JPH04153527A - Gas turbine power generation equipment - Google Patents

Gas turbine power generation equipment

Info

Publication number
JPH04153527A
JPH04153527A JP27756190A JP27756190A JPH04153527A JP H04153527 A JPH04153527 A JP H04153527A JP 27756190 A JP27756190 A JP 27756190A JP 27756190 A JP27756190 A JP 27756190A JP H04153527 A JPH04153527 A JP H04153527A
Authority
JP
Japan
Prior art keywords
nitrogen
equipment
heat
gas turbine
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27756190A
Other languages
Japanese (ja)
Inventor
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27756190A priority Critical patent/JPH04153527A/en
Publication of JPH04153527A publication Critical patent/JPH04153527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To separate nitrogen of high purity from the combustion product for recovery and reuse by separating the combustion products in turbine exhaust in the process of liquefying nitrogen in a liquefying equipment. CONSTITUTION:A closed cycle in which nitrogen is a circulation medium is composed of a gasifying unit 11, combustors 43, 44, gas turbines 25, 26 and a juxtaposed power generation plant 13. Turbine exhaust (h) of the gas turbine 26 thermally recovered by the power generation plant 13, and the resultant cooled exhaust is sent to a liquefying equipment 8 for liquefaction. A separated fluid (s) such as combustion product separated through liquefaction is treated in a separated fluid equipment 14 for dumping or reuse. A liquid nitrogen (c) separated in the liquefying equipment 8 is supplied to the gasifying equipment 11 through a liquid nitrogen storage bath 9. The combustion product is separated from the nitrogen in the liquefying equipment 8 with high purity, so that the nitrogen is recovered for reuse.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は窒素を循環媒体とした閉サイクルガスタービン
による発電設備に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to power generation equipment using a closed cycle gas turbine using nitrogen as a circulating medium.

従来の技術 第12図に従来の窒素循環ガスタービンの例を示す。こ
れは気体の循環窒素を使用したプレイントンガスタービ
ンの例で、図中、符号1は圧縮機、2はタービン、3は
発電機、4は加熱炉、5.67は熱交換器である。第1
2図の構成においては、圧縮機1の吸込ガス温度を熱交
換器5により液化天然ガスLNGの冷熱によって下げて
圧縮機lの動力削減を行う他、圧縮された窒素を熱交換
器6゜7にてタービン2のタービン排気と加熱炉4とで
間接加熱して所定のタービン入口温度としている。
BACKGROUND ART FIG. 12 shows an example of a conventional nitrogen circulation gas turbine. This is an example of a Plainton gas turbine that uses gaseous circulating nitrogen. In the figure, 1 is a compressor, 2 is a turbine, 3 is a generator, 4 is a heating furnace, and 5.67 is a heat exchanger. 1st
In the configuration shown in Fig. 2, the temperature of the suction gas of the compressor 1 is lowered by the cold heat of the liquefied natural gas LNG using the heat exchanger 5 to reduce the power of the compressor 1, and the compressed nitrogen is also transferred to the heat exchanger 6. The turbine exhaust gas of the turbine 2 and the heating furnace 4 are indirectly heated to a predetermined turbine inlet temperature.

発明か解決しようとする課題 上記のようなガスタービン発電設備においては、循環窒
素をタービン排気で加熱し、更に加熱炉4内でも加熱す
るか、これらは間接加熱であるため、得られる温度は一
般のガスタービンのようなタービン入口温度(1000
〜1500℃)までにはならない。
Problem to be Solved by the Invention In the gas turbine power generation equipment as described above, the circulating nitrogen is heated by the turbine exhaust gas and is further heated in the heating furnace 4. Since these are indirect heating methods, the temperature obtained is generally Turbine inlet temperature (1000
~1500℃).

タービンを高圧下で作動させると膨張仕事を増加するこ
とができるか、それは圧縮機性能との兼ね合いとなりタ
ービンと圧縮機との空力上のバランス及び製作上の点か
ら最適圧力には上限が存在する。
Is it possible to increase the expansion work by operating the turbine under high pressure? This is a trade-off with compressor performance, and there is an upper limit to the optimal pressure from the aerodynamic balance between the turbine and compressor and manufacturing considerations. .

タービン出力の向上を図るには、タービン入口温度を向
上させるための燃料、酸素そして比熱の大きな水蒸気の
混入等が考えられるが、閉ループ内で循環窒素・燃焼生
成物・水分を高純度で分離しなければならない。
In order to improve the turbine output, it is possible to increase the turbine inlet temperature by mixing fuel, oxygen, and water vapor with a large specific heat, but it is possible to separate circulating nitrogen, combustion products, and moisture in a closed loop with high purity. There must be.

本発明は上記事情にかんがみてなされたもので、十分な
タービン入口温度が得られ、かつ循環媒体である窒素、
投入媒体である酸素・水素及び燃焼生成物を分離・回収
・再使用できるガスタービン発電設備を提供することを
目的とする。
The present invention was made in view of the above circumstances, and it is possible to obtain a sufficient turbine inlet temperature, and to reduce nitrogen as a circulating medium.
The purpose is to provide gas turbine power generation equipment that can separate, recover, and reuse input media such as oxygen and hydrogen and combustion products.

課題を解決するための手段 上記目的に対し、本発明によれば、窒素を循環媒体とす
る閉サイクルガスタービン発電設備において、ガスター
ビンの排気側に設置された液化設備と、この液化設備に
て液化された窒素を貯える液体窒素貯槽と、この液体窒
素貯槽より払い出された液体窒素を所定の高圧にする昇
圧ポンプと、高圧の液体窒素を気化させる気化設備と、
気化された気体窒素を同時に投入される酸素及び燃料に
よる燃焼によって所定のガスタービン入口温度に調整し
得られた燃焼ガスをガスタービンに供給する燃焼器とを
備え、前記液化設備の液化の過程でタービン排気中の燃
焼生成物を分離するようにしたガスタービン発電設備か
提供される。
Means for Solving the Problems According to the present invention, in a closed cycle gas turbine power generation facility using nitrogen as a circulating medium, a liquefaction facility installed on the exhaust side of the gas turbine, and a liquefaction facility installed in the liquefaction facility A liquid nitrogen storage tank that stores liquefied nitrogen, a boost pump that makes the liquid nitrogen discharged from the liquid nitrogen storage tank a predetermined high pressure, and a vaporization equipment that vaporizes the high pressure liquid nitrogen.
and a combustor that adjusts the gas turbine inlet temperature to a predetermined temperature by combustion of vaporized gaseous nitrogen with oxygen and fuel that are simultaneously introduced, and supplies the resulting combustion gas to the gas turbine, and in the liquefaction process of the liquefaction equipment. A gas turbine power plant is provided that separates combustion products in the turbine exhaust.

作用 ガスタービンは燃焼器に酸素とともに供給される燃料の
燃焼により所定温度に調整された燃焼ガスによって作動
し、その結果、生ずる燃焼生成物は液化設備での液化の
過程で分離され、分離流体設備を介して除去される。
Working gas turbines are operated by combustion gases that are regulated to a predetermined temperature by the combustion of fuel that is supplied with oxygen to the combustor, so that the resulting combustion products are separated during the liquefaction process in a liquefaction facility and are sent to a separation fluid facility. removed via.

液体窒素は一度貯槽に貯められたあと、昇圧ポンプで昇
圧されて気化設備で気体に戻され、再びガスタービンの
作動流体として使用される。
Once liquid nitrogen is stored in a storage tank, it is boosted in pressure by a boost pump, returned to gas in a vaporization facility, and used again as a working fluid in a gas turbine.

実施例 本発明によるガスタービン発電設備の基本的な構成を第
1図に示す。
Embodiment The basic configuration of a gas turbine power generation facility according to the present invention is shown in FIG.

