JPH04154601A - Adiabatic reformer reactor - Google Patents

Adiabatic reformer reactor

Info

Publication number
JPH04154601A
JPH04154601A JP27788290A JP27788290A JPH04154601A JP H04154601 A JPH04154601 A JP H04154601A JP 27788290 A JP27788290 A JP 27788290A JP 27788290 A JP27788290 A JP 27788290A JP H04154601 A JPH04154601 A JP H04154601A
Authority
JP
Japan
Prior art keywords
reactor
gas
reaction
reforming
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27788290A
Other languages
Japanese (ja)
Inventor
Toshio Kajiwara
梶原 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP27788290A priority Critical patent/JPH04154601A/en
Publication of JPH04154601A publication Critical patent/JPH04154601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the enlargement of a device for preparing hydrogen, methanol, etc., by continuously disposing a heat exchange chamber, a combustion chamber and a second reforming catalyst layer from the upper part of a vertical reactor according to the flow of the process, taking out the second reformed gas from the bottom of the reactor and subsequently feeding the gas into the shell side lower part of the heat exchange chamber. CONSTITUTION:A hydrocarbon such as methane and steam are fed into the first reforming reactor 2 of a vertical cylindrical reactor 6 through a passage 1 and countercurrently brought into contact with a high temperature second reformed gas fed from outside to exchange heat, followed by subjecting the starting materials to the first reforming reaction. The first reformed gas discharged from the reactor 2 is fed into a combustion chamber 5 through a collecting chamber 4. An oxygen- containing gas is fed from a passage 7 at the tip of the reactor 6 and charmed to the combustion chamber 5 through an oxygen-feeding tube 8. The first reformed gas is partially oxidized with oxygen in the combustion chamber 5 and subjected to the second reforming reaction through a second reforming catalyst layer 9. The reaction gas is fed from the bottom of the reactor 6 into the heat exchange chamber through a passage 10 to heat the gas in the first reforming reactor 2, followed by discharging the synthesized gas from a passage 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大型の水素製造装置、メタノール製造装置、或
いはアンモニア製造装置において用いられ、改質ガスを
製造する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for producing reformed gas, which is used in a large-scale hydrogen production device, methanol production device, or ammonia production device.

(従来の技術) 水素は将来のクリーンエネルギーとして、またメタノー
ルは低公害で輸送が容易な安価な燃料として大量に使用
するために大型装置の開発が要請されているっ このような大型の水素製造装置やメタノール製造装置等
の開発において最も問題となるのは天然ガスより改質ガ
スを製造するガス改質装置の大型化であり、従来の水蒸
気改質装置では改質炉で反応管を外熱する方式であるた
め、例えばメタノール製造装置では1500〜2000
T/Dが大型装置の限界となっているっ 大型装置におけるガス改質装置として、水蒸気改質と部
分酸化を組み合わせる方式が最近注目されている。これ
は天然ガスと水蒸気を混合して一次改質反応を行った後
、酸素を加えて部分酸化と二次改質反応を行い、得られ
た高温のガスを一次改質反応の加熱源とするものである
。この方式は特公昭50−20959号に記載されてい
る如く、単一反応器を用い他から熱を供給することなく
高圧の改質ガスを得ることができ、従って高圧の水素を
容易に製造できる。またメタノールやアンモニア製造装
置では改質ガスの圧縮機を用いて昇圧すること無(、い
きなり合成反応を行うことができる。
(Conventional technology) Large-scale hydrogen production requires the development of large-scale equipment to use large quantities of hydrogen as future clean energy and methanol as a low-pollution, easy-to-transport, and inexpensive fuel. The biggest problem in the development of equipment, methanol production equipment, etc. is increasing the size of the gas reformer that produces reformed gas from natural gas. For example, in methanol production equipment, the
Recently, a system that combines steam reforming and partial oxidation has been attracting attention as a gas reformer for large-scale equipment where T/D is the limit of large-scale equipment. This involves mixing natural gas and steam to perform a primary reforming reaction, then adding oxygen to perform partial oxidation and secondary reforming reactions, and using the resulting high-temperature gas as the heating source for the primary reforming reaction. It is something. As described in Japanese Patent Publication No. 50-20959, this method uses a single reactor and can obtain high-pressure reformed gas without supplying heat from other sources, making it possible to easily produce high-pressure hydrogen. . Furthermore, in methanol and ammonia production equipment, the synthesis reaction can be carried out immediately without the need to increase the pressure of the reformed gas using a compressor.

