JPH04155000A - Zinc-manganese alloy plated steel sheet excellent in spot weldability - Google Patents

Zinc-manganese alloy plated steel sheet excellent in spot weldability

Info

Publication number
JPH04155000A
JPH04155000A JP27234790A JP27234790A JPH04155000A JP H04155000 A JPH04155000 A JP H04155000A JP 27234790 A JP27234790 A JP 27234790A JP 27234790 A JP27234790 A JP 27234790A JP H04155000 A JPH04155000 A JP H04155000A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
plated steel
plating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27234790A
Other languages
Japanese (ja)
Inventor
Takashi Hotta
堀田 孝
Yaichiro Mizuyama
水山 弥一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27234790A priority Critical patent/JPH04155000A/en
Publication of JPH04155000A publication Critical patent/JPH04155000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To extend the life of an electrode tip and to widen the welding current range by incorporating a component having a lower m.p. than Fe into the plating layer in the Zn-Mn plated steel sheet. CONSTITUTION:One or >=2 kinds among Al, Ni, P, Ce and S are incorporated by <0.0050-5% into the plating layer of a Zn-Mn alloy plated steel sheet. An oxide film consisting essentially of ZnO is formed, as required, on the plating layer on both sides respectively at 30-3000mg/m<2>. Since the plated steel sheet is excellent in spot weldability and the number of continuous spots can be increased, welding can be continued for a long time without changing the electrode tip. Consequently, the quality of the weld zone is secured, and the productivity in welding is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スポット溶接性に優れた亜鉛−マンガン合金
めっき鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zinc-manganese alloy coated steel sheet with excellent spot weldability.

〔従来の技術〕[Conventional technology]

亜鉛めっき鋼板の溶接性を向−1,−さぜる方法どして
、例えば特開昭62−215211号公報には、めっき
鋼板表面に電極保護金属をイリ着させる媒体皮膜を被覆
せしめ、スポット溶接における電極チップの寿命を大幅
に延長しうろことが開示されている。
For example, Japanese Patent Application Laid-Open No. 62-215211 discloses a method for improving the weldability of galvanized steel sheets, in which the surface of the galvanized steel sheet is coated with a medium film that makes electrode protection metal adhere to the spot. It is disclosed that the life of electrode tips in welding can be significantly extended.

また特開平2−11983号公報には、めっき鋼板の表
面にZnOを主体とする酸化膜を30〜3000 mg
/m2生成させ、同様に溶接性を向上させることが開示
されている。
Furthermore, JP-A No. 2-11983 discloses that an oxide film containing 30 to 3000 mg of ZnO as a main component is applied to the surface of a plated steel sheet.
/m2 to similarly improve weldability.

〔発明が解決しようどする課題〕[Problems that the invention attempts to solve]

ところで上記それぞれの技術は、電極チップ寿命の改善
は得られるものの、溶接可能な溶接電流範囲の拡大に関
しては必ずしも要求に応え得るものではない。
By the way, although each of the above-mentioned techniques can improve the life of the electrode tip, it cannot necessarily meet the demand for expanding the range of welding current that can be welded.

本発明は上記課題に鑑み、電極チップ寿命の改善と、溶
接電流範囲の拡大に対する要求を有利に解決するスポッ
ト溶接性に優れた亜鉛−マンガン合金めっき鋼板を提供
する。
In view of the above-mentioned problems, the present invention provides a zinc-manganese alloy plated steel sheet with excellent spot weldability that advantageously solves the demands for improvement in electrode tip life and expansion of welding current range.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する本発明は、 (1)電気亜鉛−マンガン合金めつきと、鉄より融点の
低い元素o、oo5o〜5%未満からなるスポット溶接
性に優れた亜鉛−マンガン合金めっき鋼板(2) 上記
(1)項において、鉄より融点の低い元素として、A 
e 、Ni、P、Ce、Sの1種または2種以」二を0
.0050〜5%未満としたスポット溶接性に優れた亜
鉛−マンガン合金めっき鋼板 (3)めっき層上層に2110を主体とする酸化膜を片
面あたり30〜3000mg/m2生成せしめた上記(
1)または(2)項に記載のスポット溶接性に優れた亜
鉛−マンガン合金めっき鋼板 である。
The present invention solves the above problems. (1) Electrolytic zinc-manganese alloy plating and zinc-manganese alloy plated steel sheet (2 ) In item (1) above, as an element with a lower melting point than iron, A
One or more of e, Ni, P, Ce, S
.. Zinc-manganese alloy plated steel sheet with excellent spot weldability with a content of less than 0050 to 5%
The present invention is a zinc-manganese alloy plated steel sheet having excellent spot weldability as described in item 1) or (2).