窒素を循環媒体とする閉サイクルは液化設備8、液体窒
素貯槽9、昇圧ポンプ10、気化設備11、燃焼器12
、ガスタービン2及び併設発電プラント13によって形
成される。
A closed cycle using nitrogen as a circulating medium includes a liquefaction facility 8, a liquid nitrogen storage tank 9, a boost pump 10, a vaporization facility 11, and a combustor 12.
, a gas turbine 2 and an attached power plant 13.

ガスタービン2のタービン排気りは併設発電プラント1
3で熱回収され、その結果減温されて液化設備8に送ら
れ、ここで液化される。
The turbine exhaust of gas turbine 2 is connected to power generation plant 1.
3, the heat is recovered, the temperature is reduced as a result, and it is sent to the liquefaction equipment 8, where it is liquefied.

液化に伴って分離される燃焼生成物等の分離流体Sは廃
棄又は再使用のために分離流体設備14で処理される。
Separated fluid S such as combustion products separated during liquefaction is processed in separation fluid equipment 14 for disposal or reuse.

循環流体の液体窒素Cは液体窒素貯槽9を経由して気化
膜W111に供給されるが、所定の窒素圧力を得るため
に昇圧ポンプ10で加圧して高圧の液体窒素dにされる
The circulating fluid liquid nitrogen C is supplied to the vaporization membrane W111 via the liquid nitrogen storage tank 9, and is pressurized by the booster pump 10 to obtain high-pressure liquid nitrogen d in order to obtain a predetermined nitrogen pressure.

気化設備11から得られる高圧の気体窒素eは燃焼器1
2にて所定のタービン入口温度の燃焼ガスgにされ、ガ
スタービン2で膨張仕事を行い、発電機3で電力を発生
する。
High pressure gaseous nitrogen e obtained from the vaporization equipment 11 is sent to the combustor 1
2, the combustion gas g is made to have a predetermined turbine inlet temperature, the gas turbine 2 performs expansion work, and the generator 3 generates electric power.

燃焼器12では不活性ガスの気体窒素e中で燃焼させる
ため、燃料fは酸素φ、酸素富化空気あるいは空気と併
せて燃焼器12に投入される。
In the combustor 12, the fuel f is injected into the combustor 12 together with oxygen φ, oxygen-enriched air, or air in order to combust it in the inert gas nitrogen e.

発電機3は液化設備8及び系統と遮断器15.1617
で連系されており、液化段m8で必要な電力は系統・発
電機3のいずれからでも供給することができる。
Generator 3 has liquefaction equipment 8 and system and circuit breaker 15.1617
The power required for the liquefaction stage m8 can be supplied from either the grid or the generator 3.

このような第1図の基本構成に対し、システム内外での
熱利用、すなわち熱の授受の状況を第2図に示す。
In contrast to the basic configuration shown in FIG. 1, FIG. 2 shows how heat is used inside and outside the system, that is, how heat is transferred and received.

まず、第2図(a)において、ガスタービン2の後流に
排熱再生器18を設け、気化膜allからの気体窒素e
、をこの排熱再生器18で更に昇温L1昇温された気体
窒素eを燃焼器12に供給するようにして燃料節約を図
っている。
First, in FIG. 2(a), an exhaust heat regenerator 18 is provided downstream of the gas turbine 2, and gaseous nitrogen e from the vaporized membrane all is
, in this exhaust heat regenerator 18, the gaseous nitrogen e whose temperature has been further raised by L1 is supplied to the combustor 12, thereby saving fuel.

気化設備11での液体窒素の気化に伴う冷熱流体1は冷
熱流体用の蓄熱槽19に貯えておき、併設発電プラント
13から排出される温熱流体Jの冷却にあてる。又、こ
の冷熱流体1は別途冷熱利用プラント20の冷熱源とし
ても利用される。併設発電プラント13及び液化設備8
で回収された温熱流体jは蓄熱槽2】に貯えられ、加熱
源として利用される。
The cold fluid 1 accompanying the vaporization of liquid nitrogen in the vaporization equipment 11 is stored in a heat storage tank 19 for cold fluid, and is used to cool the hot fluid J discharged from the attached power generation plant 13. Moreover, this cold/heat fluid 1 is also used as a cold heat source for a cold energy utilization plant 20 separately. Adjacent power plant 13 and liquefaction equipment 8
The hot fluid j recovered is stored in a heat storage tank 2 and used as a heating source.

この第2図(a)の例は、液化段#8に窒素の沸点まで
冷却される深冷熱源専用の冷凍機を含んだ構成を前提と
している。これに対し、第2図(b)及び(c)はシス
テム内で生成される熱媒を有効利用して深冷冷凍機の作
用をさせようとするもので、第2図(b)は気化設備1
1で回収して蓄熱槽19に貯えられた冷熱を利用して、
液化設備8と蓄熱槽19との間を循環する循環窒素nn
で深冷を行うようにしている。第2図(c)の例は、液
化設備8を気化設備11と併合し、両者の熱授受の関係
をより密接にしたものである。
The example shown in FIG. 2(a) is based on the premise that the liquefaction stage #8 includes a refrigerator dedicated to a cryogenic heat source that cools nitrogen to its boiling point. On the other hand, Figures 2(b) and (c) attempt to effectively utilize the heat medium generated within the system to function as a deep-refrigerated refrigerator, and Figure 2(b) is a method for vaporization. Equipment 1
Using the cold energy collected in step 1 and stored in the heat storage tank 19,
Circulating nitrogen nn that circulates between the liquefaction equipment 8 and the heat storage tank 19
I try to deep-cool it. In the example shown in FIG. 2(c), the liquefaction equipment 8 and the vaporization equipment 11 are combined to create a closer heat exchange relationship between the two.

第3図は本発明によるガスタービン発電設備を詳細に示
したものである。第3図において、第1図及び第2図に
示した電力系統及び冷熱利用プラント5は省略しである
が、各々適用することができる。又、併設発電プラント
13はボイラ22、蒸気タービン23、発電機24及び
復水器79から成る複合発電方式で例示しであるが、こ
れも単なる例示であってこれに限定されるものではなく
、タービン排気りか冷却(熱回収)されること及び併設
発電プラント13内の温熱が気化設備11での気化潜熱
に活用されることか可能なものであればよい。ガスター
ビンは高圧ブロック及び低圧ブロックの2つのガスター
ビン25.26に分割して例示しているか、分割数は膨
張比により自由に決められる。
FIG. 3 shows in detail the gas turbine power generation equipment according to the present invention. In FIG. 3, the electric power system and the cold energy utilization plant 5 shown in FIGS. 1 and 2 are omitted, but each can be applied. Further, although the attached power generation plant 13 is illustrated as a combined power generation system consisting of a boiler 22, a steam turbine 23, a generator 24, and a condenser 79, this is also just an example and is not limited to this. Any material may be used as long as it is possible to cool the turbine exhaust gas (heat recovery) and to utilize the heat inside the attached power generation plant 13 as latent heat of vaporization in the vaporization equipment 11. The gas turbine is illustrated as being divided into two gas turbines 25, 26, a high pressure block and a low pressure block, or the number of divisions can be freely determined depending on the expansion ratio.

第3図において、気化設備11は気化熱交換器27、昇
温熱交換器28及び気液分離装置29から成り、ここで
気化された気体窒素e、は加熱器30によって昇温され
るよう構成される。この加熱器30は蓄熱槽21を熱源
とするよう接続されている。
In FIG. 3, the vaporization equipment 11 consists of a vaporization heat exchanger 27, a heating heat exchanger 28, and a gas-liquid separation device 29, and the gaseous nitrogen e vaporized here is configured to be heated by a heater 30. Ru. This heater 30 is connected to use the heat storage tank 21 as a heat source.

冷熱流体用の蓄熱槽19は中温流体用の蓄熱槽31に接
続される。この蓄熱槽31は潤滑油冷却器32、昇温熱
交換器28、排気冷却器33、そして併設発電プラント
13の復水器79へそれぞれ接続される。
The heat storage tank 19 for cold fluid is connected to the heat storage tank 31 for medium temperature fluid. This heat storage tank 31 is connected to a lubricating oil cooler 32, a heating heat exchanger 28, an exhaust cooler 33, and a condenser 79 of the attached power plant 13, respectively.

