JPH04154907A - Degassing method from molten metal - Google Patents

Degassing method from molten metal

Info

Publication number
JPH04154907A
JPH04154907A JP27500590A JP27500590A JPH04154907A JP H04154907 A JPH04154907 A JP H04154907A JP 27500590 A JP27500590 A JP 27500590A JP 27500590 A JP27500590 A JP 27500590A JP H04154907 A JPH04154907 A JP H04154907A
Authority
JP
Japan
Prior art keywords
molten metal
molten steel
porous material
pipe
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27500590A
Other languages
Japanese (ja)
Inventor
Yoshimasa Mizukami
水上 義正
Naoto Tsutsumi
直人 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27500590A priority Critical patent/JPH04154907A/en
Publication of JPH04154907A publication Critical patent/JPH04154907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To efficiently execute degassing to molten metal at a low cost and to remove carbon by bringing the surface of oxide material layer formed on the surface of a porous material into contact with the molten metal and reducing the pressure on the other surface of porous material. CONSTITUTION:On the surface of a pipe 3 made of porous material through which molten metal can not pass while CO gas can pass, the oxide material layer 6 is formed. As the above porous material, the material composed of a refractory having about 10-30% porosity is suitable. Further, as the above oxide material, Fe2O3, SiO2, MgO, etc., is used and the oxide material thereof is kneaded with water and a binder and applied on the surface of the above pipe 3. By drying, the oxide material layer 6 having about 10-30% porosity is obtd., where the thickness is suitable to be about 2-5mm. This pipe 3 is dipped into the molten steel 2 in a vessel 1 and the inner part is exposed in a reducing pressure with a vacuum pump 4. Carbon in the molten steel 2 is combined with O in the oxide material layer 6, and CO 5 generated is sucked in the pipe 3 and degassed. By this method, C contained in the molten steel 2 can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属からの脱ガス方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for degassing molten metal.

〔従来の技術〕[Conventional technology]

溶融金属中の炭素は一般に下記のような反応で除去され
る。
Carbon in molten metal is generally removed by the following reaction.

旦+−Q−→ Co     (1) ここで、旦、旦は溶融金属中に溶解した炭素および酸素
であり、COは発生した一酸化炭素ガスを示す。
Tan+-Q-→Co (1) Here, Tan and Tan are carbon and oxygen dissolved in the molten metal, and CO indicates generated carbon monoxide gas.

従来、溶融金属中の炭素を除去する方法としては、溶融
金属を減圧下に曝し一酸化炭素ガスの分圧を小さくし、
(1)式の反応を右に反応させることにより溶融金属中
の炭素を除去する方法が一般的に行われている。
Conventionally, the method for removing carbon from molten metal is to expose the molten metal to reduced pressure to reduce the partial pressure of carbon monoxide gas.
A method of removing carbon from molten metal by carrying out the reaction of formula (1) as shown in the right is generally practiced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この場合、溶融金属内部からガスが発生ずるため、脱ガ
ス速度を速くする程、溶融金属は飛散し、減圧容器及び
減圧ポンプを汚染する。従って、減圧容器内及び減圧ポ
ンプの清掃をする必要があり、生産性を低下させる等の
問題があった。
In this case, gas is generated from inside the molten metal, so the faster the degassing rate is, the more the molten metal scatters and contaminates the vacuum container and vacuum pump. Therefore, it is necessary to clean the inside of the vacuum container and the vacuum pump, which causes problems such as reduced productivity.

又、減圧下に溶融金属を曝すことにより、溶融金属その
ものが蒸発し、溶融金属の歩留を低下させる等の問題も
あった。
Furthermore, by exposing the molten metal to reduced pressure, the molten metal itself evaporates, resulting in a reduction in the yield of the molten metal.

更に、ガスを除去しようとする溶融金属は専用の減圧容
器に移し替える必要があり、作業性を悪くする等の問題
もあった。
Furthermore, it is necessary to transfer the molten metal from which the gas is to be removed to a dedicated vacuum container, which poses problems such as poor workability.