更に反応管を外熱する改質炉を用いる必要が無いので、
高圧下で改質反応が行われるので装置の大型化が容易で
ある。
Furthermore, there is no need to use a reformer that heats the reaction tube externally, so
Since the reforming reaction is carried out under high pressure, it is easy to increase the size of the device.

このように−次改質反応と二次改質反応を行う自己熱交
換型反応器(以下、断熱リホーマ−と称する)について
は、特開昭60−186401号、特開平1−2612
01号、特開平2−18303号等に具体的な構造が示
されており、また特開平2−3614号には断熱リホー
マ−を用いたメタノール製造プロセスか示されている。
Regarding the self-heat exchange type reactor (hereinafter referred to as an adiabatic reformer) that performs the first reforming reaction and the second reforming reaction in this way, JP-A-60-186401 and JP-A-1-2612
Specific structures are shown in JP-A No. 01, JP-A-2-18303, etc., and JP-A-2-3614 shows a methanol production process using an adiabatic reformer.

(発明か解決しようとする課題) 特開昭60−186401号は、反応器の上部に一次改
質反応を行う熱交換室、中部に二次改質触媒層、下部に
燃焼室を有し、−次改質ガスは二次改質触媒層の中心部
にある配管を通過して燃焼室に入り、反応器の底部より
供給される酸素含有ガスと混合して部分酸化が行われた
のち二次改質触媒との接触し、得られた高温の二次改質
ガスが熱交換室で反応管の加熱を行うものである。この
反応器は、■燃焼室において耐火アーチで二次改質触媒
層の重量を支える構造となっているが、燃焼室の温度は
1300℃以上となるので耐火材の強度とアーチ構造と
の設計上の整合性をとりにくいこと、■二次改質触媒層
のガスの流れが上向きであるので、ガス流速を上げた場
合に触媒の流動化現象が懸念されること等の課題がある
(Problem to be solved by the invention) JP-A-60-186401 has a heat exchange chamber for performing a primary reforming reaction in the upper part of the reactor, a secondary reforming catalyst layer in the middle part, and a combustion chamber in the lower part, - The secondary reformed gas passes through the pipe in the center of the secondary reforming catalyst layer, enters the combustion chamber, mixes with the oxygen-containing gas supplied from the bottom of the reactor, undergoes partial oxidation, and then undergoes secondary reforming. The resulting high-temperature secondary reformed gas that comes into contact with the secondary reforming catalyst heats the reaction tube in the heat exchange chamber. This reactor has a structure in which the weight of the secondary reforming catalyst layer is supported by a refractory arch in the combustion chamber, but since the temperature of the combustion chamber is over 1300°C, the strength of the refractory material and the design of the arch structure are important. (1) Since the gas flow in the secondary reforming catalyst layer is upward, there is a concern that the catalyst may fluidize when the gas flow rate is increased.

また特開平1−261201号は改質反応管を二重管と
し内管に酸素含有ガスを通して反応管の下部で部分酸化
と二次改質反応を行うものである。この反応器は多数の
反応管に均一に改質ガスと酸素含有ガスを通過させる必
要があることから大型装置での採用が困難である。
Further, in JP-A-1-261201, the reforming reaction tube is a double tube, and oxygen-containing gas is passed through the inner tube to perform partial oxidation and secondary reforming reaction in the lower part of the reaction tube. This reactor is difficult to employ in large-scale equipment because it is necessary to uniformly pass the reformed gas and oxygen-containing gas through a large number of reaction tubes.