〔作 用〕[For production]

以下本発明を作用と共に詳細に説明する。 The present invention will be explained in detail below along with its operation.

本発明の対象とする亜鉛めっき鋼板は、電気めっき法、
蒸着めっき法、溶射法など溶融めつき法を除く各種の製
造方法によるものがあり、めっき組成としては、Zn中
に1・Inを5〜95Wt%含有したもので、耐蝕性、
密着性などの諸機能の向上のために、1種ないし2種以
」二の合金元素および不可避不純物元素を含み、またS
iO2,A (1202などのセラミックス微粒子、 
Ti0zなどの酸化物、有機高分子をめっき層に分散さ
せたものがあり、めっき層の厚み方向で単一組成のもの
、連続的あるいは層状に組成が変化するものがあり、さ
らに複層めつき鋼板では、最上層あるいは中間層、最下
層として、FeやNiを主成分としてZnやPなどの各
種元素を含むものがある。
The galvanized steel sheet that is the subject of the present invention can be produced by electroplating,
There are various manufacturing methods other than hot-dip plating, such as vapor deposition plating and thermal spraying, and the plating composition contains 5 to 95 wt% of 1.In in Zn, and has corrosion resistance,
In order to improve various functions such as adhesion, it contains one or more alloying elements and unavoidable impurity elements, and S
iO2,A (ceramic fine particles such as 1202,
There are plating layers in which oxides such as TiOz and organic polymers are dispersed, and there are those with a single composition in the thickness direction of the plating layer, those with a composition that changes continuously or layered, and even multi-layer plating. In some steel plates, the top layer, middle layer, or bottom layer contains Fe or Ni as a main component and various elements such as Zn or P.

例えば電気亜鉛−マンガン合金め一ンき鋼板など、さら
にこれらの単一めっき層また(J複数のめっき層、およ
びこれらのめっき層上に有機皮膜を被覆しためっき鋼板
、亜鉛および亜鉛含有金属の蒸着めっき鋼板がある。
For example, electrolytic zinc-manganese alloy galvanized steel sheets, single plating layers or multiple plating layers, plated steel sheets with organic coatings on these plating layers, vapor deposition of zinc and zinc-containing metals, etc. There is a plated steel plate.

その他5iOz 、A l 20.などのセラミックス
微粒子。
Others 5iOz, Al 20. Ceramic fine particles such as.

Tiez酸化物微粒子および高分子などを亜鉛合金めっ
き層中に分散させた分散めっき鋼板がある。
There is a dispersion plated steel sheet in which Tiez oxide fine particles, polymers, etc. are dispersed in a zinc alloy plating layer.

ZnOを主体とする酸化膜とは、酸化物中にZnOのほ
か例えばめっき層中に含有する成分元素、またはそれら
の酸化物などの化合物等を含有してもよい。また電気化
学的な方法で酸化膜を形成する場合においては、処理液
が含有する成分、あるいは化合物を含んでもよい。
An oxide film mainly composed of ZnO may contain, in addition to ZnO, component elements contained in the plating layer, or compounds such as oxides thereof, etc., in the oxide. Further, in the case of forming an oxide film by an electrochemical method, the treatment liquid may contain components or compounds contained in the treatment liquid.

めっき層とA e、Ni、P、Ce、Sの1種または2
種以上とからなることによる電極チップ寿命の改善およ
び適性溶接電流範囲が拡大する、すなわち溶接性が向上
する理由について以下述べる。
Plating layer and one or two of Ae, Ni, P, Ce, and S
The reason why the life of the electrode tip is improved and the suitable welding current range is expanded, that is, weldability is improved by using the above-mentioned materials, will be described below.

