JPH0415397B2 - - Google Patents

Info

Publication number
JPH0415397B2
JPH0415397B2 JP58245668A JP24566883A JPH0415397B2 JP H0415397 B2 JPH0415397 B2 JP H0415397B2 JP 58245668 A JP58245668 A JP 58245668A JP 24566883 A JP24566883 A JP 24566883A JP H0415397 B2 JPH0415397 B2 JP H0415397B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
intake pipe
passage
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58245668A
Other languages
Japanese (ja)
Other versions
JPS60142052A (en
Inventor
Haruhiko Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58245668A priority Critical patent/JPS60142052A/en
Publication of JPS60142052A publication Critical patent/JPS60142052A/en
Publication of JPH0415397B2 publication Critical patent/JPH0415397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (技術分野) この発明は、電子制御燃料噴射装置付内燃機関
の燃料圧力調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fuel pressure regulating device for an internal combustion engine with an electronically controlled fuel injection device.

(背景並びに従来技術) ガソリンを燃料とする内燃機関の燃料噴射装置
としては、吸気管に燃料を噴射供給する低圧噴射
方式のものが実用化されている。
(Background and Prior Art) As a fuel injection device for an internal combustion engine that uses gasoline as fuel, a low-pressure injection system that injects fuel into an intake pipe has been put into practical use.

燃料噴射量の制御方式には電子式と機械式とが
あるが、運転状態に応じた精密な燃料供給という
点では電子式が優れており、排気浄化や燃費向上
の面で大きな効果がある。
There are electronic and mechanical methods for controlling the amount of fuel injection, but the electronic method is superior in terms of precise fuel supply according to driving conditions, and is highly effective in purifying exhaust gas and improving fuel efficiency.

このような燃料噴射装置の一例を第1図及び第
2図に示す(特開昭56−6033号公報参照)。
An example of such a fuel injection device is shown in FIGS. 1 and 2 (see Japanese Patent Laid-Open No. 56-6033).

第1図において、1は機関本体、2は吸気管、
3は燃料噴射弁、4は燃料タンクである。
In Fig. 1, 1 is the engine body, 2 is the intake pipe,
3 is a fuel injection valve, and 4 is a fuel tank.

燃料噴射弁3は、図示したように機関本体1の
吸入ポート部に面して吸気管2に設けられる。
The fuel injection valve 3 is provided in the intake pipe 2 facing the intake port portion of the engine body 1, as shown in the figure.

この燃料噴射弁3と燃料タンク4とを接続する
燃料通路5の途中に、燃料ポンプ6、燃料ダンパ
7、フイルタ8、プレツシヤレギユレータ9が介
装される。
A fuel pump 6, a fuel damper 7, a filter 8, and a pressure regulator 9 are interposed in the middle of a fuel passage 5 that connects the fuel injection valve 3 and the fuel tank 4.

燃料ポンプ6で加圧された燃料は、プレツシヤ
レギユレータ9を介して、吸気管負圧との差圧が
常に一定(例えば約2.5Kg/cm2)となるように調
圧されて燃料噴射弁3に供給される。プレツシヤ
レギユレータ9の調圧作用に基づく余剰燃料は、
燃料戻し通路10を介して燃料タンク4へと戻さ
れる。
The pressure of the fuel pressurized by the fuel pump 6 is regulated via the pressure regulator 9 so that the differential pressure with the intake pipe negative pressure is always constant (for example, about 2.5 kg/cm 2 ). The fuel is supplied to the fuel injection valve 3. Excess fuel based on the pressure regulating action of the pressure regulator 9 is
The fuel is returned to the fuel tank 4 via the fuel return passage 10.

上記プレツシヤレギユレータ9は第2図にも示
したように、ハウジング11の内部がダイヤフラ
ム12により圧力室13と燃料室14とに隔成さ
れる。
As shown in FIG. 2, the pressure regulator 9 has a housing 11 whose interior is separated into a pressure chamber 13 and a fuel chamber 14 by a diaphragm 12.