本発明は、これらの問題を解決し、安価で且つ効率的に
溶融金属から炭素を除去するために開発されたものであ
る。
The present invention was developed to solve these problems and to remove carbon from molten metal inexpensively and efficiently.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨とするところは、溶融金属は通過させない
が、一酸化炭素ガスを通過させる多孔質物質の表面に酸
化物質の層を形成し、その酸化物質層の表面を溶融金属
に接触させ、多孔質物質の他方の面を減圧下に曝すこと
により溶融金属が含有する炭素を除去することを特徴と
する溶融金属からの脱ガス方法にある。
The gist of the present invention is to form an oxide layer on the surface of a porous material that does not allow molten metal to pass through but allows carbon monoxide gas to pass through, and to bring the surface of the oxide layer into contact with the molten metal. A method for degassing a molten metal, characterized in that carbon contained in the molten metal is removed by exposing the other side of the porous material to a reduced pressure.

〔作用〕[Effect]

従来法による脱ガス方法は、溶融金属の自由表面を直接
減圧下に曝すため、溶融金属内部で生成したガスが溶融
金属の自由表面で破裂し、溶融金属の飛散を発生させ、
減圧容器及び減圧ポンプを汚染することとなる。又、溶
融金属自由表面を直、接減圧下に曝すため、蒸気圧の低
い溶融金属の場合は溶融金属そのものが蒸発することも
ある。つまり、従来法はガスを除去しようとする溶融金
属を直接減圧下に曝すために種々の問題が発生し、脱ガ
ス処理の生産性の低下、溶融金属の歩留の低下を招いて
いる。
In the conventional degassing method, the free surface of the molten metal is directly exposed to reduced pressure, so the gas generated inside the molten metal ruptures on the free surface of the molten metal, causing the molten metal to scatter.
This will contaminate the vacuum vessel and vacuum pump. Furthermore, since the free surface of the molten metal is directly exposed to reduced pressure, if the molten metal has a low vapor pressure, the molten metal itself may evaporate. In other words, in the conventional method, various problems occur because the molten metal from which gas is to be removed is directly exposed to reduced pressure, leading to a decrease in the productivity of the degassing process and a decrease in the yield of the molten metal.

そこで、本発明者らは溶融金属内部で生成したガスを減
圧下に直接放出しない方法について種々の検討を行い、
その結果、溶融金属は通過させないが、一酸化炭素ガス
を通過させる多孔質物質を介して、溶融金属内部で生成
したガスを減圧下に放出すれば、従来法の溶融金属の飛
散及び溶融金属の蒸発を防止しつつ、溶融金属から炭素
を除去できることを見出したものである。
Therefore, the present inventors conducted various studies on methods that do not directly release the gas generated inside the molten metal under reduced pressure.
As a result, if the gas generated inside the molten metal is released under reduced pressure through a porous material that does not allow the molten metal to pass through, but allows carbon monoxide gas to pass through, the molten metal can be prevented from scattering in the conventional method. It has been discovered that carbon can be removed from molten metal while preventing evaporation.

以下、溶鋼の脱炭を例に詳細に説明する。Hereinafter, decarburization of molten steel will be explained in detail as an example.

従来法で溶鋼の脱炭を行う場合は、溶鋼の入った容器ご
とタンクの中に置き、真空ポンプでタンク内を減圧にし
脱炭する真空溶解炉方式の脱ガス方法、あるいは溶鋼を
減圧槽内に送り込むRH脱ガス装置、DH脱ガス装置等
により脱炭する脱ガス方法が採用されていた。この場合
、タンク内あるいは槽内の真空度をあげると、一酸化炭
素ガス分圧は低下し、溶鋼中に溶解する平衡炭素および
酸素は減少するので、溶鋼中から一酸化炭素ガス気泡が
発生する。この一酸化炭素ガスは溶鋼静圧が小さくなる
溶鋼自由表面に近づくにしたがい、急激に気泡径が増大
し、溶鋼自由表面から離脱するが、離脱の際、溶鋼を飛
散することになる。
When decarburizing molten steel using the conventional method, a degassing method using a vacuum melting furnace method is used, in which the container containing the molten steel is placed in a tank and the tank is depressurized using a vacuum pump to decarburize, or the molten steel is degassed by placing the molten steel in a decompression tank. A degassing method was adopted in which decarburization was performed using an RH degassing device, a DH degassing device, etc. In this case, when the degree of vacuum inside the tank or bath is increased, the partial pressure of carbon monoxide gas decreases, and the equilibrium carbon and oxygen dissolved in the molten steel decreases, so carbon monoxide gas bubbles are generated from the molten steel. . As this carbon monoxide gas approaches the free surface of the molten steel where the static pressure of the molten steel decreases, its bubble diameter rapidly increases and it leaves the free surface of the molten steel, but when it leaves, it scatters the molten steel.