本発明者らは、電気亜鉛−マンガン合金めっき鋼板のめ
っきと、Feより融点の低い元素として例えばA I 
、Ni、P、Ce、Sの1種または2種以上からなるこ
と、またはそのめっき層表面にZnOを主体とする酸化
膜を形成させることにより、−層スポット溶接における
電極チップ寿命の大幅な延長と、溶接可能な電流範囲の
大幅な拡大を可能とすることが出来ることを見出した。
The present inventors have proposed electroplating of zinc-manganese alloy plated steel sheets and an element having a lower melting point than Fe, such as A I
, Ni, P, Ce, and S, or by forming an oxide film mainly composed of ZnO on the surface of the plating layer, the life of the electrode tip in -layer spot welding can be significantly extended. It has been found that it is possible to significantly expand the weldable current range.

ずなわら本発明においては、上記のごとき低融点成分か
らなるめつき層の表面に、ZnOを主体とする酸化膜を
被覆ぜしめてスポット溶接をすることにより、その溶接
熱によって先ずめっき金属が溶融状態となるが、このめ
っき金属が電極チップに直接接触すると、電極チップ組
成の銅とめっき組成の亜鉛が選択的に反応し、低融点の
銅−亜鉛合金層を形成して電極チップが損耗し、寿命を
短くすることになる。
In the present invention, the surface of the plating layer made of the above-mentioned low melting point component is coated with an oxide film mainly composed of ZnO and spot welded, so that the plating metal is first melted by the welding heat. However, when this plated metal comes into direct contact with the electrode tip, the copper in the electrode tip composition and the zinc in the plating composition react selectively, forming a low melting point copper-zinc alloy layer and causing wear to the electrode tip. , which will shorten the lifespan.

この溶融状態のめっき金属は、上記めっき鋼板の表面に
被覆せしめたZnO皮膜により電極チップとの接触を断
たれ、めっき金属の電極チップとの直接接触による溶損
等を防止するとともに、さらに溶融状態のめっき金属が
鋼板の鉄と合金化されて主として鉄−亜鉛合金となり、
これがZnO皮膜の亀裂部を通して、或いはZnO皮膜
と一緒に電極チップ先端部へ移行し堆積して電極チップ
の保護膜、すなわち電極保護金属となり、溶接を継続し
ても保護膜の厚み、形状には大きな変化がなく、常時良
好な溶接ができる。
The plated metal in the molten state is cut off from contact with the electrode tip by the ZnO film coated on the surface of the plated steel sheet, which prevents melting damage caused by direct contact between the plated metal and the electrode tip, and further prevents the plated metal from being in the molten state. The plated metal is alloyed with the iron of the steel plate to become mainly an iron-zinc alloy,
This passes through the cracks in the ZnO film or migrates to the tip of the electrode tip together with the ZnO film and accumulates, forming a protective film for the electrode tip, that is, an electrode protective metal, and even if welding continues, the thickness and shape of the protective film will change. There are no major changes, and good welding is always possible.

この保護皮膜は、電極チップ先端形状を凸型に保つ効果
をもち、電極チップが軟化損傷する過程において低電流
で溶接ができ、電極チップ寿命を延長することができる
This protective film has the effect of keeping the shape of the tip of the electrode tip convex, allowing welding with low current during the process where the electrode tip is softened and damaged, and extending the life of the electrode tip.

ここで電極保護金属とは、めっき金属と地鉄との合金を
主体とするもので、平均濃度として、Fe: 20〜6
0’)(i 、 Zn: ’↓0〜80%程度の場合が
多いが、一般にFe濃度の高い方が好ましく、特に高濃
度Zn部分が局在するような場合は好ましくない。
Here, the electrode protection metal is mainly an alloy of plating metal and base iron, and has an average concentration of Fe: 20 to 6.
0') (i, Zn: '↓Although it is often about 0 to 80%, it is generally preferable to have a high Fe concentration, and it is not preferable particularly when a high concentration Zn portion is localized.