圧力室13にはコイルバネ15が収装されると
共に圧力信号通路16を介して吸気管負圧が作用
し、また燃料室14には燃料通路5と継がる燃料
入口ポート17,18と燃料戻し通路10と継が
る燃料出口ポート19が設けられる。
A coil spring 15 is housed in the pressure chamber 13, and negative pressure in the intake pipe acts through a pressure signal passage 16, and the fuel chamber 14 has fuel inlet ports 17 and 18 connected to the fuel passage 5, and a fuel return passage. A fuel outlet port 19 is provided which communicates with 10.

そして、上記燃料出口ポート19の開口端部2
0を開閉する弁体21がダイヤフラム12に設け
られる。
Then, the open end 2 of the fuel outlet port 19
A valve body 21 that opens and closes 0 is provided on the diaphragm 12.

従つて、燃料室14に作用する燃料圧力(燃料
噴射弁3に付与される圧力)と圧力室13に作用
する吸気管負圧力との差圧力がコイルバネ15の
設定荷重を超えると、ダイヤフラム12が図中上
方に押されて開口端部20を開き、燃料を燃料戻
し通路10へと逃がす。この結果、吸気管負圧を
基準として燃料圧力は一定に保たれるのである。
Therefore, when the differential pressure between the fuel pressure acting on the fuel chamber 14 (pressure applied to the fuel injection valve 3) and the intake pipe negative pressure acting on the pressure chamber 13 exceeds the set load of the coil spring 15, the diaphragm 12 It is pushed upward in the figure to open the open end 20 and allow fuel to escape into the fuel return passage 10. As a result, the fuel pressure is kept constant based on the intake pipe negative pressure.

一方、制御回路(図示せず)は、機関運転状態
を代表する各種の信号、例えば吸気量信号、機関
回転数信号、水温信号等に基づいて最適の燃料供
給量となるように燃料噴射弁3にパルス信号を付
与する。
On the other hand, a control circuit (not shown) controls the fuel injection valve 3 to provide the optimum fuel supply amount based on various signals representative of the engine operating state, such as an intake air amount signal, an engine rotation speed signal, and a water temperature signal. A pulse signal is given to the

つまり、燃料噴射弁3は一種の電磁オンオフ弁
であり、開弁時間割合すなわち前記パルス信号の
デユーテイ比に応じた量の燃料を噴射供給する。
That is, the fuel injection valve 3 is a type of electromagnetic on-off valve, and injects and supplies fuel in an amount corresponding to the valve opening time ratio, that is, the duty ratio of the pulse signal.

このようにして、機関運転状態に即応した燃料
供給が行なわれる。
In this way, fuel is supplied in response to the engine operating conditions.

ところで、このような燃料噴射装置にあつて
は、装置全体がエンジンルームに配設されるた
め、真夏の高い気温の時に高負荷運転をして、機
関を止めたまま放置しておくと、エンジンルーム
温度の上昇により燃料通路5内の燃料温度が高く
なつてベーパが発生することがある。
By the way, the entire system of this type of fuel injection system is installed in the engine room, so if you operate it under high load during high temperatures in midsummer and leave the engine stopped, the engine may become damaged. Due to the rise in room temperature, the temperature of the fuel in the fuel passage 5 becomes high, and vapor may be generated.

このような時に機関を再始動すると、混合気が
うすくて始動が困難となつたり、始動直後のアイ
ドリングでは上述したプレツシヤレギユレータ9
により燃料圧力が比較的低く制御されるためベー
パが更に発生してエンストするというおそれが多
分にある。
If the engine is restarted in such a case, the air-fuel mixture may be too weak to start, or if the engine is idling immediately after starting, the pressure regulator 9 mentioned above may
Since the fuel pressure is controlled to be relatively low, there is a high possibility that more vapor will be generated and the engine will stall.

(発明の目的) そこで、この発明は始動性を向上させると共
に、始動直後のアイドルエンストを確実に回避で
きる内燃機関の燃料圧力調整装置を提供すること
を目的とする。
(Object of the Invention) Therefore, an object of the present invention is to provide a fuel pressure regulating device for an internal combustion engine that can improve startability and reliably avoid idle engine stall immediately after starting.