潤滑油冷却器32は蒸気タービン23及びその発電機2
4、ガスタービン25及びその発電機3を循環冷却する
よう接続されている。このように従来利用されていなか
った復水器循環水、潤滑油冷却水やガスタービン排気の
もつ低温(30〜100℃)大熱量をシステム内で冷却
するため、環境への温排出を削減できる。
The lubricating oil cooler 32 is connected to the steam turbine 23 and its generator 2.
4. Connected to circulate and cool the gas turbine 25 and its generator 3. In this way, the large amount of low-temperature (30-100°C) heat from the condenser circulating water, lubricating oil cooling water, and gas turbine exhaust, which have not been used in the past, is cooled within the system, reducing thermal emissions into the environment. .

温熱流体用の蓄熱槽21は液化設備8での回収熱を熱源
とし、併設発電プラント13からの回収熱を補助熱源と
する温水加熱器34及び給水加熱器35か接続されてい
る。
The heat storage tank 21 for hot fluid uses the recovered heat from the liquefaction equipment 8 as a heat source, and is connected to a hot water heater 34 and a feed water heater 35 that use recovered heat from the attached power generation plant 13 as an auxiliary heat source.

なお、符号36は純水タンク、37は吸気設備、38は
酸素供給設備、39は液体酸素貯槽、40は移送ポンプ
、41.42は弁、43.44は燃焼器を示している。
The reference numeral 36 indicates a pure water tank, 37 an intake facility, 38 an oxygen supply facility, 39 a liquid oxygen storage tank, 40 a transfer pump, 41.42 a valve, and 43.44 a combustor.

液化設備8へ供給される流体は熱回収されたタービン排
気h4であるか、まず、初期運転つまりシステム始動初
期は循環流体の窒素が系内に充填されていないため、弁
・ダンパ等の流路切替装置、例えば弁41.42(弁4
1開弁・弁42閉止状態で)にて空気aをフィルタや消
音器を適宜備える吸気設備37を介して取り入れ、液化
設備8、液体窒素貯槽9及び分離流体設備14の3施設
のみを用いて液体窒素と液体酸素とを生成する。
Is the fluid supplied to the liquefaction equipment 8 the heat-recovered turbine exhaust h4? First, during the initial operation, that is, at the beginning of the system startup, the circulating fluid nitrogen is not filled in the system, so the flow paths of valves, dampers, etc. A switching device, e.g. valve 41, 42 (valve 4
With the valve 1 open and the valve 42 closed), air a is taken in through the intake equipment 37 equipped with a filter and a muffler as appropriate, using only three facilities: the liquefaction equipment 8, the liquid nitrogen storage tank 9, and the separation fluid equipment 14. Produces liquid nitrogen and liquid oxygen.

生成された液体酸素は分離流体設備14を介し、液体酸
素す、として液体酸素貯槽39に送られる。液体酸素貯
槽39には別途液体酸素b2も供給でき、燃焼に必要な
液体酸素すは液体酸素貯槽39から酸素供給設備38へ
適宜移送される。
The generated liquid oxygen is sent to the liquid oxygen storage tank 39 as liquid oxygen via the separation fluid facility 14. Liquid oxygen b2 can also be separately supplied to the liquid oxygen storage tank 39, and the liquid oxygen necessary for combustion is transferred from the liquid oxygen storage tank 39 to the oxygen supply equipment 38 as appropriate.

液化設備8によってシステム充填に必要な液体窒素が液
体窒素貯槽9に確保されたら、この初期運転を停止し、
弁41を全閉、弁42を全開として循環システムの閉ル
ープを形成する。
When the liquid nitrogen necessary for filling the system is secured in the liquid nitrogen storage tank 9 by the liquefaction equipment 8, this initial operation is stopped,
A closed loop of the circulation system is formed by fully closing the valve 41 and fully opening the valve 42.

閉サイクル運転にて、タービン排気h4を液化設備8で
液化する過程で分離される燃焼生成物は燃料の性状によ
って異なるか、例えば、H2O,SO2゜C02(Co
)、 No(N20)、 02等か挙げられる。水素燃
料を使用するときはH7O,No(N、0)、 02等
か分離される。これらの分離流体Sは系外へ廃棄するが
、H2OあるいはO7はシステムで再使用か可能である
In closed cycle operation, the combustion products separated during the process of liquefying the turbine exhaust h4 in the liquefaction equipment 8 vary depending on the nature of the fuel, for example, H2O, SO2°C02 (Co
), No (N20), 02, etc. When using hydrogen fuel, H7O, No (N, 0), 02, etc. are separated. These separation fluids S are disposed of outside the system, but H2O or O7 can be reused in the system.

併設発電プラント13からの蒸気mを出力・効率向上の
ためにガスタービ/に投入するときは、その蒸気と燃焼
生成分の合計としてH,0が分離される。分離流体設備
14で調整された純水tは一度純水タンク36に貯えら
れ、補給水(メーキャップ水)とともにボイラ給水ライ
ンに投入され、システム全体の水の総量を維持する。
When steam m from the annexed power plant 13 is input to the gas turbine to improve output and efficiency, H,0 is separated as the sum of the steam and combustion products. The pure water t adjusted by the separation fluid facility 14 is once stored in the pure water tank 36, and is introduced into the boiler water supply line together with make-up water to maintain the total amount of water in the entire system.

液化設備8で回収できる温熱は温熱流体jとして蓄熱槽
21に蓄熱される。この蓄熱槽21での熱収支の過不足
は、給水加熱器35及び温水加熱器34−調整される。
The heat that can be recovered by the liquefaction equipment 8 is stored in the heat storage tank 21 as a thermal fluid j. The excess or deficiency of heat balance in this heat storage tank 21 is adjusted by the feed water heater 35 and the hot water heater 34.

蓄熱量は加熱器30での気化窒素のフ熱に使用されるが
、余剰となるときは給水加熱)35にてボイラ給水Q2
の加熱に使用する。一方、不足するときは温水加熱器3
4にて蒸気タービン2の抽気m□の保有熱で加熱する。
The amount of stored heat is used to heat the vaporized nitrogen in the heater 30, but if it becomes surplus, it is heated at the boiler feed water Q2 at 35.
used for heating. On the other hand, if there is a shortage, hot water heater 3
4, it is heated by the heat retained in the extracted air m□ of the steam turbine 2.

蓄熱槽21と給水1熱器35との間及び蓄熱槽21と温
水加熱器34との1には温度調節流体を循環させて熱交
換を行う。士気m、は温水加熱器34の中で凝縮し、そ
の復水qC。
A temperature regulating fluid is circulated between the heat storage tank 21 and the water supply heater 35 and between the heat storage tank 21 and the hot water heater 34 to perform heat exchange. Morale m, condenses in the hot water heater 34 and its condensate qC.

復水器79へ導かれ、ボイラ給水系統に戻される。It is guided to the condenser 79 and returned to the boiler water supply system.

液化設備8で分離された液体窒素Cは液体窒素貯槽9を
介して利用される。この液体窒素貯槽≦から移送ポンプ
40で払い出された液体窒素dは夕圧ポンプ10により
所定の高圧まで昇圧され、気イ設#11で気化される。
The liquid nitrogen C separated in the liquefaction equipment 8 is utilized via a liquid nitrogen storage tank 9. The liquid nitrogen d discharged from the liquid nitrogen storage tank ≦ by the transfer pump 40 is pressurized to a predetermined high pressure by the pressure pump 10 and vaporized in the air installation #11.