更に特開平2−18303号は一次改質管群の下部に燃
焼室と二次改質触媒層の容器を吊り下げる反応器である
。この反応器においては燃焼室が高温となるので耐火性
のキャスタブルで内張する必要があり、相当の重量を有
することから大型化が難しいっ 特開平2−3614号には一次改質反応管を二重管とし
、−次改質ガスが内管を通過して二次改質反応器に導入
するフローか示されているっこの方式では一次改質反応
器と二次改質反応器を別個に設けるものであり、−次改
質反応管の内管を通過することにより二次改質反応器に
導入される温度が低下するので酸素含有ガスの使用量が
増大し、またこれにより一次改質反応管の上部の温度が
上昇することから熱回収量が減少することが問題点とし
て上げられる。更に二重管を有する管板を用い、その部
分て高温ガスをシールする必要があるので装置が複雑と
なり、大型化が困難である。
Further, JP-A-2-18303 discloses a reactor in which a combustion chamber and a container for a secondary reforming catalyst layer are suspended below a group of primary reforming tubes. In this reactor, the combustion chamber reaches a high temperature, so it needs to be lined with fire-resistant castable, and it is difficult to increase the size because it is quite heavy. The flow shown is that the primary reforming gas passes through the inner tube and is introduced into the secondary reforming reactor.In this method, the primary reforming reactor and the secondary reforming reactor are separated. Since the temperature of the oxygen-containing gas introduced into the secondary reforming reactor decreases by passing through the inner tube of the primary reforming reaction tube, the amount of oxygen-containing gas used increases. A problem raised is that the amount of heat recovery decreases due to the rise in temperature at the upper part of the reaction tube. Furthermore, since a tube sheet having double tubes is used and it is necessary to seal off high temperature gas in that portion, the device becomes complicated and it is difficult to increase the size of the device.

(課題を解決するための手段) 発明者は上記の如き課題を有し大型化が困難な断熱リホ
ーマ−反応器について鋭意検討した結果、竪型反応器に
上部よりフローに従って、熱交換室、燃焼室および二次
改質触媒層と連続的に配置し、二次改質ガスを底部より
取り出して熱交換室のシェル側下部に導入すれば、熱応
力等の問題点が解決され、極めて優れた反応器が得られ
ることを見出し、本発明に至った。
(Means for Solving the Problems) As a result of intensive study on adiabatic reformer reactors that have the above-mentioned problems and are difficult to increase in size, the inventors have found that a heat exchange chamber, a combustion By arranging the chamber and the secondary reforming catalyst layer continuously, and by taking out the secondary reformed gas from the bottom and introducing it into the lower part of the shell side of the heat exchange chamber, problems such as thermal stress can be solved, resulting in an extremely excellent It was discovered that a reactor can be obtained, leading to the present invention.

すなわち本発明は、炭化水素と水蒸気の混合ガスより一
次改質反応を行い、次に酸素含有ガスを加えて部分酸化
の後二次改質反応を行い、得られた高温ガスを一次改質
反応の加熱源に用いる断熱リホーマ−反応器において、 (at竪型円筒状反応器の上部に、炭化水素と水蒸気の
混合ガスを管内に改質触媒を有する反応管群に導入し、
上記二次改質反応後の高温ガスと熱交換して一次改質反
応を行う熱交換室、 (b)熱交換室の下に、反応管群よりの一次改質ガスと
反応器の頂部より供給される酸素含有ガスとを混合して
部分酸化を行う燃焼室、 (c1燃焼室の下に二次改質触媒を有する固定触媒層を
有し、 高温の二次改質ガスを反応器の底部より取り出して連絡
管を通して熱交換室のシェル側下部に導入して一次改質
ガスと向流に熱交換させることを特徴とする断熱リホー
マ−反応器である。
That is, the present invention performs a primary reforming reaction using a mixed gas of hydrocarbons and steam, then adds an oxygen-containing gas to perform partial oxidation, and then performs a secondary reforming reaction, and the resulting high-temperature gas is subjected to the primary reforming reaction. In an adiabatic reformer reactor used as a heat source, a mixed gas of hydrocarbons and steam is introduced into a group of reaction tubes having a reforming catalyst in the tubes at the top of a vertical cylindrical reactor,
A heat exchange chamber where the primary reforming reaction is carried out by exchanging heat with the high temperature gas after the secondary reforming reaction; (b) Below the heat exchange chamber, the primary reformed gas from the reaction tube group is connected to the top of the reactor. A combustion chamber that performs partial oxidation by mixing the supplied oxygen-containing gas (c1 has a fixed catalyst layer with a secondary reforming catalyst under the combustion chamber, and directs the high temperature secondary reformed gas to the reactor. This is an adiabatic reformer reactor characterized in that the reactor is taken out from the bottom and introduced into the lower part of the shell side of the heat exchange chamber through a connecting pipe to exchange heat countercurrently with the primary reformed gas.