(発明の構成並びに作用) そのために、この発明では前述したような電子
制御燃料噴射装置付内燃機関において、燃料ポン
プと燃料噴射弁とを結ぶ燃料通路途中に、吸気管
負圧に応動し、当該通路の燃料圧力を上記吸気管
負圧との差圧が略一定となるように調圧するプレ
ツシヤレギユレータを設ける一方、加圧空気を貯
えるタンクを設け、さらに始動時と燃料温度とを
検出して始動時に燃料温度が所定値以上のときに
前記タンクの加圧空気圧力を上記吸気管負圧に代
えてプレツシヤレギユレータに一時的に作用させ
る切換手段を設け、高温始動時には上述した燃料
通路の燃料圧力を増大させてベーパの発生を抑え
るように構成される。
(Structure and operation of the invention) For this purpose, in the internal combustion engine with an electronically controlled fuel injection device as described above, the present invention provides a system in which a fuel passage connecting a fuel pump and a fuel injection valve is provided in response to negative pressure in the intake pipe. A pressure regulator is provided to regulate the fuel pressure in the passage so that the differential pressure with the above-mentioned intake pipe negative pressure is approximately constant, and a tank is provided to store pressurized air. A switching means is provided to detect and temporarily act on the pressure regulator by replacing the pressurized air pressure in the tank with the negative pressure in the intake pipe when the fuel temperature is higher than a predetermined value at the time of starting, and when starting at high temperature. The fuel pressure in the fuel passage described above is increased to suppress the generation of vapor.

(実施例) 以下、この発明の実施例を図面に基づいて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第3図はこの発明の第1実施例を示すもので、
過給機(ターボチヤージヤ)付内燃機関の燃料供
給系が示されている。
FIG. 3 shows a first embodiment of this invention.
The fuel supply system of an internal combustion engine with a turbocharger is shown.

図において、22は加圧空気を貯えるタンク
で、23はこの空気圧力をプレツシヤレギユレー
タ9の圧力室13(第2図参照)に吸気管負圧に
代えて作用させる三方電磁弁で、24はこの電磁
弁23を駆動制御するモジユールである。
In the figure, 22 is a tank that stores pressurized air, and 23 is a three-way solenoid valve that applies this air pressure to the pressure chamber 13 of the pressure regulator 9 (see Figure 2) instead of the negative pressure in the intake pipe. , 24 is a module for driving and controlling this electromagnetic valve 23.

タンク22は、プレツシヤレギユレータ9と吸
気管2とを結ぶ圧力信号通路16の途中から分岐
されると共に、その途中にチエツクバルブ25が
設けられた空気通路26により吸気管2と連通さ
れ、機関吸気圧力(過給圧)をタンク22内に導
き保存するようになつている。
The tank 22 is branched from the middle of the pressure signal passage 16 that connects the pressure regulator 9 and the intake pipe 2, and is communicated with the intake pipe 2 through an air passage 26 in which a check valve 25 is provided in the middle. , the engine intake pressure (supercharging pressure) is introduced into the tank 22 and stored therein.

三方電磁弁23は、上述した空気通路26の分
岐点とプレツシヤレギユレータ9との間の圧力信
号通路16に介設されると共に、タンク22側の
空気通路27がチエツクバルブ25とタンク22
との間の空気通路26から分岐して接続される。
The three-way solenoid valve 23 is interposed in the pressure signal passage 16 between the above-mentioned branch point of the air passage 26 and the pressure regulator 9, and the air passage 27 on the tank 22 side is connected to the check valve 25 and the tank. 22
It is connected by branching from the air passage 26 between the two.

そして、後述するモジユール24からの信号に
より通電されると、第4図Aに示したように弁ハ
ウジング28内をソレノイド29の励磁状態に応
じて図中左右方向に移動する弁体30により、吸
気管2側の圧力信号通路16が接続されるポート
31が閉じられる一方プレツシヤレギユレータ9
側の圧力信号通路16が接続されるポート32と
タンク22側の空気通路27が接続されるポート
33とが連通される。一方、非通電となると今度
は第4図Bに示したように、弁スプリング34に
より弁体30が図中左方に移動して、ポート33
が閉じられる一方ポート31とポート32とが連
通されるようになつている。
When energized by a signal from the module 24, which will be described later, as shown in FIG. While the port 31 to which the pressure signal passage 16 on the pipe 2 side is connected is closed, the pressure regulator 9
A port 32 to which the pressure signal passage 16 on the side is connected is communicated with a port 33 to which the air passage 27 on the tank 22 side is connected. On the other hand, when the current is de-energized, the valve spring 34 moves the valve body 30 to the left in the figure, as shown in FIG.
While the port 31 and the port 32 are closed, the port 31 and the port 32 are communicated with each other.