気化設備11において、液体窒素の沸点は一196″C
の低温であるため、気化熱交換器 27で気化潜熱、昇温熱交換器28で昇温顕熱を各4回
収する。
In the vaporization equipment 11, the boiling point of liquid nitrogen is -196"C
Since the temperature is low, the vaporization heat exchanger 27 recovers vaporization latent heat, and the temperature increase heat exchanger 28 recovers 4 each of vaporization latent heat and temperature increase sensible heat.

気化熱交換器27に接続された冷熱流体用の蓄熱槽19
にはブライン等の不凍冷熱流体iが貯留されており、気
化熱交換器27へその冷熱流体iを循環させることで冷
熱を回収する。
A heat storage tank 19 for cold fluid connected to the vaporization heat exchanger 27
A non-freezing cold fluid i such as brine is stored in the evaporation heat exchanger 27, and the cold heat is recovered by circulating the cold fluid i to the vaporization heat exchanger 27.

そして、蓄熱槽19からは蓄熱槽31へ温度調節流体i
kを循環させて、中温水に冷熱を伝達する。蓄熱槽31
内の中温水の冷熱は、潤滑油Xの冷却に使用するための
潤滑油冷却器32へ中温流体に2を循環させることで伝
達される他、復水器79へは循環中温流体に1、昇温熱
交換器28へは中温流体に5そして排気冷却器33へは
中温流体に3を通して伝達される。
The temperature regulating fluid i is then transferred from the heat storage tank 19 to the heat storage tank 31.
k is circulated to transfer cold heat to medium-temperature water. Heat storage tank 31
The cold heat of the medium-temperature water inside is transmitted to the lubricating oil cooler 32 used for cooling the lubricating oil X by circulating the medium-temperature fluid 2, and the circulating medium-temperature fluid 1, The medium temperature fluid is transmitted to the heating heat exchanger 28 through 5, and the medium temperature fluid is transmitted to the exhaust cooler 33 through 3.

排気冷却器33ではタービン排気り、をh4に冷却する
とともに除湿によって水分を分離し、分離流体S、とし
て分離流体設備14へ移送する。
The exhaust cooler 33 cools the turbine exhaust to h4, separates moisture by dehumidification, and transfers it to the separation fluid equipment 14 as separation fluid S.

気化設備11の気液分離装置29で得られた気体窒素e
、は加熱器30にてe2へ昇温され、更にガスタービン
出口側に設けた排熱再生器18にてタービン排気りから
回収した熱によって更に高温の気体窒素eが得られる。
Gaseous nitrogen e obtained from the gas-liquid separator 29 of the vaporization equipment 11
, is heated to e2 by the heater 30, and a higher temperature gaseous nitrogen e is obtained by the heat recovered from the turbine exhaust gas by the exhaust heat regenerator 18 provided on the gas turbine outlet side.

酸素供給設備38から供給される酸素φ、は燃料f、と
ともに燃焼器43で燃焼され、これにより気体窒素eは
所定温度の燃焼ガスg1に調整され、そしてガスタービ
ン25で膨張仕事を行う。膨張で減温したタービン排気
り、は再度燃焼器44での燃料f、及び酸素 φ鵞の燃焼によってガスタービン26の所定入口温度の
燃焼ガスg2に制御され、ガスタービン26にて膨張仕
事を行い、ガスタービン25.26で発電機3を駆動し
て発電を行う。
Oxygen φ, supplied from the oxygen supply equipment 38, is combusted together with the fuel f in the combustor 43, whereby the gaseous nitrogen e is adjusted to a combustion gas g1 at a predetermined temperature, and the gas turbine 25 performs expansion work. The turbine exhaust gas, whose temperature has been reduced by expansion, is again controlled to a combustion gas g2 at a predetermined inlet temperature of the gas turbine 26 by combustion of the fuel f and oxygen φ in the combustor 44, and performs expansion work in the gas turbine 26. , the gas turbines 25 and 26 drive the generator 3 to generate electricity.

燃焼器43.44では燃料り、 fnが酸素φ1.φ2
とともにそれぞれ燃焼されるが、その前にこれら燃料f
、、 ft及び酸素φ1.φ、は気体窒素eがら分流し
たものと混合制御される。不活性ガスとしての窒素は燃
料の発熱量、燃焼速度等燃焼特性の調整及び酸素分圧を
下げることで急激な燃料との反応の緩和調整を可能にし
ており、水素、酸素燃焼にも有効である。
In the combustors 43 and 44, the fuel is fn, and the oxygen φ1. φ2
However, before that, these fuels f
,, ft and oxygen φ1. φ is controlled to be mixed with a branched flow of gaseous nitrogen e. Nitrogen as an inert gas makes it possible to adjust the combustion characteristics such as the calorific value and combustion rate of the fuel, and to reduce the oxygen partial pressure to moderate the sudden reaction with the fuel, and is also effective for hydrogen and oxygen combustion. be.

ガスタービン26から排出されるタービン排気りは排熱
再生器18を出た後、十分高温の場合は、タービン排気
h2によりボイラ22で蒸気mを発生させ、蒸気タービ
ン23及び発電機24がら成る発電設備を駆動すること
ができる。
After the turbine exhaust gas discharged from the gas turbine 26 exits the waste heat regenerator 18, if the temperature is sufficiently high, the turbine exhaust gas h2 generates steam m in the boiler 22, and a power generation system consisting of a steam turbine 23 and a generator 24 is generated. Can drive equipment.

蒸気タービン23の排気(蒸気)nは温水加熱器34か
らの復水qとともに復水器79に入って復水され、ボイ
ラ給水Q、となる。このボイラ給水Q、は純水タンク3
6からの純水と合流して02となり、更に給水加熱器3
5で適宜昇温されてQとなった後ボイラ22へ循環され
る。
The exhaust gas (steam) n of the steam turbine 23 enters the condenser 79 together with the condensate q from the hot water heater 34, where it is condensed and becomes boiler feed water Q. This boiler water supply Q is pure water tank 3
It merges with the pure water from 6 to form 02, and further flows to the feed water heater 3.
After being appropriately heated to a temperature of Q in step 5, it is circulated to the boiler 22.

この蒸気タービン23及び発電機24とガスタービン2
5.26及び発電機3とによる発電によって複合発電シ
ステムを構成する。
The steam turbine 23, the generator 24, and the gas turbine 2
5.26 and generator 3 constitute a combined power generation system.

第4図は第3図の構成に燃料処理装置45及び高1部品
冷却系を追設した第3図の変形例を示す。
FIG. 4 shows a modification of the structure shown in FIG. 3 in which a fuel processing device 45 and a cooling system for high-level parts are added to the structure shown in FIG.

このため、第4図では追設部分についてのみ説明する。Therefore, in FIG. 4, only the additional portion will be explained.

なお、符号46は温度制御装置を示している。Note that the reference numeral 46 indicates a temperature control device.

燃料処理装置45はタービン排気り、をボイラ22とと
もに利用するもので、図では説明の都合上燃料処理装置
45とボイラ22とを平行配列としているが、各々の伝
熱管を交互に配列して熱回収効率を高める構成も使用さ
れる。
The fuel processing device 45 utilizes a turbine exhaust gas together with the boiler 22. In the figure, the fuel processing device 45 and the boiler 22 are arranged in parallel for convenience of explanation, but the heat exchanger tubes of each are arranged alternately to generate heat. Configurations that increase recovery efficiency are also used.

燃料処理装置45の構成は燃料fの仕様によって決定さ
れ、燃料fが液体であるか、気体であるかアルコール系
であるかによって、予熱器、蒸発器、加熱器、反応器、
過熱器等が適宜組み合わされて構成される。
The configuration of the fuel processing device 45 is determined by the specifications of the fuel f, and includes a preheater, evaporator, heater, reactor, etc. depending on whether the fuel f is liquid, gas, or alcohol-based.
It is constructed by appropriately combining superheaters and the like.