第1図は本発明の反応器の構造を示す図面である。原料
の炭化水素と水蒸気は流路1より導入され、−次数質反
応管2に入る。この反応管内には改質触媒が充填されて
おり、管内のガスは管外で高温の二次改質ガスと向流に
接触することにより炭化水素の一次改質反応が行われる
。なおこの熱交換室はその効率を高めるためにバッフル
3を設けることが好ましい。反応管を出た一次改質ガス
は集合室4に集められた後、燃焼室5に入る。
FIG. 1 is a drawing showing the structure of a reactor according to the present invention. Hydrocarbons and steam as raw materials are introduced through a flow path 1 and enter a -order quality reaction tube 2. This reaction tube is filled with a reforming catalyst, and the gas inside the tube contacts the high temperature secondary reformed gas outside the tube in a countercurrent manner, thereby carrying out a primary reforming reaction of hydrocarbons. Note that this heat exchange chamber is preferably provided with a baffle 3 in order to increase its efficiency. The primary reformed gas leaving the reaction tube is collected in a collection chamber 4 and then enters a combustion chamber 5.

一方、酸素含有ガスは反応器6の頂部にある流路7から
導入され、酸素供給管8を通過して燃焼室に入る。酸素
供給管の先端はバーナーとなっており、−次数質ガスと
酸素含有ガスを混合して部分燃焼反応が行われるっ次に
部分燃焼ガスは二次改質触媒層9を通過して二次改質反
応が行われた後、反応器の底部から流路10を通過して
熱交換室のシェル側の下部に入り、反応管内のガスを加
熱する。熱交換後の二次改質ガスは流路11より排出さ
れ合成ガスとなる。
On the other hand, oxygen-containing gas is introduced from the flow path 7 at the top of the reactor 6, passes through the oxygen supply pipe 8, and enters the combustion chamber. The tip of the oxygen supply pipe is a burner, and the -order quality gas and oxygen-containing gas are mixed to perform a partial combustion reaction.Then, the partial combustion gas passes through the secondary reforming catalyst layer 9 and becomes secondary. After the reforming reaction has taken place, the gas passes through the flow path 10 from the bottom of the reactor and enters the lower part of the shell side of the heat exchange chamber to heat the gas in the reaction tube. The secondary reformed gas after heat exchange is discharged from the flow path 11 and becomes synthesis gas.

以上の如き反応器において原、料の炭化水素には通常メ
タンを主成分とする天然ガスが用いられるが、立地条件
によりLPGやナフサ等も用いられる。また原料の原単
位を改善するために炭化水素と共に合成系よりのバージ
ガスを混合することが行われる。改質触媒には通常ニッ
ケル系触媒が用いられるが、改質触媒の活性低下を避け
るために原料の炭化水素は予め脱硫しておく必要がある
In the reactor described above, natural gas containing methane as a main component is usually used as the raw material hydrocarbon, but LPG, naphtha, etc. may also be used depending on the location conditions. Additionally, in order to improve the raw material consumption rate, barge gas from the synthesis system is mixed with hydrocarbons. A nickel-based catalyst is usually used as a reforming catalyst, but the raw material hydrocarbon must be desulfurized in advance to avoid a decrease in the activity of the reforming catalyst.