また電極保護金属は、めっき金属の成分、 Mn、Sな
どの鋼板成分、Orなどのめっき鋼板の化成処理など表
面処理生成物の成分、およびCuなどの電極チップの成
分を含むことがある。
Further, the electrode protection metal may include components of the plating metal, components of the steel sheet such as Mn and S, components of surface treatment products such as chemical conversion treatment of the plated steel sheet such as Or, and components of the electrode tip such as Cu.

すなわち電極チップ先端部に、Fe、 Znを主成分と
する電極保護金属を生成させるZnO皮膜をめっき層表
面に被覆せしめ、溶接熱によりめっき金属と鋼板との合
金を上記ZnO皮膜を通じて、あるいは皮膜と一緒に電
極チップ上に生成させつつ溶接するものである。従っで
、電極チップとめっき層Zn成分との反応抑制、電極保
護金属の生成促進。
That is, the tip of the electrode tip is coated with a ZnO film that generates an electrode protection metal mainly composed of Fe and Zn on the surface of the plating layer, and the alloy of the plating metal and the steel plate is applied through the ZnO film or with the film using welding heat. This is done by welding while forming them on the electrode tip. Therefore, the reaction between the electrode tip and the Zn component of the plating layer is suppressed and the formation of electrode protective metal is promoted.

および電極チップ上への111着性の促進が電極チップ
寿命改善の程度に大きく影響を与えることになる。
Furthermore, the promotion of 111 adhesion onto the electrode tip greatly influences the degree of improvement in the life of the electrode tip.

電極保護金属の生成は、溶融めっき金属中への地鉄のF
e拡散によるが、これはめっき金属成分により大きく異
なる。Feより融点の高い成分がめつき金属とともに存
在する場合、電極保護金属の生成は容易ではない。
The generation of the electrode protection metal is caused by the F of the base metal into the hot-dipped metal.
This is due to e-diffusion, but this varies greatly depending on the plating metal components. When a component with a melting point higher than Fe is present together with the plating metal, it is not easy to generate an electrode protective metal.

一方Feより融点の低い成る種の成分がめつき金属と共
存する場合、電極保護金属の生成は容易となることを見
出した。また電極保護金属が生成される過程で、電極保
護金属成分のFe濃度が高くなり、融点を高め、電極保
護金属の粘性を大きく低下させるため、電極保護金属の
電極チップへの移行が抑制される。このような場合にお
いても、めっきとFeより融点の低い成分が存在するこ
とにより、Fe −Zn合金からなる電極保護金属の粘
性を大きく下げることが可能となり、電極保護金属の電
極チップへの移行が容易となる。
On the other hand, it has been found that when a component having a melting point lower than that of Fe coexists with the plating metal, the formation of the electrode protective metal becomes easy. In addition, in the process of generating the electrode protection metal, the Fe concentration of the electrode protection metal component increases, raising the melting point and greatly reducing the viscosity of the electrode protection metal, thereby suppressing the transfer of the electrode protection metal to the electrode tip. . Even in such cases, the presence of the plating and components with a lower melting point than Fe makes it possible to greatly reduce the viscosity of the electrode protection metal made of Fe-Zn alloy, which prevents the electrode protection metal from transferring to the electrode tip. It becomes easier.

さらに電極保護金属の粘性の改善は、電極チップと被溶
接材との溶着現象を避けるうえで有効となり、溶接可能
な電流範囲の拡大を可能とすることを見出した。
Furthermore, it has been found that improving the viscosity of the electrode protection metal is effective in avoiding the phenomenon of welding between the electrode tip and the material to be welded, and makes it possible to expand the weldable current range.

このようにしてFeより低融点の成分がめつき層と共存
する亜鉛−マンガンめっき鋼板において、そのめっき層
表面にZnO皮膜を生成せしめることにより、溶接II
)能な電流範囲の拡大と電極チップ寿命の大幅な拡大が
可能となる。
In this way, in zinc-manganese plated steel sheets in which a component with a lower melting point than Fe coexists with the plated layer, by forming a ZnO film on the surface of the plated layer, welding II
) It is possible to expand the range of current that can be achieved and to significantly extend the life of the electrode tip.