アルコール系燃料は例えばメタノールであれば触媒反応
管での化学吸熱で(CO+2H2)又は(C02+ 3
H2)のガス燃料に転換される。燃料処理装置45は予
熱器、蒸発器、加熱器、反応器(触媒反応管群)、過熱
器で構成され、顕熱・潜熱の物理吸熱と化学吸熱との両
者によって燃料保有熱(発熱量と顕熱)を向上し、燃料
節約を図る。
For example, if the alcohol-based fuel is methanol, it will be converted to (CO+2H2) or (C02+3) by chemical endotherm in the catalytic reaction tube.
H2) gas fuel. The fuel processing device 45 is composed of a preheater, an evaporator, a heater, a reactor (a group of catalytic reaction tubes), and a superheater. Sensible heat) and save fuel.

気体燃料での燃料処理装ji145は過熱器で顕熱回収
を、液体燃料での燃料処理装置45は予熱器、蒸発器、
過熱器の各伝熱管で構成して潜熱と顕熱を回収すること
で各々燃料保有熱が向上し、燃料節約が図れる。
The fuel processing device ji145 using gaseous fuel recovers sensible heat with a superheater, and the fuel processing device 45 using liquid fuel uses a preheater, an evaporator,
By collecting latent heat and sensible heat using each heat transfer tube in the superheater, the heat retained in each fuel is improved and fuel can be saved.

このように管内に燃料や一可燃ガスを流す伝熱管を直接
タービン排気中に配設して熱流入(熱回収)を効率良く
行えるのは、タービン排気中に02か殆ど存在しないた
め、万−管が損傷しても爆発や火災に至らず安全である
ことによる。
The reason why heat transfer tubes, which allow fuel and combustible gas to flow inside the tubes, can be placed directly into the turbine exhaust gas to allow efficient heat inflow (heat recovery) is because there is almost no 02 in the turbine exhaust gas. This is because even if the pipe is damaged, it will not cause an explosion or fire and will be safe.

第5図はその燃料処理装置45の概要をボイラ22との
関係で示している。
FIG. 5 shows an outline of the fuel processing device 45 in relation to the boiler 22.

燃料処理装置45は最も構成要素の多いアルコール系燃
料のメタノールの場合で表示している。
The fuel processing device 45 is shown in the case of methanol, which is an alcohol-based fuel that has the largest number of components.

第5図(a)はボイラ22の構成の一例で、ガスタービ
ン排気h2の高温側に向かってボイラ給水Qが予熱器4
7、低圧蒸発器48、節炭器49、高圧蒸発器50、過
熱器51を経由して高温蒸気m3、低温蒸気!!13と
なる場合の流体の流れを示したものである。
FIG. 5(a) shows an example of the configuration of the boiler 22, in which the boiler feed water Q is directed toward the high temperature side of the gas turbine exhaust h2 to the preheater 4.
7. High-temperature steam m3, low-temperature steam via the low-pressure evaporator 48, energy saver 49, high-pressure evaporator 50, and superheater 51! ! 13 shows the flow of fluid in the case of 13.

第5図(b)は燃料処理装置45の構成の一例で、ガス
タービン排気h2の高温側に向かって燃料fが予熱器5
2、蒸発器53、加熱器54、触媒内蔵の反応器本体5
5及び過熱器56を経由してガス燃料fl+ f2とな
る場合の流体の流れを示したものである。
FIG. 5(b) shows an example of the configuration of the fuel processing device 45, in which the fuel f is transferred to the preheater 5 toward the high temperature side of the gas turbine exhaust gas h2.
2. Evaporator 53, heater 54, reactor body 5 with built-in catalyst
5 and superheater 56 to become gas fuel fl+f2.

燃料fか液体燃料の場合は予熱器52、蒸発器53及び
過熱器56、気体燃料の場合は加熱器54及び過熱器5
6の構成とする。
Preheater 52, evaporator 53 and superheater 56 if the fuel f is liquid fuel, heater 54 and superheater 5 if gaseous fuel
6 configuration.

第5図(c)はボイラ22と燃料処理装置45とを平行
配置した場合で、各々の入口/出口に設けたダンパ57
.58.59.60を相互操作してガスタービン排気h
2の分流割合を制御するようにした配置例を示している
FIG. 5(c) shows a case where the boiler 22 and the fuel processing device 45 are arranged in parallel, and the damper 57 provided at the inlet/outlet of each
.. 58, 59, and 60 to interoperate gas turbine exhaust h
2 shows an example of arrangement in which the splitting ratio of 2 is controlled.

第5図(d)はボイラ22と燃料処理装置45とを交互
に配置し、ガスタービン排気h2からの熱回収を行う場
合で、水蒸気m2+ msの温度、圧力ならびに反応器
本体55の特性等で配列状況は都度変更し得る。
FIG. 5(d) shows a case where the boiler 22 and the fuel processing device 45 are arranged alternately to recover heat from the gas turbine exhaust h2, and the temperature and pressure of the steam m2+ ms and the characteristics of the reactor main body 55 are The arrangement status may change from time to time.

第4図に戻って、ガスタービンでは、燃焼器やタービン
動・静翼で代表される高温部品及びロータを効率良く冷
却する必要かある。気液分離装置29からの気体窒素e
1はマイナス数十℃の冷熱流体であるため、この気体窒
素e、はその後流で昇温された気体窒素eと温度制御装
置46において混合されて、冷却流体としての気体窒素
e8が生成される。
Returning to FIG. 4, in a gas turbine, it is necessary to efficiently cool high-temperature parts such as the combustor, turbine moving/stationary blades, and the rotor. Gaseous nitrogen e from the gas-liquid separator 29
Since 1 is a cold fluid with a temperature of -several tens of degrees Celsius, this gaseous nitrogen e is mixed in the temperature control device 46 with the gaseous nitrogen e whose temperature has been raised in its wake, to generate gaseous nitrogen e8 as a cooling fluid. .

この気体窒素e3は混合割合により気体窒素e、〜eの
温度の間に制御され、従来より良好な冷却設計、冷却効
率の向上を図ることができ、冷却流体量の節減・高温部
品のベースメタル化等に反映できる。
This gaseous nitrogen e3 is controlled between the temperatures of gaseous nitrogen e, ~e by the mixing ratio, making it possible to achieve a better cooling design and improved cooling efficiency than before, reducing the amount of cooling fluid and base metal of high-temperature parts. This can be reflected in changes, etc.

第6図は第3図及び第4図に示した排熱再生器18の別
の配列例を示す。
FIG. 6 shows another arrangement example of the waste heat regenerator 18 shown in FIGS. 3 and 4. In FIG.

第6図によれば、排熱再生器61を燃料処理装置45/
ボイラ22と排気冷却器33との間の低温排気に配置し
、第1段の熱回収を行ってから気体窒素を加熱器30に
導く。加熱器30を出た気体窒素e、はガスタービン2
6の直後に配置された排熱再生器62で昇温されてeと
なる。
According to FIG. 6, the exhaust heat regenerator 61 is connected to the fuel processing device 45/
It is placed in the low-temperature exhaust between the boiler 22 and the exhaust cooler 33, and conducts the gaseous nitrogen to the heater 30 after performing the first stage of heat recovery. The gaseous nitrogen e exiting the heater 30 is supplied to the gas turbine 2
The temperature is raised to e by an exhaust heat regenerator 62 placed immediately after 6.

システムの構成上、加熱器30を省略する場合は特にこ
の排熱再生器61,62の2箇所配置が必要であり、排
熱再生器62での熱回収を軽減することで燃料処理装置
45/ボイラ22に高温のタービン排気り、を供給でき
、伝熱設計の自由度が増加する。
Due to the system configuration, when the heater 30 is omitted, it is necessary to install the exhaust heat regenerators 61 and 62 at two locations. High temperature turbine exhaust gas can be supplied to the boiler 22, increasing the degree of freedom in heat transfer design.

第7図は液化設備8の動力の一部をガスタービンより得
るようにした実施例を示している。
FIG. 7 shows an embodiment in which part of the power for the liquefaction equipment 8 is obtained from a gas turbine.