一方、モジユール24は図外のスタータスイツ
チ及び燃料温度センサからの信号により、機関始
動時でかつ燃料温度が所定値以上であるときに三
方電磁弁23を一定時間または燃料温度が所定値
よりも低下するまで作動させる。
On the other hand, the module 24 uses signals from a starter switch and a fuel temperature sensor (not shown) to operate the three-way solenoid valve 23 for a certain period of time or when the fuel temperature drops below a predetermined value when the engine is started and the fuel temperature is above a predetermined value. Operate until.

つまり、第5図のフローチヤートのように、ス
タータスイツチがOFFの時は無条件に三方電磁
弁23に対する通電は行なわないがスタータスイ
ツチがONの時でも燃料温度が低い時は通電せ
ず、燃料温度が高い時のみ、いわゆる高温始動時
のみ一定時間通電するのである。
In other words, as shown in the flowchart of Fig. 5, when the starter switch is OFF, the three-way solenoid valve 23 is not energized unconditionally, but even when the starter switch is ON, when the fuel temperature is low, the energization is not performed, and the fuel Electricity is applied for a certain period of time only when the temperature is high, so-called high-temperature startup.

その他の構成は第1図及び第2図と同様なの
で、第1図及び第2図を参照して詳しい説明は省
略する。
Since the other configurations are the same as those in FIGS. 1 and 2, detailed explanation will be omitted with reference to FIGS. 1 and 2.

このような構成のため、今過給機付内燃機関の
高負荷運転時には、機関吸気圧力は大気圧力より
も高く通常1.5Kg/cm2abs.になり、この圧力が圧
力信号通路16及び空気通路26を介してタンク
22に導かれ、保存される。
Due to this configuration, when a supercharged internal combustion engine is operated under high load, the engine intake pressure is higher than atmospheric pressure and is normally 1.5 Kg/cm 2 abs. 26 to the tank 22, where it is stored.

そして、高負荷運転後の始動時は前述したよう
に燃料温度が高く、このような条件ではモジユー
ル24が三方電磁弁23を通電して第4図Aのよ
うに切換える。
At the time of starting after high-load operation, the fuel temperature is high as described above, and under such conditions, the module 24 energizes the three-way solenoid valve 23 to switch as shown in FIG. 4A.

これにより、プレツシヤレギユレータ9の吸気
管2との連通は遮断される一方タンク22と連通
され、前述した高い空気圧力がプレツシヤレギユ
レータ9の圧力室13(第2図参照)に作用す
る。
As a result, the communication between the pressure regulator 9 and the intake pipe 2 is cut off, while it is communicated with the tank 22, and the high air pressure mentioned above is transferred to the pressure chamber 13 of the pressure regulator 9 (see Fig. 2). ).

この結果、上記プレツシヤレギユレータ9によ
り調圧される燃料通路5内の燃料も、その圧力が
約4.05Kg/cm2となり、通路より約1.0Kg/cm2高い
燃料圧力となつてベーパの発生が効果的に抑えら
れ、始動性が向上される。
As a result, the pressure of the fuel in the fuel passage 5, whose pressure is regulated by the pressure regulator 9, becomes approximately 4.05 Kg/cm 2 , which is approximately 1.0 Kg/cm 2 higher than that of the passage, resulting in vaporization. The occurrence of this is effectively suppressed and startability is improved.

このようにして、良好に始動された後一定時間
たつと、モジユール24は前述したように三方電
磁弁23に対する通電を停止して第4図Bのよう
に切換える。
After a certain period of time has elapsed after the module 24 has been successfully started in this way, the module 24 stops energizing the three-way solenoid valve 23 and switches as shown in FIG. 4B, as described above.