また、Feより低融点の成分をもつめっきにおいて、Z
nO皮膜が存在しない場合もZnOによる電極チップど
めっき層Zn成分との反応が抑制されないが、電極保護
金属の粘性の改善による効果として、溶接可能な電流範
囲の拡大と電極チップ寿命の拡大が可能となる。
In addition, in plating containing a component with a lower melting point than Fe, Z
Even in the absence of an nO film, the reaction of ZnO with the Zn component of the plating layer on the electrode tip is not suppressed, but the effect of improving the viscosity of the electrode protective metal is to expand the weldable current range and extend the life of the electrode tip. becomes.

すなわちFeより低融点の成分をもつめっき鋼板は、溶
接可能な電流範囲の拡大と、電極チップ寿命の拡大を可
能とrるが、この効果をより高めるためには、めっき層
表面に酸化膜を付与することが有効であることを示す。
In other words, plated steel sheets with components with a lower melting point than Fe can expand the weldable current range and extend the life of the electrode tip, but in order to further enhance this effect, it is necessary to form an oxide film on the surface of the plating layer. Indicates that granting is valid.

このような酸化膜の生成量としては、酸化膜中の片面あ
たりZnOJilとして、30〜3000mg/m2が
適正であり、30 mg/m2未満では効果が十分でな
く、また3000mg/m2超になると電気抵抗が大と
なり、電極が軟化変形を生じ易くなり、電極寿命が短く
なり好ましくない。
The appropriate amount of oxide film to be produced is 30 to 3,000 mg/m2 of ZnOJil per side of the oxide film; less than 30 mg/m2 is insufficiently effective, and more than 3,000 mg/m2 is This is undesirable because the resistance becomes large, the electrode becomes susceptible to softening and deformation, and the life of the electrode becomes short.

なおZnOを主体とする酸化膜は、めっぎ鋼板が空気接
触することによって極く僅かに生成するが、このような
酸化膜量では測定も困難なほど少量であり、従って」−
記の作用効果は全く得られず、本発明のごとく意図的に
生成せしめていないので、実質的に酸化膜生成はないと
いう前提である。
An extremely small amount of oxide film, mainly composed of ZnO, is formed when the plated steel sheet comes into contact with air, but the amount of oxide film is so small that it is difficult to measure.
The above effects are not obtained at all, and since the oxide film is not intentionally produced as in the present invention, it is assumed that substantially no oxide film is produced.

また低融点成分としては、A e、Nu、P、Ce、S
などがあり、これら成分が1種または2種以上を0.0
050〜5%未満の範囲で共存さぜることがfi効とな
る。この値が0.0050%以下では、電極保護金属の
粘性改善の効果が小さく、実用的な効果が得られない。
In addition, low melting point components include Ae, Nu, P, Ce, S
etc., containing one or more of these components at 0.0
Coexistence within a range of less than 0.5% to 5% results in a fi effect. If this value is less than 0.0050%, the effect of improving the viscosity of the electrode protective metal is small, and no practical effect can be obtained.

−刃金有量が506を超えると、電極保護金属の粘性が
逆に大きくなることから、電極保護金属形成による電極
寿命の改善、および適正溶接電流範囲の拡大効果が消滅
するため好ましくない。
- If the blade metal content exceeds 506, the viscosity of the electrode protection metal increases, which is not preferable because the effect of improving the electrode life and expanding the appropriate welding current range by forming the electrode protection metal disappears.

第1図は、電気亜鉛−マンガン(14n: 15wt%
)合金めっき層中に、Niを含有させた場合の適止溶接
電流範囲の拡大に与えるNi含有量の影響を示した図面
である。ここでは 1)板厚CLBmm−二枚重溶接 二枚型溶接鉛−一マンガン金めっき鋼板。
Figure 1 shows electrolytic zinc-manganese (14n: 15wt%
) is a drawing showing the influence of Ni content on expansion of the appropriate welding current range when Ni is included in the alloy plating layer. Here, 1) Plate thickness CLB mm - double welded double welded two-plate welded lead-monomanganese gold-plated steel plate.

めっき付着量:115ρ15 g/m23)適正溶接電
流範囲・− 溶着電流(工S)−ナゲツト形成最小電流値(Imin
)としている。
Plating deposition amount: 115ρ15 g/m23) Appropriate welding current range - Welding current (S) - Minimum nugget forming current value (Imin
).