液化設備8は循環窒素圧縮機1と液化装置本体63とに
よって構成され、発電/電動機64と圧縮機1と切替ク
ラッチ65とガスタービン25.26とが軸直結されて
いる。
The liquefaction equipment 8 is composed of a circulating nitrogen compressor 1 and a liquefaction device main body 63, and a generator/motor 64, a compressor 1, a switching clutch 65, and a gas turbine 25, 26 are directly connected to each other.

発電/電動機64を発電機としてこれに圧縮機1及びガ
スタービン25.26を組合せて発電プラントと液化設
備とを同時運用する構成は、いわゆるガスタービン編成
であるが、循環システムの閉ループ内に十分な液体窒素
が存在しない初期運転においては、切替クラッチ65を
断とし、発電/電動機64を電動機として作動させ、吸
気設備37がら空気を吸込んで液化する液化設備単独運
転の構成とする。第7図の実施例の圧縮機1には後述す
る第9図の第1次圧縮機66又は循環窒素圧縮機67が
対応する。
The configuration in which the generator/electric motor 64 is used as a generator and is combined with the compressor 1 and the gas turbine 25, 26 to simultaneously operate the power generation plant and the liquefaction equipment is a so-called gas turbine organization, but it is sufficient to operate within the closed loop of the circulation system. In the initial operation when no liquid nitrogen is present, the switching clutch 65 is disconnected, the generator/motor 64 is operated as an electric motor, and the liquefaction equipment is operated independently by sucking air through the intake equipment 37 and liquefying it. The compressor 1 of the embodiment shown in FIG. 7 corresponds to a primary compressor 66 or a circulating nitrogen compressor 67 shown in FIG. 9, which will be described later.

第8図は第2図(b)の構成のうち特に液化設備8及び
気化設備11の系統のみを詳細に示したものである。
FIG. 8 shows in detail only the systems of the liquefaction equipment 8 and the vaporization equipment 11 of the configuration shown in FIG. 2(b).

気化設備11の気化熱交換器27と接続された冷熱流体
用の蓄熱槽19は深冷熱交換器として作用させ、この蓄
熱槽19と液化量m8との間には圧縮された窒素nnが
循環されている。
The cold fluid heat storage tank 19 connected to the vaporization heat exchanger 27 of the vaporization equipment 11 acts as a deep cold heat exchanger, and compressed nitrogen nn is circulated between the heat storage tank 19 and the liquefaction amount m8. ing.

気化熱交換器27にて液体窒素dから回収された冷熱は
冷熱流体1として蓄熱槽】9に循環され、蓄熱槽19で
窒素nnの深冷、すなわちその液化点付近までの冷却を
行う。
The cold heat recovered from the liquid nitrogen d in the vaporization heat exchanger 27 is circulated as a cold fluid 1 to the heat storage tank 9, where the nitrogen nn is deeply cooled, that is, cooled to near its liquefaction point.

液化設備8の運用の多様性に対処するため、必要に応じ
てバイパスライン、バックアップ熱交換器及び深冷冷凍
機(小型機)を併設することもできる。
In order to cope with the diversity of operation of the liquefaction equipment 8, a bypass line, a backup heat exchanger, and a deep-refrigeration refrigerator (small machine) can also be installed as necessary.

第9図は第2図(c)の構成のうち特に液化設備8及び
気化設備11の複合設備の詳細な一例を示したものであ
る。
FIG. 9 shows a detailed example of a combined facility including the liquefaction facility 8 and the vaporization facility 11 in the configuration shown in FIG. 2(c).

液化設備8は第1次圧縮機66、循環窒素圧縮機67、
精留塔68、窒素冷却器69、予冷熱交換器70、深冷
熱交換器71及び冷媒ポンプ72によって構成されてお
り、予冷熱交換器70及び深冷熱交換器71が気化設備
11の気化熱交換器27と置換されて、液化設備8と気
化設備11とを一体化している。
The liquefaction equipment 8 includes a primary compressor 66, a circulating nitrogen compressor 67,
It is composed of a rectification column 68, a nitrogen cooler 69, a precooling heat exchanger 70, a cryogenic heat exchanger 71, and a refrigerant pump 72. The liquefaction equipment 8 and the vaporization equipment 11 are integrated by replacing the container 27.

この実施例でも同様に、液化量6i8の運用の多様性に
対処するため、必要に応じてバイパスライン、バックア
ップ熱交換器及び深冷冷凍機(小型機)を併設すること
もできる。
Similarly, in this embodiment, a bypass line, a backup heat exchanger, and a deep-refrigeration refrigerator (small-sized machine) can be added as necessary in order to cope with the diversity of operation with a liquefaction amount of 6i8.

これによって、液化量と気化量とに差かある場合に対応
でき、液化プラントと発電プラントの時間差運用も可能
である。このバイパス、バックアップの状況を第10図
及び第11図に示す。
This makes it possible to cope with the case where there is a difference between the liquefaction amount and the vaporization amount, and it is also possible to operate the liquefaction plant and the power generation plant at different times. The status of this bypass and backup is shown in FIGS. 10 and 11.

第10図は液化設備の一例を示すとともに、本実施例シ
ステムの要点を示したものである。
FIG. 10 shows an example of liquefaction equipment and also shows the main points of the system of this embodiment.

液化量#8の主要機器は、第1次圧縮機66、高圧及び
低圧の循環窒素圧縮機67、精留塔68及び深冷熱交換
器71で、従来方式では深冷熱交換器71に深冷冷凍機
から一200℃近(の流部流体又は冷媒を供給する。
The main equipment for liquefaction amount #8 is a primary compressor 66, a high-pressure and low-pressure circulating nitrogen compressor 67, a rectification column 68, and a cryogenic heat exchanger 71. In the conventional system, the cryogenic heat exchanger 71 is A flow fluid or refrigerant of approximately 1,200°C is supplied from the machine.

本システムでは、深冷熱交換器71に気化設備11の気
化熱交換器27から循環する冷熱流体lを使用しており
、深冷冷凍機を省略又は小容量とすることができる。
In this system, the cryogenic heat exchanger 71 uses the cold fluid l circulating from the vaporization heat exchanger 27 of the vaporization equipment 11, and the cryogenic refrigerator can be omitted or its capacity can be reduced.

但し、冷却不足に対応するために深冷熱交換器71のバ
ックアップ熱交換器73を併設し、小容量の深冷冷凍機
74を使用する。
However, in order to cope with insufficient cooling, a backup heat exchanger 73 for the cryogenic heat exchanger 71 is provided, and a small-capacity deep-refrigerating refrigerator 74 is used.

第10図の液化設備8の内部に示す構成は一例であって
種々の方式が使用でき、そのいずれに対しても深冷熱交
換器71を構成するものとする。
The configuration shown inside the liquefaction equipment 8 in FIG. 10 is an example, and various systems can be used, and the cryogenic heat exchanger 71 is configured for any of them.

空気液化のプロセスを第10図に沿って述べる。The air liquefaction process will be described with reference to FIG.

タービン排気h4は第1次圧縮機66で昇圧され、精留
塔68で膨張に伴う減温を得て一部液化される。
The pressure of the turbine exhaust h4 is increased by the first compressor 66, and the temperature is reduced due to expansion in the rectification column 68, and a portion of the turbine exhaust gas h4 is liquefied.

未液化の窒素nn、は循環窒素圧縮機67で再び昇圧さ
れるが、窒素冷却器69による入口冷却で循環窒素nn
2 、そして中間冷却を経て循環窒素nnとなる。
The unliquefied nitrogen nn is pressurized again by the circulating nitrogen compressor 67, but the circulating nitrogen nn is cooled by the inlet cooling by the nitrogen cooler 69.
2, and becomes circulating nitrogen nn through intermediate cooling.