これにより、今度はプレツシヤレギユレータ9
は圧力信号通路16を介して吸気管2とのみ連通
され、その圧力室13に機関の吸気圧力(いわゆ
る吸気管負圧)が作用する。
As a result, the pressure regulator 9
is communicated only with the intake pipe 2 via a pressure signal passage 16, and the intake pressure of the engine (so-called intake pipe negative pressure) acts on the pressure chamber 13.

この結果、燃料通路5内の燃料は、上記プレツ
シヤレギユレータ9により吸気圧力との差圧が常
に一定となるように調圧され、従前と同様に機関
運転状態に即応した燃料供給が行なわれる。
As a result, the pressure of the fuel in the fuel passage 5 is regulated by the pressure regulator 9 so that the differential pressure with the intake pressure is always constant, and the fuel can be supplied immediately in response to the engine operating conditions as before. It is done.

なお、上述したような制御は燃料に限らず機関
の他の部分の温度条件を検出して行うことも可能
であるが、例えば水温を検出して制御するものと
した場合、エンジンルーム内の余熱等の影響によ
り水温が低下しても燃料温度は依然として高いこ
とがあるので、燃料圧力及び燃料噴射量を的確に
制御するためには本発明のように燃料温度を直接
的に検出するのが最も望ましい。
Note that the above-mentioned control can be performed by detecting the temperature conditions of not only the fuel but also other parts of the engine, but for example, if the water temperature is detected and controlled, the residual heat in the engine room Even if the water temperature decreases due to the influence of desirable.

次に、第6図はこの発明の第2実施例を示すも
のである。
Next, FIG. 6 shows a second embodiment of the present invention.

これは、第3図のような過給機付内燃機関では
なく、通常の内燃機関に本発明を適用した例で、
過給圧力が無いため、エアポンプ35によりタン
ク22内に常に1.5Kg/cm2abs.程度の加圧空気が
保存されるようになつている。
This is an example in which the present invention is applied to a normal internal combustion engine, not a supercharged internal combustion engine as shown in Figure 3.
Since there is no boost pressure, pressurized air of about 1.5 kg/cm 2 abs. is always stored in the tank 22 by the air pump 35.

(発明の効果) 以上説明したようにこの発明によれば、始動時
に燃料温度が所定値以上の場合には高い空気圧を
プレツシヤレギユレータに一時的に作用させ、燃
料圧力を常温時よりも高めに制御するようにした
ので、高温始動時におけるベーパの発生が効果的
に抑えられ、始動性が向上するとともに始動直後
のストールを確実に回避できるという効果が得ら
れる。
(Effects of the Invention) As explained above, according to the present invention, when the fuel temperature is higher than a predetermined value at the time of starting, high air pressure is temporarily applied to the pressure regulator, and the fuel pressure is lower than that at room temperature. Since the temperature is controlled to be high, the generation of vapor at the time of high-temperature startup is effectively suppressed, the startability is improved, and a stall immediately after startup can be reliably avoided.

また、本発明は燃料温度を検出してプレツシヤ
レギユレータへの空気圧力を切り換えるようにし
たので、雰囲気の温度条件に左右されることなく
的確に燃料圧力を制御できるという利点がある。
Further, since the present invention detects the fuel temperature and switches the air pressure to the pressure regulator, there is an advantage that the fuel pressure can be accurately controlled without being influenced by the temperature conditions of the atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の概略構成図、第2図はその要
部拡大断面図、第3図はこの発明の第1実施例の
概略構成図、第4図A,Bはその三方電磁弁の異
なつた作用状態図、第5図は同じくモジユールの
フローチヤート、第6図はこの発明の第2実施例
の概略構成図である。 6…燃料ポンプ、3…燃料噴射弁、5…燃料通
路、2…吸気管、9…プレツシヤレギユレータ、
22…タンク、23…三方電磁弁、24…モジユ
ール。
Fig. 1 is a schematic configuration diagram of a conventional example, Fig. 2 is an enlarged sectional view of the main part thereof, Fig. 3 is a schematic configuration diagram of the first embodiment of the present invention, and Figs. 4A and B are of the three-way solenoid valve. 5 is a flowchart of the same module, and FIG. 6 is a schematic diagram of a second embodiment of the present invention. 6... Fuel pump, 3... Fuel injection valve, 5... Fuel passage, 2... Intake pipe, 9... Pressure regulator,
22...tank, 23...three-way solenoid valve, 24...module.