上記の説明および図面からも判るように、電極チップ寿
命の改善は勿論のこと、適正なNi1lにおいて、適正
溶接電流範囲の大幅な拡大が可能となる。
As can be seen from the above description and drawings, not only the life of the electrode tip can be improved, but also the range of appropriate welding current can be significantly expanded with an appropriate Ni1l.

しかして前記した低融点元素と亜鉛−マンガンめっき層
とからならしめる方法として、通常の電気めっき洛中に
添加してめっきし、亜鉛−マンガンめっき層中へ含有さ
せる方法、あるいは低融点成分のみを通常の電気亜鉛−
マンガンめっきの前または後工程でめっき[7、(”J
”−jするいずれの方法でもよい。
However, as a method of forming the above-mentioned low melting point element and zinc-manganese plating layer, there is a method of adding it to the zinc-manganese plating layer during normal electroplating and incorporating it into the zinc-manganese plating layer, or a method of adding only the low-melting point element to the zinc-manganese plating layer. electrolytic zinc-
Plating before or after manganese plating [7, (”J
”-j may be used.

酸化膜の生成方法としては、めっき後アルカリまたは酸
性溶液中に浸漬酸化する方法、その他アルカリ、中性ま
たは酸性溶液中で電気化学的に酸化する方法なども有効
な手段となる。
Effective methods for forming the oxide film include immersion oxidation in an alkaline or acidic solution after plating, and electrochemical oxidation in an alkaline, neutral or acidic solution.

〔実 施 例〕〔Example〕

つぎに本発明の実施例を比較例とともに第1表に挙げる
Next, Examples of the present invention are listed in Table 1 along with comparative examples.

なお第1表における諸条件は次の通りである。The conditions in Table 1 are as follows.

注1=めっき鋼板の内容 1)全て電気亜鉛−マンガン合金の両面めっき鋼板。、 2)鋼板厚さはいずれも0.8mmの普通鋼板。Note 1 = Contents of plated steel sheet 1) All galvanized zinc-manganese alloy double-sided plated steel sheets. , 2) All steel plates are ordinary steel plates with a thickness of 0.8 mm.

3)実施例3と比較例3は、Zn−Mnめっきを下層と
し、Feを85wf、%含有したZn−Feめっきを、
3 g/m2上層めっきした二層型の電気亜鉛めっき鋼
板。
3) In Example 3 and Comparative Example 3, Zn-Mn plating was used as the lower layer, and Zn-Fe plating containing 85 wf% of Fe was used.
Double-layer electrogalvanized steel sheet with 3 g/m2 upper layer plating.

q)実施例5は蒸着亜鉛−マンガン合金めっき鋼板の場
合である。
q) Example 5 is a case of a vapor-deposited zinc-manganese alloy plated steel sheet.

注2= 酸化膜生成処理方法は、めっき後Zn(NO3)。Note 2 = The oxide film generation treatment method is Zn (NO3) after plating.

・6H20水溶液に浸漬する方法で行った。処理口 浴<7)11 度Get、Zn(NOx)z・6H20
:600g/ l 、 HNO3:0.5 ml!/ 
I!、浴温は50℃とし、酸゛化膜量を処理時間0〜1
0秒で制御した。
・It was carried out by immersion in a 6H20 aqueous solution. Processing mouth bath <7) 11 degrees Get, Zn(NOx)z・6H20
:600g/l, HNO3:0.5ml! /
I! , the bath temperature was 50°C, and the amount of oxidized film was changed over the treatment time from 0 to 1.
It was controlled in 0 seconds.

注3:酸化物中のZnO測定 めっき層表面をGD3分析(グロー放電発光分析法)し
て得た[0]強度から換算して求めたZnOJl、 Z
nOの換算は、ZnO厚さの異なる標準試料から求めた
GDSの[0]強度とZnO厚さとの関係から推定する
方法を用いた。
Note 3: Measurement of ZnO in oxides ZnOJl, Z calculated from [0] intensity obtained by GD3 analysis (glow discharge optical emission spectrometry) of the surface of the plating layer
For the conversion of nO, a method of estimating from the relationship between the [0] intensity of GDS obtained from standard samples having different ZnO thicknesses and the ZnO thickness was used.