炭化水素とスチームの混合ガスのスチーム/′カーホン
比が通常2.0〜3.5程度となるように水蒸気が使用
され、400〜600°Cに予熱して反応器に供給する
Steam is used so that the steam/'carphone ratio of the mixed gas of hydrocarbon and steam is usually about 2.0 to 3.5, and is supplied to the reactor after being preheated to 400 to 600°C.

本発明の断熱リホーマ−反応器における一次改質反応は
、圧力50〜150 kg/cm’G 、温度500〜
800°Cで反応が行われ、−次数質反応管出口で70
0〜800°Cとなる。断熱リホーマ−では−次数質反
応管内と管外の圧力差が小さいので改質反応圧を高める
ことができ、前述の如く高圧の水素か容易に得られ、改
質ガス圧縮機を使用せずにメタノールやアンモニア合成
反応に供することができる。
The primary reforming reaction in the adiabatic reformer reactor of the present invention is carried out at a pressure of 50 to 150 kg/cm'G and a temperature of 500 to 500 kg/cm'G.
The reaction was carried out at 800°C, and the temperature at the outlet of the -order material reaction tube was 70°C.
The temperature ranges from 0 to 800°C. In an adiabatic reformer, the pressure difference between the inside and outside of the -order product reaction tube is small, so the reforming reaction pressure can be increased, and as mentioned above, high-pressure hydrogen can be easily obtained, without using a reformed gas compressor. It can be used in methanol and ammonia synthesis reactions.

また大型化が容易である。Moreover, it is easy to increase the size.

一次改質反応管を出たガスは、次に燃焼室において酸素
含有ガスと混合され、部分酸化反応が行われる。酸素含
有ガスとしては水素製造やメタノール製造の場合には高
純度の酸素ガスが通常用いられ、アンモニア製造の場合
には空気が用いられる。酸素含有ガスの使用量は原料炭
化水素の組成や供給温度等ことなり、断熱リホーマ−の
熱収支により決定される。
The gas exiting the primary reforming reaction tube is then mixed with oxygen-containing gas in a combustion chamber to undergo a partial oxidation reaction. As the oxygen-containing gas, high-purity oxygen gas is usually used in the case of hydrogen production or methanol production, and air is used in the case of ammonia production. The amount of oxygen-containing gas to be used depends on the composition of the raw material hydrocarbon, the supply temperature, etc., and is determined by the heat balance of the adiabatic reformer.

なお必要に応じて酸素含有ガスと共に原料の炭化水素の
一部を燃焼室に導入することや、燃焼室の温度を制御す
るために水蒸気の一部を燃焼室に導入する二とが行われ
、酸素含有ガスと同様に反応器の頂部より酸素含有ガス
と混合して、或いは二重管等を用いて別個に供給するこ
とができる。
If necessary, a portion of the raw material hydrocarbon is introduced into the combustion chamber together with the oxygen-containing gas, and a portion of water vapor is introduced into the combustion chamber in order to control the temperature of the combustion chamber. Like the oxygen-containing gas, it can be mixed with the oxygen-containing gas from the top of the reactor, or it can be supplied separately using a double pipe or the like.

これらの燃焼室に導入されるガスは、断熱リホーマ−の
熱収支上できるだけ予熱して供給することが好ましく、
通常300〜500°Cで供給される。
It is preferable that the gas introduced into these combustion chambers be preheated as much as possible in view of the heat balance of the adiabatic reformer.
Usually supplied at 300-500°C.

