送受信器の構放飼を
示す図であシ1図において(55) Hステーション(
4)から入力される電気信号を第1の波長帯λ1の光信
号(8)に!換し出力する第1の光送信器、  (56
) #′i第1の波長帯ノ、の光信号(8)から元の電
気信号を再生しステージ3ン(4)に出力する第1の光
受信器、  (57)は第2の波長帯λ2の光信号■か
ら元のクロック信号を再生しステージ)ン(4)に出力
する第2の光受信器である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (13, +4. +51 is exactly the same as the above conventional device, (7) and (9) are optical transceivers, (8) optical signal in Vi first wavelength band λ□, (IQ is an oscillator that oscillates at a predetermined frequency, Q1+ is a second optical transmitter that converts the clock signal input from this oscillator αQ into the original signal of the second wavelength band λ, and a2 is the second tHL long band) , with the optical signal of
Figure 2 is a diagram showing the broadcasting of the optical transceivers in (7) and (9) above. In Figure 1, (55) H station (
4) into an optical signal (8) of the first wavelength band λ1! a first optical transmitter that converts and outputs (56
) #'i A first optical receiver that regenerates the original electrical signal from the optical signal (8) in the first wavelength band and outputs it to the stage 3 (4), (57) is in the second wavelength band. This is a second optical receiver that reproduces the original clock signal from the optical signal of λ2 and outputs it to the stage (4).

次に動作について説明する。発振器αCが発生するクロ
ック信号は第2の光送信器■にて第2の波長帯λ、の光
信号(2)K変換され9間に出力される。この第2の波
長帯λ、の光信号a3Fi天井に設けられた光送受信器
(7)及び床面に設けられた全ての光送受信器(9)の
それぞれの第2の光受信器(57)にて元のクロック信
号が再生されてステーション(4)及び(5)に出力さ
れる。
Next, the operation will be explained. The clock signal generated by the oscillator αC is converted into an optical signal (2)K in the second wavelength band λ by the second optical transmitter (2) and outputted during the period (9). The second optical receiver (57) of the optical transmitter/receiver (7) installed on the ceiling and all the optical transmitters/receivers (9) installed on the floor The original clock signal is regenerated and output to stations (4) and (5).

各ステーション(4)及び(5)Fi従来それぞれが独
自に用いていたクロック信号に代わシ第2の光受信器(
57)が出力するクロック信号を用いて第1の波長帯λ
、の光信号を用いてデータの授受を行う。従って全ての
ステーションが同一のタイミング基準に従って動作する
から、データ信号(53)の直前にプリアンプル信号(
54)を付加させないでデータ伝送が達成できる。
Each station (4) and (5) Fi uses a second optical receiver (
57) using the clock signal outputted by the first wavelength band λ.
Data is exchanged using optical signals from . Therefore, since all stations operate according to the same timing standard, the preamble signal (53) is immediately preceded by the data signal (53).
Data transmission can be achieved without adding 54).

なお、上記実施例でFi1台の第2の光受信器から1台
のステーションにクロック信号が出力されているものを
示したが、1台の第2の光受信器から複数台のステーシ
ョンにクロック信号を出力してもよく、上記実施例と同
様の効果を奏する。
In the above embodiment, the clock signal is output from one Fi second optical receiver to one station, but the clock signal is output from one second optical receiver to multiple stations. A signal may also be output, and the same effects as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば全てのステーションが
同一のタイミング基準で相互にデータの授受を行えるよ
うに構成したので、伝送データにプリアンプル信号を付
加させないでデータ伝送が達成できる。
As described above, according to the present invention, all stations are configured to be able to exchange data with each other based on the same timing standard, so data transmission can be achieved without adding a preamble signal to the transmitted data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による光空間伝搬通信装置
を示す図、第2図はこの発明の光空間伝搬通信装置にお
いて光送受信器の構成を示す図、第3図は従来の光空間
伝搬通信装置を示す図、第4図は従来の光空間伝搬通信
装置における光送受器のm成を示す図、第5図は従来の
光空間伝搬通信装置においてステーション間で相互に伝
送される伝送信号のフォーマットを示す図である。 図においてfl)#′i部屋、 l2)Fi党送受信器
、(3)は光信号、(4)はステーション、f51Fi
ステーション、(6)は光送受信器、(7)は光送受信
器、(8)は第1の波長帯λ、の光信号、(9)は光送
受信器、四は発振器、oFiF2O3送信器、a5!J
は第2の波長帯λ、の光信号、  (51) #i光送
信器、  (52)は光受信器、  (53)はデータ
信号、  (54) #′iプリアンプル信号、(55
)Fi第1の光送信器、  (56)は第1の光受信器
、  (57)は第2の光受信器である。 なお1図中、四−符号は同一、又は相当部分を示す。
FIG. 1 is a diagram showing an optical space propagation communication device according to an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of an optical transceiver in the optical space propagation communication device of the present invention, and FIG. 3 is a diagram showing a conventional optical space propagation communication device. A diagram showing a propagation communication device, FIG. 4 is a diagram showing the m configuration of an optical handset in a conventional optical space propagation communication device, and FIG. 5 is a diagram showing mutual transmission between stations in a conventional optical space propagation communication device. FIG. 3 is a diagram showing a signal format. In the figure, fl) #'i room, l2) Fi party transmitter/receiver, (3) is an optical signal, (4) is a station, f51 Fi
station, (6) is an optical transceiver, (7) is an optical transceiver, (8) is an optical signal of the first wavelength band λ, (9) is an optical transceiver, 4 is an oscillator, oFiF2O3 transmitter, a5 ! J
is an optical signal in the second wavelength band λ, (51) #i optical transmitter, (52) is an optical receiver, (53) is a data signal, (54) #'i preamble signal, (55
) Fi is the first optical transmitter, (56) is the first optical receiver, and (57) is the second optical receiver. In addition, in Figure 1, the numeral 4 indicates the same or equivalent part.