注4:溶接条件 溶接条件は下記による。Note 4: Welding conditions The welding conditions are as follows.

1)加圧力   : 250 Kgf 2)初期加圧時間: 110 Hz 3)通電時間  : 12 Hz 4)保持時間  :511z 5)板組合わせ :二枚重ね溶接 6)電極チップ寿命テスト溶接電流、1IKA7)チ・
シブ先端径:5.0φ(円錐台頭型)8)適正溶接電流
範囲の評価 =工s −lm1n■S:電極チップが溶
着する溶接m流 Imin :ナゲット径が3.6φとなる溶接電流9)
電極寿命終点判定: 溶接電流の85%でのナゲツト径が3.6mmを確保で
きる打点数 10)電極材質:Cu−Cr(一般に用いられている材
質の電極) 電極寿命溶接は、めっき鋼板の片面を上とし、他面を下
として2枚重ね合わせて1点/2秒の速度で20点連続
溶接、30秒休止の繰り返しとした。
1) Pressure force: 250 Kgf 2) Initial pressurization time: 110 Hz 3) Current application time: 12 Hz 4) Holding time: 511z 5) Plate combination: two-ply welding 6) Electrode tip life test welding current, 1IKA7) Chi.
Sib tip diameter: 5.0φ (cone-shaped) 8) Evaluation of appropriate welding current range = s -lm1n S: Welding flow m where the electrode tip is welded Imin: Welding current that makes the nugget diameter 3.6φ 9)
Electrode life end point determination: Number of dots that can ensure a nugget diameter of 3.6 mm at 85% of welding current: 10) Electrode material: Cu-Cr (electrode made of commonly used material) Electrode life welding is performed on one side of a plated steel plate. Two sheets were stacked with one side on top and the other side on the bottom, and 20 points were continuously welded at a speed of 1 point/2 seconds, followed by a 30 second pause.

本実施例から明らかなように、本発明の合金めっき鋼板
では、電極り命打点数は9000回以上と、従来に比較
して飛躍的に増加している。
As is clear from this example, in the alloy plated steel sheet of the present invention, the number of electrode strikes is 9000 or more, which is a dramatic increase compared to the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明の合金めっき鋼板はスポット
溶接性に優れ、その連続打点数を増加させ得るので、従
ってそれだけ電極チップを取り替えることなく長時間の
溶接が可能となり、電極の耐久性を向上させることがで
きる。さらに適正溶接電流の範囲ら従来材と同等のレベ
ルが維持され、溶接性も良好であるなど、溶接部の品質
の確保ならびに溶接作業の生産性の向上に優れた効果が
ある。
As explained above, the alloy-plated steel sheet of the present invention has excellent spot weldability and can increase the number of consecutive welding points, so it is possible to weld for a long time without replacing the electrode tip, improving the durability of the electrode. be able to. Furthermore, the range of appropriate welding current is maintained at the same level as conventional materials, and the weldability is also good, which has an excellent effect on ensuring the quality of welded parts and improving the productivity of welding work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気亜鉛−マンガン合金めっき層中にNiを含
有させた場合の適正溶接電流範囲とNi含有量との関係
を示した図面である。 代理人 弁理士 秋 沢 政 光 他 1名 ! 6
FIG. 1 is a drawing showing the relationship between the appropriate welding current range and the Ni content when Ni is contained in the electrolytic zinc-manganese alloy plating layer. Agent: Patent attorney Masamitsu Akizawa and 1 other person! 6

Claims (3)