窒素冷却器69の冷熱源は予冷熱交換器70との間で循
環する冷媒fQで、予冷熱交換器70の冷媒冷却は深冷
冷凍機75で行う。循環窒素nnは深冷熱交換器71(
必要の場合はそのバックアップ熱交換器73も)で深冷
され、精留塔68で膨張減温され、液化が行われる。
The cold heat source of the nitrogen cooler 69 is the refrigerant fQ that circulates between the precooling heat exchanger 70 and the refrigerant cooling of the precooling heat exchanger 70 is performed by the deep cooling refrigerator 75. Circulating nitrogen nn is supplied to the cryogenic heat exchanger 71 (
If necessary, it is deep cooled in the backup heat exchanger 73), expanded and cooled in the rectification column 68, and liquefied.

液体窒素Cは液体窒素貯槽9へ供給される。Liquid nitrogen C is supplied to liquid nitrogen storage tank 9.

液体窒素dの気化熱交換器27での気化潜熱がタービン
排気h4の液化に伴う深冷熱交換器71での冷熱より多
い場合は、バイパス管76による冷媒nnAにて深冷熱
交換器71を一部バイパスし、少ない場合は深冷熱交換
器71とそのバックアップ熱交換器73をシリーズ運用
し、冷熱不足分をバックアップ熱交換器73で補う。液
化と発電とを時間差運用するときで液化流体dが停止中
の場合は、パックアツブ熱交換器73で深冷全量を賄う
If the latent heat of vaporization of the liquid nitrogen d in the vaporization heat exchanger 27 is greater than the cold heat in the cryogenic heat exchanger 71 due to liquefaction of the turbine exhaust h4, a portion of the cryogenic heat exchanger 71 is replaced by the refrigerant nnA through the bypass pipe 76. If the amount is low, the cryogenic heat exchanger 71 and its backup heat exchanger 73 are operated in series, and the backup heat exchanger 73 makes up for the lack of cold heat. When liquefaction and power generation are operated at different times and the liquefied fluid d is stopped, the pack-tub heat exchanger 73 covers the entire amount of deep cooling.

第11図は気化熱交換器27と予冷熱交換器70及び深
冷熱交換器71を一体化して、冷熱流体iの引き回しを
省略するものである。
In FIG. 11, the vaporization heat exchanger 27, the precooling heat exchanger 70, and the deep cooling heat exchanger 71 are integrated, and the routing of the cold/hot fluid i is omitted.

液体窒素dの気化潜熱で直接循環窒素nn及び冷媒fQ
を深冷している。
Direct circulation of nitrogen nn and refrigerant fQ using the latent heat of vaporization of liquid nitrogen d
is deep-chilled.

深冷冷熱が液化流体dの気化潜熱より多く必要な場合は
、予冷熱交換器70及びそのバ・ンクア・ツブ熱交換器
77、深冷熱交換器71及びそのバックアップ熱交換器
73をシリーズ運用することにより、冷熱不足分をバッ
クアップ熱交換器77、73で補う。
If more cryogenic cold heat is required than the latent heat of vaporization of the liquefied fluid d, the precooling heat exchanger 70 and its bank-a-tube heat exchanger 77, the cryogenic heat exchanger 71 and its backup heat exchanger 73 are operated in series. By doing so, the backup heat exchangers 77 and 73 compensate for the lack of cooling heat.

逆に少ない場合は、バイパス管78.76による冷媒f
QA、 nnAにて予冷熱交換器70及び深冷熱交換器
71を一部バイパスする。液化流体dを停止している時
間差運用では、バックアップ熱交換器77及び73のみ
で運用する。
On the other hand, if the amount is low, the refrigerant f by the bypass pipe 78.76
At QA and nnA, the precooling heat exchanger 70 and the cryogenic heat exchanger 71 are partially bypassed. In the staggered operation in which the liquefied fluid d is stopped, only the backup heat exchangers 77 and 73 are used.

第10図及び第11図のバックアップ熱交換器70゜7
375の冷熱源には、LNGの気化冷熱等のその他冷熱
源か利用可能である。
Backup heat exchanger 70°7 in Figures 10 and 11
Other cold sources such as LNG vaporization cold heat can be used as the cold heat source of the 375.

なお、本システムはバックアップ熱交換器の冷熱源がい
かなるものであっても、又、複合されたものであっても
予冷熱交換器70及び深冷熱交換器71が採用される限
りその適用範囲に含めるものとする。
Note that this system is applicable to any type of cold source for the backup heat exchanger, or even if it is a combination of sources, as long as the pre-cooling heat exchanger 70 and deep-cooling heat exchanger 71 are used. shall be included.

発明の効果 本発明によれば、窒素を循環媒体とする閉サイクルガス
タービンにおいて、ガスタービン排気側に液化設備を併
設することで、次の効果が得られる。
Effects of the Invention According to the present invention, in a closed cycle gas turbine using nitrogen as a circulating medium, the following effects can be obtained by providing a liquefaction facility on the gas turbine exhaust side.

(1)燃焼生成物やタービンに噴射する蒸気を高純度で
分離できる。
(1) Combustion products and steam injected into the turbine can be separated with high purity.

(2)プラント起動時に充填されていない循環媒体の窒
素と燃焼のための酸素とは液化設備を大気(空気)吸込
みで作動させることによって確保できる。
(2) Nitrogen in the circulating medium that is not filled at the time of plant startup and oxygen for combustion can be secured by operating the liquefaction equipment by sucking atmospheric air.

(3)液体窒素の昇圧ポンプ能力によりタービン入口圧
力を自由に高圧とできる。これは従来のような圧縮機空
力性能や圧縮機とタービンの性能バランス等の制約か排
除されるためであり、このため高いタービン性能(高出
力、高効率)を得るため極力高圧に設定できる。
(3) The turbine inlet pressure can be freely raised to a high pressure due to the liquid nitrogen pressure boost pump capability. This is because conventional constraints such as compressor aerodynamic performance and performance balance between the compressor and turbine are eliminated, and therefore the pressure can be set as high as possible in order to obtain high turbine performance (high output, high efficiency).

(4)得られる液体窒素は高品位の冷熱として例えば超
電導発電機・発電素子・磁気軸受等の冷却に応用するこ
ともできる。ガスタービンの高温部品(動・静翼、燃焼
器)の冷却においては冷却効率の向上に活用できる。
(4) The obtained liquid nitrogen can be applied as high-grade cold energy, for example, to cooling superconducting generators, power generation elements, magnetic bearings, etc. It can be used to improve cooling efficiency in cooling high-temperature parts of gas turbines (moving/stationary blades, combustor).

(5)窒素の気化に伴って得られる冷熱流体は、液化設
備の冷熱源となる他、ガスタービンや併設発電プラント
の冷却流体として使え、プラントロス並びにプラント廃
熱(温排水)の環境への温排出を低減できる。また冷凍
庫や地域冷房用の冷熱源にも活用できる。
(5) The cold fluid obtained by vaporizing nitrogen can be used as a cold source for liquefaction equipment and as a cooling fluid for gas turbines and attached power plants, reducing plant loss and waste heat (heated wastewater) to the environment. It can reduce thermal emissions. It can also be used as a cold source for freezers and district cooling.

(6)本来閉サイクルであるため通常の開サイクルガス
タービンやその複合発電と違い、NOx−5Ox・CO
□等燃焼生成物の大気放出か存在しない。
(6) Since it is originally a closed cycle, unlike ordinary open cycle gas turbines and their combined power generation, NOx-5Ox/CO
□There is no atmospheric release of combustion products.

(7)発電プラントから環境に出る温排出はシステム内
での温熱利用によって軽減される。従来のプラントに伴
う復水器循環水、潤滑油冷却水、ガスタービン排気等の
保有熱がシステム内で活用される。
(7) Thermal emissions from power plants to the environment can be reduced by utilizing heat within the system. The heat retained in conventional plants, such as condenser circulating water, lubricating oil cooling water, and gas turbine exhaust, is utilized within the system.