燃焼室の温度はこれらの供給温度や酸素含有ガスの供給
量等により異なるが、通常1300〜1600℃である
。燃焼室と熱交換室の仕切りには二の温度に耐えるキャ
スタブル或いは煉瓦によるアーチ構造が用いられる。本
発明の反応器においてはこのアーチ構造に触媒等の重量
が加わらないので大型化に有利であり、またバーナーチ
ップ廻りに700〜800°Cの一次改質ガスが通過す
るのでバーナーチップが冷却され、その焼損が回避され
る。
The temperature of the combustion chamber varies depending on the supply temperature and the amount of oxygen-containing gas supplied, but is usually 1300 to 1600°C. An arch structure made of castable or brick that can withstand two temperatures is used as a partition between the combustion chamber and the heat exchange chamber. In the reactor of the present invention, the weight of the catalyst etc. is not added to this arch structure, so it is advantageous for increasing the size, and the primary reformed gas of 700 to 800°C passes around the burner chip, so the burner chip is cooled. , its burnout is avoided.

燃焼室の下には二次改質触媒が充填されており二次改質
反応が行われる 二次改質触媒には通常ニッケル系、或
いは白金系触媒が用いられ、900〜1100℃で反応
が行われるっこの触媒層は下向きにガスが通過するので
ガスの流速を高めることができ、塔径を小さくできるの
で大型化装置上有利であり、また温度分布の均一化を図
ることができる。
A secondary reforming catalyst is packed below the combustion chamber, and a secondary reforming reaction takes place.The secondary reforming catalyst is usually a nickel-based or platinum-based catalyst, and the reaction takes place at 900-1100°C. Since the gas passes through the catalyst layer downward, the flow rate of the gas can be increased, and the diameter of the column can be reduced, which is advantageous in terms of larger equipment, and the temperature distribution can be made more uniform.

(発明の効果) 本発明の断熱リホーマ−反応器は、■一つの容器内で一
次改質反応と二次改質反応が行われ、■最も高温となる
燃焼室の耐火アーチ構造に触媒等の重量が加わらず、自
重のみの強度で良いこと、■バーナーチップの廻りを一
次改質ガスを通過するのでチップの焼損が防止されるこ
と、■二次改質触媒に対して反応ガスが下向に流れるの
で触媒の流動化を懸念すること無しに線速を上げること
ができ、従って塔径が小さくできること等の利点があり
、大型化装置に有利である。
(Effects of the Invention) The adiabatic reformer reactor of the present invention is characterized by: ■ The primary reforming reaction and the secondary reforming reaction are carried out in one container; No weight is added, and the strength is only due to its own weight. ■ The primary reformed gas passes around the burner chip, which prevents the chip from burning out. ■ The reaction gas is directed downwards toward the secondary reforming catalyst. The linear velocity can be increased without worrying about fluidization of the catalyst, and therefore the column diameter can be reduced, which is advantageous for large-scale equipment.

これにより大型の水素製造装置やメタノール製造装置等
において改質ガス発生装置の大型化が促進され、産業上
の意義が大きい。
This facilitates the enlargement of reformed gas generators in large-scale hydrogen production equipment, methanol production equipment, etc., and has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の断熱リホーマ−反応器の説明図である
。 2ニ一次改質反応管、8:酸素供給管、5:燃焼室、9
:二次改質触媒層 特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文
FIG. 1 is an explanatory diagram of the adiabatic reformer reactor of the present invention. 2 primary reforming reaction tube, 8: oxygen supply pipe, 5: combustion chamber, 9
:Secondary reforming catalyst layer patent applicant Mitsubishi Gas Chemical Co., Ltd. agent Patent attorney Sadafumi Kobori

Claims (1)