また、通常、工業的に使われる溶鋼はマンガンを含有し
ているが、マンガンの蒸気圧は1292℃で1m+Hg
である。タンク内あるいは槽内の真空度が1閣ng以上
の高真空度になると、マンガンは蒸発しく溶鋼成分を変
化させるばかりでなく、マンガン蒸気でタンク内、槽内
、あるいは真空ポンプを汚染する恐れがある。
Additionally, molten steel used industrially usually contains manganese, and the vapor pressure of manganese is 1m+Hg at 1292℃.
It is. If the degree of vacuum inside the tank or tank reaches a high vacuum level of 1 ng or more, manganese will not only evaporate and change the molten steel composition, but also there is a risk that the manganese vapor will contaminate the tank, tank, or vacuum pump. be.

本発明は、溶融金属は通過させないが、一酸化炭素ガス
を通過させる多孔質物質の表面に酸化物質の層を形成し
、その酸化物質層の表面を溶融金属に接触させ、他方の
面を減圧下に曝すことにより溶融金属が含有する炭素を
除去する脱ガス方法である。
In the present invention, a layer of oxidation material is formed on the surface of a porous material that does not allow molten metal to pass through, but allows carbon monoxide gas to pass through, the surface of the oxide material layer is brought into contact with the molten metal, and the other surface is depressurized. This is a degassing method in which carbon contained in molten metal is removed by exposing it to the atmosphere.

第1図に示すように、本発明者等は先に溶鋼からの脱炭
方法について提案した。その方法は、容器1に保持した
溶鋼2の中に、片端を封じた多孔質物質からなるパイプ
3を浸漬し、パイプ3の他端を真空ポンプ4に連結して
パイプ3内を減圧する。これによって、溶鋼2に接した
パイプ3の外側で発生した一酸化炭素ガス5は、パイプ
3の内側に吸引され、真空ポンプ4により排気される。
As shown in FIG. 1, the present inventors previously proposed a method for decarburizing molten steel. In this method, a pipe 3 made of a porous material with one end sealed is immersed in molten steel 2 held in a container 1, and the other end of the pipe 3 is connected to a vacuum pump 4 to reduce the pressure inside the pipe 3. As a result, carbon monoxide gas 5 generated outside the pipe 3 in contact with the molten steel 2 is sucked into the inside of the pipe 3 and exhausted by the vacuum pump 4.

パイプ3を構成する多孔質物質としては、通常溶鋼処理
に使用されている耐火物で気孔率が10〜30%あれば
十分である。
As the porous material constituting the pipe 3, a refractory material normally used for processing molten steel with a porosity of 10 to 30% is sufficient.

しかし、この脱炭反応後の多孔質物質製パイプ3を観察
すると溶鋼2と接した表面が浸食されているのが観察さ
れ、多孔質物質が劣化するために多数回使用出来ないこ
とが分かった。この原因を解明するため種々の検討を行
った結果、脱炭する際に、(1)式の旦が多孔質物質か
ら供給され、多孔質物質が分解するためであることが分
かった。
However, when observing the porous material pipe 3 after this decarburization reaction, it was observed that the surface in contact with the molten steel 2 was eroded, and it was found that it could not be used many times because the porous material deteriorated. . As a result of various studies conducted to elucidate the cause of this problem, it was found that during decarburization, the fuel in formula (1) is supplied from the porous material and the porous material decomposes.