【特許請求の範囲】[Claims] (1)電気亜鉛−マンガン合金めっきと、鉄より融点の
低い元素0.0050〜5%未満からなるスポット溶接
性に優れた亜鉛−マンガン合金めっき鋼板。
(1) A zinc-manganese alloy plated steel sheet with excellent spot weldability, consisting of electrolytic zinc-manganese alloy plating and 0.0050 to less than 5% of an element with a lower melting point than iron.
(2)鉄より融点の低い元素としてAl、Ni、P、C
e、Sの1種または2種以上を0.0050〜5%未満
とした請求項(1)記載のスポット溶接性に優れた亜鉛
−マンガン合金めっき鋼板。
(2) Al, Ni, P, and C as elements with lower melting points than iron.
The zinc-manganese alloy plated steel sheet with excellent spot weldability according to claim 1, wherein one or more of e and S is contained in an amount of 0.0050 to less than 5%.
(3)めっき層上層にZnOを主体とする酸化膜を片面
あたり30〜3000mg/m^2生成せしめた請求項
(1)または(2)記載のスポット溶接性に優れた亜鉛
−マンガン合金めっき鋼板。
(3) The zinc-manganese alloy coated steel sheet with excellent spot weldability according to claim (1) or (2), wherein an oxide film mainly composed of ZnO is formed on the upper layer of the plating layer at a rate of 30 to 3000 mg/m^2 per side. .
JP27234790A 1990-10-12 1990-10-12 Zinc-manganese alloy plated steel sheet excellent in spot weldability Pending JPH04155000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27234790A JPH04155000A (en) 1990-10-12 1990-10-12 Zinc-manganese alloy plated steel sheet excellent in spot weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27234790A JPH04155000A (en) 1990-10-12 1990-10-12 Zinc-manganese alloy plated steel sheet excellent in spot weldability

Publications (1)

Publication Number Publication Date
JPH04155000A true JPH04155000A (en) 1992-05-27

Family

ID=17512616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27234790A Pending JPH04155000A (en) 1990-10-12 1990-10-12 Zinc-manganese alloy plated steel sheet excellent in spot weldability

Country Status (1)

Country Link
JP (1) JPH04155000A (en)

Similar Documents

Publication Publication Date Title
EP0456834B1 (en) Galvanized steel plate having excellent capability of press working, chemical conversion and the like, and production of said plate
JPH04155000A (en) Zinc-manganese alloy plated steel sheet excellent in spot weldability
JPS63230861A (en) Manufacture of alloying hot dip galvanized steel sheet excellent in spot weldability
JPH04147998A (en) Zinc-chromium alloy plated steel sheet having superior spot weldability
JPH04365880A (en) Galvanized steel sheet having excellent spot weldability
JPH04147997A (en) Zinc-nickel alloy plated steel sheet having superior spot weldability
JPH04147996A (en) Zinc-chromium-nickel alloy plated steel sheet having superior spot weldability
JPH024983A (en) Galvanized sheet excellent in spot weldability
JPH04147999A (en) Zinc-or zinc alloy plated steel sheet having superior spot weldability
JPH10212563A (en) Production of galvanized steel sheet
JPH08296017A (en) Galvanized steel sheet excellent in lubricity, chemical convertibility, compatibility with adhesive and weldability
JP4555587B2 (en) Resistance spot welding method
JPS62114780A (en) Electrode tip for welding
JPH05214558A (en) Galvanized steel sheet excellent in press formability and spot weldability
JPH0422583A (en) Resistance spot welding method for zinc compound plating steel plate
JPH02263970A (en) Production of alloyed galvanized steel sheet excellent in spot weldability
JPH01149996A (en) Production of plated steel sheet having superior spot weldability
JPS60187482A (en) Electrode tip for spot welding
JPH03253550A (en) Production of alloyed hot dip galvanized steel sheet having superior spot weldability and hot dip galvanizing bath
JP2005279679A (en) Resistance spot welding method for hot dip galvanized steel sheet and non-plated steel sheet
JPH0762276B2 (en) Zinc-chromium alloy plated steel sheet excellent in weldability and workability and method for producing the same
JPH0673592A (en) Zn-fe alloy plated al alloy sheet excellent in resistance weldability
JP2010100867A (en) Sn-BASED PLATING STEEL SHEET EXCELLENT IN SPOT WELDABILITY AND METHOD OF MANUFACTURING THE SAME
JPH0713308B2 (en) Galvanized steel sheet with excellent press formability, chemical conversion treatment and weldability
JPH02263968A (en) Production of galvanized steel sheet excellent in spot weldability