Claims (1)

【特許請求の範囲】[Claims] 相互にデータの授受を行う複数台のステーションと、こ
のステーションから出力される電気信号を第1の波長帯
λ_1の光信号に変換し出力する第1の光送信器と、上
記第1の波長帯λ_1の光信号から元の電気信号を再生
し上記ステーションに出力する第1の光受信器と、所定
の周波数で発振する発信器と、この発信器のクロック信
号出力を第1の波長帯λ_1と異なる第2の波長帯λ_
2の光信号に変換し出力する第2の光送信器と、上記第
2の波長帯λ_2の光信号から元のクロック信号を再生
し上記ステーションに出力する第2の光受信器とから構
成される光空間伝搬通信装置。
a plurality of stations that exchange data with each other; a first optical transmitter that converts an electrical signal output from the station into an optical signal of a first wavelength band λ_1; and a first optical transmitter that outputs the optical signal of a first wavelength band λ_1; A first optical receiver that regenerates the original electrical signal from the optical signal of λ_1 and outputs it to the station, an oscillator that oscillates at a predetermined frequency, and a clock signal output of this oscillator that is in the first wavelength band λ_1. Different second wavelength band λ_
a second optical transmitter that converts and outputs the optical signal in the second wavelength band λ_2, and a second optical receiver that regenerates the original clock signal from the optical signal in the second wavelength band λ_2 and outputs it to the station. Optical space propagation communication device.
JP2281406A 1990-10-19 1990-10-19 Optical space propagation communication equipment Pending JPH04156119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2281406A JPH04156119A (en) 1990-10-19 1990-10-19 Optical space propagation communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2281406A JPH04156119A (en) 1990-10-19 1990-10-19 Optical space propagation communication equipment

Publications (1)

Publication Number Publication Date
JPH04156119A true JPH04156119A (en) 1992-05-28

Family

ID=17638708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2281406A Pending JPH04156119A (en) 1990-10-19 1990-10-19 Optical space propagation communication equipment

Country Status (1)

Country Link
JP (1) JPH04156119A (en)

Similar Documents

Publication Publication Date Title
ID22961A (en) ELECTRONIC COMMUNICATION SYSTEMS AND METHODS
JPH0527289B2 (en)
GB2198316A (en) Transceiver using local oscillator leakage radiation
JPS6374238A (en) Communication system for multiple users
CN104301665A (en) Two-wire multichannel video door system
JPH04156119A (en) Optical space propagation communication equipment
JPS6148250A (en) Space light transmission system
JPH044637A (en) Optical data transmitter
JPH02268044A (en) Optical star type communication equipment
JP2745694B2 (en) Bidirectional bus transmission system
JPH098728A (en) Two-way optical radio communication equipment and communication method using same
CN216930014U (en) Wireless communication frequency hopping system
JPS61107828A (en) Two-way optical communication system
JPH03175838A (en) Optical star type communication equipment
JP2725492B2 (en) Satellite communication system
JPH01136432A (en) Radio communication equipment
JPS59216336A (en) Optical transmission system
JPH0575519A (en) Radio communication system
JPH07154341A (en) Light communication system
JPH0265537A (en) Ordering communication equipment for optical submarine cable system
JPH1118178A (en) Signal processing system using wired remote controller terminal
JPH06326685A (en) Equipment system
JPS59168742A (en) Data communication system
JPH0520440U (en) Data transmission equipment
JPH04150432A (en) Data communication system