これを改善するため種々の実験を行った結果、第2図に
示したように、多孔質物質製パイプ3の表面に酸化物質
層6を形成し、その酸化物質層6の表面を溶鋼2に接触
させ、多孔質物質製パイプ3の他方の面を減圧下に曝す
ことにより、上記問題が解決できることを確かめた。
As a result of conducting various experiments to improve this problem, as shown in FIG. It was confirmed that the above problem could be solved by bringing the other side of the porous pipe 3 into contact with each other and exposing it to reduced pressure.

即ち、多孔質物質製パイプ3の表面に形成した酸化物質
層6は溶鋼中の炭素と反応するに必要な酸素を供給する
ので、多孔質物質製パイプ3本体の侵食が防止でき、多
孔質物質製パイプ3本体の多数回使用が可能となる。
That is, the oxide layer 6 formed on the surface of the porous material pipe 3 supplies the oxygen necessary to react with carbon in the molten steel, thereby preventing the body of the porous material pipe 3 from being eroded. The main body of the manufactured pipe 3 can be used many times.

酸化物質としては酸化鉄、酸化珪素、酸化マグネシウム
およびこれらの混合物あるいは化合物等が使用可能であ
る。
As the oxidizing substance, iron oxide, silicon oxide, magnesium oxide, mixtures or compounds thereof, etc. can be used.

また、酸化物質層6の形成方法としては、通常の耐火物
補修と同様に、水とバインダーで混練した酸化物質を多
孔質物質の表面に塗布し、これを乾燥すると気孔率10
〜30%の酸化物質層6が形成できる。
The method for forming the oxide layer 6 is to apply an oxide material mixed with water and a binder to the surface of the porous material, and then dry it to form a porosity of 10.
~30% oxide material layer 6 can be formed.

また、他の方法としては酸化物質を多孔質物質の表面に
、例えばプラズマ溶射することで酸化物質層を形成する
ことができる。溶射した酸化物質層の気孔率は酸化物質
の粒度、溶融度合いを調節することによって確保できる
Alternatively, an oxide layer can be formed by, for example, plasma spraying an oxide material on the surface of a porous material. The porosity of the sprayed oxide layer can be ensured by adjusting the particle size and degree of melting of the oxide.

上記酸化物質層6の厚みは、−回の脱炭処理に対して、
2〜5mの厚みで十分である。
The thickness of the oxide layer 6 is as follows for - times of decarburization treatment:
A thickness of 2 to 5 m is sufficient.

〔実施例1〕 第1表の実施例1に示した下端を閉じた多孔質物質製パ
イプの表面に、酸化物質として酸化鉄とシリカの重量比
が1対1の粉体に、バインダーを添加し水を混合してペ
ースト状となしたものを3肝の厚みに塗布し、加熱、乾
燥した後、100kg溶解炉で第2表の実施例1に示し
た成分に調整した溶鋼に20印浸漬し、多孔質物質製パ
イプ内を真空ポンプで1mmF1gまで減圧し、30分
間脱炭処理をした。尚、溶鋼表面は1気圧のアルゴンで
シールした。初期炭素0.03%の溶鋼が処理後0.0
03%まで脱炭された。尚、多孔質物質製パイプに塗布
した酸化物質は2IIII11程度溶損したが、多孔質
物質製パイプ本体の侵食は認められなかった。また、溶
鋼表面からの溶鋼飛散も認められなかった。
[Example 1] A binder was added to the powder of iron oxide and silica in a weight ratio of 1:1 as an oxidizing substance on the surface of the porous material pipe with the lower end closed as shown in Example 1 in Table 1. A paste made by mixing with water was applied to a thickness of 3 mm, heated and dried, and then immersed in molten steel adjusted to the composition shown in Example 1 of Table 2 in a 100 kg melting furnace for 20 marks. Then, the pressure inside the porous material pipe was reduced to 1 mmF1 g using a vacuum pump, and decarburization treatment was performed for 30 minutes. The surface of the molten steel was sealed with argon at 1 atm. Molten steel with initial carbon of 0.03% becomes 0.0 after treatment
It was decarburized to 0.3%. The oxidizing substance applied to the porous material pipe was eroded by about 2III11, but no erosion of the porous material pipe body was observed. In addition, no molten steel was observed to scatter from the molten steel surface.