(8)不活性ガスの窒素として、各種燃焼調整か可能で
、水素・酸素燃焼も含めてあらゆる条件に対応できる。
(8) As an inert gas, nitrogen, various combustion adjustments are possible, and it can accommodate all conditions including hydrogen and oxygen combustion.

(9)タービン排気中の酸素濃度をほとんど0%に制御
できることから直接熱交換のための伝熱管を排気流路に
配置し、燃料の処理(燃料への熱回収)を行うことがで
きる。
(9) Since the oxygen concentration in the turbine exhaust gas can be controlled to almost 0%, heat transfer tubes for direct heat exchange can be placed in the exhaust flow path to process the fuel (recover heat to the fuel).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるガスタービン発電設備の基本構成
を示す図、第2図は本発明によるガスタービン発電設備
の変形例を示す構成図、第3図は第1図の基本構成の詳
細を示すシステム図、第4図は第3図の実施例の変形例
を示すシステム図、第5図は燃料処理のシステム図、第
6図は更なる変形例を示すシステム図、第7図は液化設
備の変形例を示す図、第8図及び第9図は液化設備及び
気化設備の組み合せ例を示したシステム図、第10図及
び第11図はバックアップ・バイパスを示したシステム
図、第12図は従来の窒素循環ガスタービンの例を示す
図である。 2、25.26・・ガスタービン、3,24・・発電機
、8・・液化設備、9・・液体窒素貯槽、10・・昇圧
ポンプ、11・・気化設備、12.43.44・・燃焼
器、13・・併設発電プラント、14・・分離流体設備
、18.61.62・・排熱再生器、19.21.3]
・・蓄熱槽、22・・ボイラ、30・・加熱器、32・
・潤滑油冷却器、33・・排気冷却器、34・・温水加
熱器、35・・給水加熱器、36・・純水タンク、37
・・吸気設備、38・・酸素供給設備、39・・液体酸
素貯槽、40・・移送ポンプ、45・・燃料処理装置、
46・・温度制御装置。
FIG. 1 is a diagram showing the basic configuration of a gas turbine power generation facility according to the present invention, FIG. 2 is a configuration diagram showing a modification of the gas turbine power generation facility according to the present invention, and FIG. 3 is a diagram showing details of the basic configuration of FIG. 1. 4 is a system diagram showing a modified example of the embodiment shown in FIG. 3, FIG. 5 is a system diagram showing a fuel processing system, FIG. 6 is a system diagram showing a further modified example, and FIG. 7 is a system diagram showing a modification of the embodiment shown in FIG. 3. Figures 8 and 9 are system diagrams showing examples of combinations of liquefaction equipment and vaporization equipment; Figures 10 and 11 are system diagrams showing backup bypass; Figure 12 1 is a diagram showing an example of a conventional nitrogen circulation gas turbine. 2, 25.26... Gas turbine, 3, 24... Generator, 8... Liquefaction equipment, 9... Liquid nitrogen storage tank, 10... Boosting pump, 11... Vaporization equipment, 12.43.44... Combustor, 13... Attached power generation plant, 14... Separation fluid equipment, 18.61.62... Exhaust heat regenerator, 19.21.3]
・・Heat storage tank, 22・・Boiler, 30・・Heater, 32・
- Lubricating oil cooler, 33... Exhaust cooler, 34... Hot water heater, 35... Feed water heater, 36... Pure water tank, 37
...Intake equipment, 38..Oxygen supply equipment, 39..Liquid oxygen storage tank, 40..Transfer pump, 45..Fuel processing device,
46...Temperature control device.

Claims (1)

【特許請求の範囲】[Claims] 窒素を循環媒体とする閉サイクルガスタービン発電設備
において、ガスタービンの排気側に設置された液化設備
と、この液化設備にて液化された窒素を貯える液体窒素
貯槽と、この液体窒素貯槽より払い出された液体窒素を
所定の高圧にする昇圧ポンプと、高圧の液体窒素を気化
させる気化設備と、気化された気体窒素を同時に投入さ
れる酸素及び燃料による燃焼によって所定のガスタービ
ン入口温度に調整し得られた燃焼ガスをガスタービンに
供給する燃焼器とを備え、前記液化設備の液化の過程で
タービン排気中の燃焼生成物を分離するようにしたガス
タービン発電設備。
In closed-cycle gas turbine power generation equipment that uses nitrogen as a circulating medium, there is a liquefaction equipment installed on the exhaust side of the gas turbine, a liquid nitrogen storage tank that stores the nitrogen liquefied in the liquefaction equipment, and a liquid nitrogen storage tank that discharges nitrogen from the liquid nitrogen storage tank. A booster pump that brings the liquid nitrogen to a predetermined high pressure, vaporization equipment that vaporizes the high-pressure liquid nitrogen, and combustion of the vaporized gaseous nitrogen with oxygen and fuel that are simultaneously introduced to adjust the gas turbine inlet temperature to a predetermined temperature. A gas turbine power generation facility comprising a combustor that supplies the obtained combustion gas to a gas turbine, and separating combustion products in the turbine exhaust during the liquefaction process of the liquefaction facility.
JP27756190A 1990-10-16 1990-10-16 Gas turbine power generation equipment Pending JPH04153527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27756190A JPH04153527A (en) 1990-10-16 1990-10-16 Gas turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27756190A JPH04153527A (en) 1990-10-16 1990-10-16 Gas turbine power generation equipment

Publications (1)

Publication Number Publication Date
JPH04153527A true JPH04153527A (en) 1992-05-27

Family

ID=17585236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27756190A Pending JPH04153527A (en) 1990-10-16 1990-10-16 Gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JPH04153527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056465A (en) * 2018-10-02 2020-04-09 株式会社Ogcts Lng satellite facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056465A (en) * 2018-10-02 2020-04-09 株式会社Ogcts Lng satellite facility

Similar Documents

Publication Publication Date Title
Omar et al. A review of unconventional bottoming cycles for waste heat recovery: Part II–Applications
Deng et al. Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization
Najjar Efficient use of energy by utilizing gas turbine combined systems
Poullikkas An overview of current and future sustainable gas turbine technologies
US5535584A (en) Performance enhanced gas turbine powerplants
EP2446122B1 (en) System and method for managing thermal issues in one or more industrial processes
US5678408A (en) Performance enhanced gas turbine powerplants
JP7169305B2 (en) Staged Regenerative Supercritical Compressed Air Energy Storage System and Method
US5609029A (en) Thermal power engine and its operating method
CN108979762B (en) Staged cold accumulation type supercritical compressed air energy storage system and method
Korobitsyn New and advanced energy conversion technologies. Analysis of cogeneration, combined and integrated cycles
JP3040442B2 (en) Gas turbine power generation equipment
UA61957C2 (en) Method for obtaining energy from the exhaust gas of gas turbine, method and system of regeneration of energy of the exhaust gas heat
Martelli et al. Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture
Jericha et al. CO2-Retention Capability of CH4/O2–Fired Graz Cycle
Mitterrutzner et al. A part-load analysis and control strategies for the Graz Cycle
Dokhaee et al. Simulation of the Allam cycle with carbon dioxide working fluid and comparison with Brayton cycle
Rahbari et al. A review study of various High-Temperature thermodynamic cycles for multigeneration applications
CN117722819A (en) Novel liquefied air energy storage system of self-balancing type coupling LNG cold energy
De Ruyck et al. REVAP® cycle: A new evaporative cycle without saturation tower
JP3697476B2 (en) Combined power generation system using gas pressure energy
US10384926B1 (en) Integral fuel and heat sink refrigerant synthesis for prime movers and liquefiers
Chen et al. Design, operation, and case analyses of a novel thermodynamic system combining coal-fired cogeneration and decoupled Carnot battery using CO2 as working fluid
CN215949659U (en) LNG power plant combined cycle unit temperature governing system that admits air
JPH10121912A (en) Combustion turbine cycle system