【特許請求の範囲】 炭化水素と水蒸気の混合ガスより一次改質反応を行い、
次に酸素含有ガスを加えて部分酸化の後二次改質反応を
行い、得られた高温ガスを一次改質反応の加熱源に用い
る断熱リホーマー反応器において、 (a)竪型円筒状反応器の上部に、炭化水素と水蒸気の
混合ガスを管内に改質触媒を有する反応管群に導入し、
上記二次改質反応後の高温ガスと熱交換して一次改質反
応を行う熱交換室、 (b)熱交換室の下に、反応管群よりの一次改質ガスと
反応器の頂部より供給される酸素含有ガスとを混合して
部分酸化を行う燃焼室、 (c)燃焼室の下に二次改質触媒を有する固定触媒層を
有し、 高温の二次改質ガスを反応器の底部より取り出して連絡
管を通して熱交換室のシェル側下部に導入して一次改質
ガスと向流に熱交換させることを特徴とする断熱リホー
マー反応器
[Claims] Performing a primary reforming reaction from a mixed gas of hydrocarbons and steam,
Next, in an adiabatic reformer reactor in which an oxygen-containing gas is added to perform partial oxidation and then a secondary reforming reaction, and the resulting high-temperature gas is used as a heating source for the primary reforming reaction, (a) a vertical cylindrical reactor; A mixed gas of hydrocarbon and steam is introduced into a group of reaction tubes having a reforming catalyst in the tubes,
A heat exchange chamber where the primary reforming reaction is carried out by exchanging heat with the high temperature gas after the secondary reforming reaction; (b) Below the heat exchange chamber, the primary reformed gas from the reaction tube group is connected to the top of the reactor. A combustion chamber that performs partial oxidation by mixing the supplied oxygen-containing gas; (c) a fixed catalyst layer having a secondary reforming catalyst under the combustion chamber; An adiabatic reformer reactor characterized in that the reactor is taken out from the bottom of the reactor and introduced into the lower part of the shell side of the heat exchange chamber through a connecting pipe to exchange heat countercurrently with the primary reformed gas.
JP27788290A 1990-10-18 1990-10-18 Adiabatic reformer reactor Pending JPH04154601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27788290A JPH04154601A (en) 1990-10-18 1990-10-18 Adiabatic reformer reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27788290A JPH04154601A (en) 1990-10-18 1990-10-18 Adiabatic reformer reactor

Publications (1)

Publication Number Publication Date
JPH04154601A true JPH04154601A (en) 1992-05-27

Family

ID=17589606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27788290A Pending JPH04154601A (en) 1990-10-18 1990-10-18 Adiabatic reformer reactor

Country Status (1)

Country Link
JP (1) JPH04154601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841301A1 (en) 1996-11-12 1998-05-13 Ammonia Casale S.A. Reforming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841301A1 (en) 1996-11-12 1998-05-13 Ammonia Casale S.A. Reforming apparatus

Similar Documents

Publication Publication Date Title
US5112578A (en) Reactor for reforming hydrocarbon and process for reforming hydrocarbon
US5110563A (en) Catalytic combustion
KR100201886B1 (en) Autothermal steam reforming process
US4666680A (en) Autothermal production of synthesis gas
US5156821A (en) Reactor for reforming hydrocarbon
JP3830854B2 (en) Compact steam reformer
JP2001192201A (en) Auto-oxidizable internal heating reformer and reforming process
JPS6158801A (en) Method of improving hydrocarbon and reactor
JPH0675670B2 (en) Process and reaction system for reforming heat exchange
JPS6018601B2 (en) Convection reformer and its method
US6881394B2 (en) Steam reformer for methane with internal hydrogen separation and combustion
EP0287238B1 (en) Process and apparatus for the production of a hot pressurised gas stream by catalytic combustion
JPS59107901A (en) Manufacture of product gas containing hydrogen and carbon oxide and apparatus therefor
JP5190162B2 (en) Method and reactor for performing non-adiabatic catalytic reaction
US20060242902A1 (en) High-temperature reforming
CN101735872A (en) Non-steady state reactor and method for producing synthesis gas
EP0272282B1 (en) Steam reformer with internal heat recovery
EP0271299B1 (en) Apparatus and use thereof in the production of synthesis gas
JPH04154601A (en) Adiabatic reformer reactor
JPH06219706A (en) Adiabatic reformer reactor
JP3094435B2 (en) Insulated reformer
JPH04310501A (en) Self heat formula steam reforming process
GB2217728A (en) Making synthesis gas
JPH10273304A (en) Heat exchange type reformer
JP2008544846A (en) A reactor for mixing and reacting two or more fluids and transferring heat between the fluids, and a method of operating the reactor