〔実施例2〕 第1表の実施例2に示した下端を閉じた多孔質物質製パ
イプの表面に、酸化物質として酸化鉄とドロマイトの重
量比が1対1の粉体を3Mの厚みにプラズマ溶射した後
、100kg溶解炉で第2表の実施例2に示した成分に
調整した溶鋼に20印浸漬し、多孔質物質製パイプ内を
真空ポンプでlmmHgまで減圧し、30分間脱炭処理
をした。尚、溶鋼表面は1気圧のアルゴンでシールした
。初期炭素0.03%の溶鋼が処理後0. OO4%ま
で脱炭された。尚、多孔質物質製パイプに塗布した酸化
物質は2IIIff1程度溶損したが、多孔質物質製パ
イプ本体の侵食は認められなかった。また、溶鋼表面か
らの溶鋼飛散も認められなかった。
[Example 2] Powder with a weight ratio of iron oxide and dolomite of 1:1 as an oxidizing substance was applied to a thickness of 3M on the surface of the porous material pipe with its lower end closed as shown in Example 2 of Table 1. After plasma spraying, it was immersed in molten steel adjusted to the composition shown in Example 2 in Table 2 in a 100 kg melting furnace for 20 minutes, the pressure inside the porous material pipe was reduced to lmmHg with a vacuum pump, and decarburized for 30 minutes. Did. The surface of the molten steel was sealed with argon at 1 atm. Molten steel with an initial carbon content of 0.03% has a carbon content of 0.03% after treatment. It was decarburized to 4% OO. The oxidizing substance applied to the porous material pipe was eroded by about 2IIIff1, but no erosion of the porous material pipe body was observed. In addition, no molten steel was observed to scatter from the molten steel surface.

〔実施例3〕 第1表の実施例3に示した下端を閉じた多孔質物質製パ
イプの表面に、酸化物質として酸化鉄とシリカの重量比
が1対1の粉体を3mmの厚みにプラズマ溶射した後、
100kgffI解炉で第2表の実施例3の■に示した
成分に調整した溶鋼に20cm浸漬し、多孔質物質製パ
イプ内を真空ポンプでlmmHgまで減圧し、30分間
脱炭処理をした。尚、溶鋼表面は1気圧のアルゴンでシ
ールした。初期炭素0.03%の溶鋼が処理後0.00
3%まで脱炭された。この多孔質物質製パイプの表面に
、再度酸化物質として酸化鉄とシリカの重量比が1対1
の粉体を3胴の厚みにプラズマ溶射した後、100kg
溶解炉で第2表の実施例3の■に示した成分に調整した
溶鋼に20cm浸漬し、多孔質物質製パイプ内を真空ポ
ンプで1nm+Hgまで減圧し、30分間脱炭処理をし
た。尚、溶鋼表面は1気圧のアルゴンでシールした。初
期炭素0.03%の溶鋼が処理後0、003%まで脱炭
された。酸化物質は2[ll11程度溶損したが、多孔
質物質製パイプ本体の侵食は認められなかった。また、
溶鋼表面からの溶鋼飛散も認められなかった。
[Example 3] Powder with a weight ratio of iron oxide to silica of 1:1 as an oxidizing substance was applied to a thickness of 3 mm on the surface of the porous material pipe shown in Example 3 in Table 1 with its lower end closed. After plasma spraying,
It was immersed for 20 cm in molten steel adjusted to the composition shown in Example 3 (2) in Table 2 in a 100 kgffI cracking furnace, the inside of the porous material pipe was reduced to 1 mmHg using a vacuum pump, and decarburized for 30 minutes. The surface of the molten steel was sealed with argon at 1 atm. Molten steel with an initial carbon content of 0.03% has a carbon content of 0.00% after treatment.
Decarburized to 3%. The surface of this porous material pipe is again coated with iron oxide and silica in a weight ratio of 1:1 as oxidizing substances.
After plasma spraying the powder to the thickness of 3 cylinders, 100 kg
It was immersed in a melting furnace for 20 cm in molten steel adjusted to have the composition shown in Example 3 () in Table 2, the inside of the porous material pipe was reduced to 1 nm+Hg using a vacuum pump, and decarburized for 30 minutes. The surface of the molten steel was sealed with argon at 1 atm. Molten steel with an initial carbon content of 0.03% was decarburized to 0.003% after treatment. The oxidized material was eroded to an extent of 2 [ll11], but no erosion of the porous pipe body was observed. Also,
No molten steel scattering from the molten steel surface was observed.