Claims (1)

【特許請求の範囲】[Claims] 1 電子制御燃料噴射装置付内燃機関において、
燃料ポンプと燃料噴射弁とを結ぶ燃料通路途中
に、吸気管負圧に応動し、当該通路の燃料圧力を
上記吸気管負圧との差圧が略一定となるように調
圧するプレツシヤレギユレータを設ける一方、加
圧空気を貯えるタンクと、始動時と燃料温度とを
検出して始動時に燃料温度が所定値以上のときに
前記タンクの加圧空気圧力を上記吸気管負圧に代
えてプレツシヤレギユレータに一時的に作用させ
る切換手段とを設けたことを特徴とする内燃機関
の燃料圧力調整装置。
1 In an internal combustion engine with an electronically controlled fuel injection device,
In the middle of the fuel passage connecting the fuel pump and the fuel injection valve, there is a pressure leg that responds to the intake pipe negative pressure and regulates the fuel pressure in the passage so that the differential pressure with the intake pipe negative pressure is approximately constant. A tank for storing pressurized air is provided, and a fuel temperature is detected at the time of starting and when the fuel temperature is above a predetermined value at the time of starting, the pressurized air pressure in the tank is replaced with the negative pressure in the intake pipe. 1. A fuel pressure regulating device for an internal combustion engine, comprising: switching means for temporarily acting on a pressure regulator.
JP58245668A 1983-12-28 1983-12-28 Fuel pressure adjusting device of internal-combustion engine Granted JPS60142052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245668A JPS60142052A (en) 1983-12-28 1983-12-28 Fuel pressure adjusting device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245668A JPS60142052A (en) 1983-12-28 1983-12-28 Fuel pressure adjusting device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60142052A JPS60142052A (en) 1985-07-27
JPH0415397B2 true JPH0415397B2 (en) 1992-03-17

Family

ID=17137036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245668A Granted JPS60142052A (en) 1983-12-28 1983-12-28 Fuel pressure adjusting device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60142052A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608522A1 (en) * 1986-03-14 1987-09-17 Bosch Gmbh Robert METHOD FOR CONTROLLING A FUEL INJECTION SYSTEM AND FUEL INJECTION SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138737A (en) * 1983-01-28 1984-08-09 Mazda Motor Corp Fuel feeding apparatus for diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138737A (en) * 1983-01-28 1984-08-09 Mazda Motor Corp Fuel feeding apparatus for diesel engine

Also Published As

Publication number Publication date
JPS60142052A (en) 1985-07-27

Similar Documents

Publication Publication Date Title
JP3317202B2 (en) Fuel injection control device for accumulator type engine
JP2873020B2 (en) Engine fuel booster
US4464896A (en) System for supplying secondary air for an internal combustion engine
JPH0415397B2 (en)
JPH0835459A (en) Fuel feed device for internal combustion engine
JP2665986B2 (en) Lean combustion type gas engine
JPS59138765A (en) Percolation preventing device in carburettor
JP3391564B2 (en) Fuel pressure control system for high pressure injection engine
JPH0988763A (en) Fuel pressure control device of high pressure fuel injection type engine
JPS6218675Y2 (en)
JPH09209745A (en) Releasing timing control device for internal combustion engine control
JPH10131820A (en) Fuel feeder for direct injection type gasoline internal combustion engine
JP3116746B2 (en) Fuel supply device for internal combustion engine
JP3733162B2 (en) Fuel supply device for internal combustion engine
JPS6244130Y2 (en)
JPH05133262A (en) Air-fuel ratio control device for internal combustion engine
JPS6245069Y2 (en)
JP2658128B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH055249Y2 (en)
JPH0614074Y2 (en) Fuel supply device for internal combustion engine
JPS6130135B2 (en)
JPS60190660A (en) Fuel pressure control device of fuel-injection engine
JPH0378563A (en) Starter device for electronically controlled fuel injection engine
JP2001221085A (en) Fuel supply system for internal combustion engine
JPH05321737A (en) Abnormality detecting device for fuel pressure regulator control system