〔比較例1〕 100kg溶解炉で第2表の比較例1に示した成分に調
整した溶鋼表面を真空ポンプで1sHgまで減圧し、3
0分間脱炭処理をした。初期炭素0.03%の溶鋼が処
理後0.004%まで脱炭され、脱炭効果は認められた
が、溶鋼が激しく飛散し、溶解炉上部に多量の地金が付
着した。
[Comparative Example 1] The surface of the molten steel adjusted to the composition shown in Comparative Example 1 in Table 2 in a 100 kg melting furnace was depressurized to 1 sHg using a vacuum pump.
Decarburization treatment was performed for 0 minutes. The molten steel with an initial carbon content of 0.03% was decarburized to 0.004% after treatment, and the decarburization effect was observed, but the molten steel was violently scattered and a large amount of base metal adhered to the upper part of the melting furnace.

〔比較例2〕 100kg溶解炉で第2表の比較例2に示した成O 分に調整した溶鋼表面を真空ポンプで1mmH1まで減
圧し、30分間脱炭処理をした。初期炭素0.03%の
溶鋼が処理後0.025%までしか脱炭されず、脱炭効
率が非常に悪くなった。尚、脱炭されないため、溶鋼は
静かで、地金付着量は少なかった。
[Comparative Example 2] The surface of the molten steel, which had been adjusted to the O content shown in Comparative Example 2 in Table 2 in a 100 kg melting furnace, was depressurized to 1 mmH1 with a vacuum pump and decarburized for 30 minutes. Molten steel with an initial carbon content of 0.03% was decarburized to only 0.025% after treatment, resulting in very poor decarburization efficiency. In addition, since it was not decarburized, the molten steel was quiet and the amount of base metal deposited was small.

〔比較例3〕 第1表の比較例3に示した下端を閉じた多孔質物質製パ
イプを、100kg溶解炉で第2表の比較例3の■に示
した成分に調整した溶鋼に20cm浸漬し、多孔質物質
製パイプ内を真空ポンプで1ffIIIngまで減圧し
、30分間脱炭処理をした。尚、溶鋼表面を1気圧のア
ルゴンでシールした。初期炭素0.03%の溶鋼が処理
後0.004%まで脱炭された。この多孔質物質製パイ
プを、100kg溶解炉で第2表の比較例2の■に示し
た成分に調整した溶鋼に20cm浸漬し、多孔質物質製
パイプ内を真空ポンプで1−1gまで減圧し、脱炭処理
をした。
[Comparative Example 3] A pipe made of porous material with its lower end closed as shown in Comparative Example 3 in Table 1 was immersed for 20 cm in molten steel adjusted to the composition shown in Comparative Example 3 in Table 2 in a 100 kg melting furnace. Then, the pressure inside the porous material pipe was reduced to 1ffIIIng using a vacuum pump, and decarburization treatment was performed for 30 minutes. Note that the surface of the molten steel was sealed with argon at 1 atm. Molten steel with an initial carbon content of 0.03% was decarburized to 0.004% after treatment. This porous material pipe was immersed 20 cm into molten steel adjusted to the composition shown in Comparative Example 2 (■) in Table 2 in a 100 kg melting furnace, and the pressure inside the porous material pipe was reduced to 1-1 g using a vacuum pump. , decarburized.

処理後15分で多孔質物質製パイプが侵食のため破損し
、脱炭処理を中断した。
Fifteen minutes after the treatment, the porous material pipe broke due to erosion, and the decarburization treatment was interrupted.

第1表 〔発明の効果〕 本発明によれば、従来の脱ガス方法と比較して、溶融金
属の飛散がなく、容易に且つ確実に溶融金属の脱ガスが
でき、また、工業的規模で正確な脱ガスができる等の優
れた効果が奏される。
Table 1 [Effects of the Invention] According to the present invention, compared to conventional degassing methods, molten metal can be easily and reliably degassed without scattering, and can be performed on an industrial scale. Excellent effects such as accurate degassing can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の脱ガス法の原理を示す説明図、第2図
は本発明の実施方法の一例を示す概要図である。 図中、1は容器、2は溶鋼、3は多孔質物質製パイプ、
4は真空ポンプ、5は一酸化炭素、6は酸化物質層であ
る。
FIG. 1 is an explanatory diagram showing the principle of the degassing method of the present invention, and FIG. 2 is a schematic diagram showing an example of the method of implementing the present invention. In the figure, 1 is a container, 2 is molten steel, 3 is a porous material pipe,
4 is a vacuum pump, 5 is carbon monoxide, and 6 is an oxide layer.

Claims (1)

【特許請求の範囲】[Claims] 溶融金属は通過させないが、一酸化炭素ガスを通過させ
る多孔質物質の表面に酸化物質の層を形成し、その酸化
物質層の表面を溶融金属に接触させ、多孔質物質の他方
の面を減圧下に曝すことにより溶融金属が含有する炭素
を除去することを特徴とする溶融金属からの脱ガス方法
A layer of oxidizing material is formed on the surface of a porous material that does not allow molten metal to pass through, but allows carbon monoxide gas to pass through, the surface of the oxidized material layer is brought into contact with the molten metal, and the other side of the porous material is depressurized. A method for degassing molten metal, characterized in that carbon contained in the molten metal is removed by exposing the molten metal to water.
JP27500590A 1990-10-13 1990-10-13 Degassing method from molten metal Pending JPH04154907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27500590A JPH04154907A (en) 1990-10-13 1990-10-13 Degassing method from molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27500590A JPH04154907A (en) 1990-10-13 1990-10-13 Degassing method from molten metal

Publications (1)

Publication Number Publication Date
JPH04154907A true JPH04154907A (en) 1992-05-27

Family

ID=17549562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27500590A Pending JPH04154907A (en) 1990-10-13 1990-10-13 Degassing method from molten metal

Country Status (1)

Country Link
JP (1) JPH04154907A (en)

Similar Documents

Publication Publication Date Title
WO1996017093A1 (en) Method of refining molten metal
JPH04154907A (en) Degassing method from molten metal
JP2002088412A (en) Method for melting steel plate for thin sheet and cast slab cast by using the method
JPH0459916A (en) Method for degassing from molten metal
JPH0459917A (en) Method for degassing from molten metal
JPS6021207B2 (en) Manufacturing method of ultra-low carbon molten steel
JP6319153B2 (en) Hot metal detinning method
JP2724035B2 (en) Vacuum decarburization of molten steel
JPH0466614A (en) Method for degassing from molten metal
JPS5831012A (en) Preferential desiliconizing method for molten iron by blowing of gaseous oxygen
JPS58104111A (en) Denitrifying method for disoxidized molten steel
JPS6010087B2 (en) steel smelting method
KR100878663B1 (en) Method of refining the molten steel in an efficient manner
JPH05287360A (en) Method for melting extremely low carbon steel
US5346185A (en) Vacuum-suction degassing apparatus
JPS6024164B2 (en) Dephosphorization method for high chromium molten metal
JPS61149414A (en) Method for removing copper and tin from molten iron
JPH0448025A (en) Vacuum suction type degassing device
JPS6325047B2 (en)
RU1768649C (en) Method of steel production
JP3570569B2 (en) Refining method of molten metal
JPH1121613A (en) Production of steel excellent in toughness at low temperature and sour resistance
JPH0459918A (en) Method for degassing from molten metal
JPH05287361A (en) Method for melting extremely low carbon steel
JPS5941415A (en) Decarburization of high-chromium steel