JPH04153228A - Screw made from resin - Google Patents

Screw made from resin

Info

Publication number
JPH04153228A
JPH04153228A JP27797490A JP27797490A JPH04153228A JP H04153228 A JPH04153228 A JP H04153228A JP 27797490 A JP27797490 A JP 27797490A JP 27797490 A JP27797490 A JP 27797490A JP H04153228 A JPH04153228 A JP H04153228A
Authority
JP
Japan
Prior art keywords
resin
fibers
rod
strands
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27797490A
Other languages
Japanese (ja)
Inventor
Masaki Okazaki
正樹 岡崎
Tamemaru Ezaki
江嵜 為丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27797490A priority Critical patent/JPH04153228A/en
Publication of JPH04153228A publication Critical patent/JPH04153228A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve workability and shear strength by impregnating strands obtd. by aligning PVA fibers with a specific liq. resin compsn., forming the impregnated strands into a rod, and curing and working the rod. CONSTITUTION:A liq. resin having an elastic modules of at least 150kg/mm<2> after being cured (e.g. an epoxy resin) is compounded with a necessary amt. of a fibrous material cut to 2mm length or lower, such as glass, wholly arom. polyester aramid or high-tensible PVA fibers, giving a liq. resin compsn. Strands obtd. by aligning reinforcing fibers comprising PVA fibers having a tensible strength 15g/dr or higher and a Young's modulus of 300g/dr or higher are impregnated with the resin compsn., caused to pass through a die to remove excess compsn. from the impregnated strands to a fiber content of 60 vol.% or higher, and thereby molded simultaneously into a rod. The rod is cured and worked to give a screw.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は高強度ポリビニルアルコール系繊維で補強した
樹脂製ねじに関するものである。
The present invention relates to a resin screw reinforced with high-strength polyvinyl alcohol fibers.

【従来の技術】[Conventional technology]

従来、ガラス1し炭素繊維、アラミド繊維などの繊維の
ストランド、ヤーン、テープまたは糸束を編製した紐状
物などを補強材とし、その繊維補強材にエポキノ樹脂な
どの熱硬化性樹脂やエステル樹脂などの熱可塑性樹脂な
どを含浸して得た繊維補強の合成樹脂成形体を加工した
合成樹脂製ねじについては、例えば、特開昭61−21
1022号公報、特開昭63−224930号公報、特
開平1−310941号公報など多くの提案がある。 かつ「材料J 1990.3月号第39巻438号26
6〜270頁にはセンターローヒン及びそれにブレード
をしたガラス繊維のFRPボルトが紹介されている。
Conventionally, glass 1, carbon fiber, aramid fiber, or other fiber strands, yarns, tapes, or string-like materials knitted from yarn bundles have been used as reinforcement materials, and thermosetting resins such as epochino resin or ester resins have been used as the fiber reinforcement material. Regarding synthetic resin screws processed from fiber-reinforced synthetic resin moldings obtained by impregnating thermoplastic resins such as
There are many proposals such as JP-A No. 1022, JP-A-63-224930, and JP-A-1-310941. and “Material J March 1990, Vol. 39, No. 438, No. 26
Pages 6 to 270 introduce center row hinges and glass fiber FRP bolts with blades.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の合成樹脂製ねじの補強繊維として、例えば、長繊
維か6.000〜120,000kg/ am’の引張
弾性率および100〜500kg/+un”の引張強度
を有するガラス繊維や炭素繊維など、剛性の高い繊維の
ストランドやヤーンテープを補強材とした合成樹脂成形
体では、硬くて脆く、切削が難しい材料である。 また、アラミド繊維補強の合成樹脂成形体では靭性が高
くて切れが悪く脆いなどのため、良好な切削面を得るこ
とが難しいとか、繊維と樹脂の接着性が良くないため、
剪断破壊強度の高い製品が得られ難いなどの問題がある
。 本発明は加工性に優れ、剪断破壊強度の高い、繊維補強
の樹脂製ねじを提供するにある。
Conventional reinforcing fibers for synthetic resin screws include long fibers, glass fibers and carbon fibers having a tensile modulus of 6,000 to 120,000 kg/am' and a tensile strength of 100 to 500 kg/+un''. Synthetic resin molded products reinforced with high fiber strands or yarn tape are hard, brittle, and difficult to cut.In addition, synthetic resin molded products reinforced with aramid fibers have high toughness and are difficult to cut and are brittle. Therefore, it is difficult to obtain a good cutting surface, and the adhesion between fiber and resin is not good.
There are problems such as difficulty in obtaining products with high shear fracture strength. The present invention provides a fiber-reinforced resin screw that has excellent workability and high shear fracture strength.

【課題を解決するための手段】[Means to solve the problem]

本発明は固化又は硬化後の曲げ弾性率が150kg/a
m’以上の樹脂と、引張り強度が15g/dr以上、ヤ
ング率が300g/dr以上のポリビニルアルコール系
合成繊維が60体積%以上とからなり、該ポリビニルア
ルコール系合成繊維の60%以上が引き揃えられている
ことを特徴とする樹脂製ねじである。 即ち、本発明の樹脂製のねじはその引張強度が80kg
/am’以上、引張弾性率が2000kg/ am’以
上、曲げ弾性率が150〜4000kg/■lI!で、
かつ圧縮剪断法による座屈ポイントを有しない、引張り
剪断法による剪断応力が2kg/gum’以上である樹
脂製のねしである。 本発明で使用する補強材としての繊維は、高強力ポリビ
ニルアルコール系繊維で、その切断強度が15g/デニ
ール以上、切断伸度が2.5〜6%の繊維である。繊維
の物性が上記の範囲外では切削性や加工性が悪く良好な
仕上がりにならないとか、ねじの物性、特に剪断破壊強
度が悪いものとなる。 この補強繊維はストランドあるいは撚糸、組紐状物など
を一方向に引き揃えてストランド状にしたものを使用す
る。この補強繊維のストランドの太さはねじのサイズに
よって適宜設定されるものである。 さらに本発明に用いるポリビニルアルコール繊維は断面
充実度が70%以下と断面を偏平にすることにより、よ
り剪断破壊強度に優れたねじとすることが出来る。 (F:断面積、B;断面中量も広い幅)また、ねじを形
成する合成樹脂が熱可塑性樹脂または熱硬化性樹脂から
選ばれた、曲げ弾性率が150kg/mm’以上、好ま
しくは曲げ弾性率180〜1800kg/ mm’の合
成樹脂で、例えば、エポキシ樹脂(曲げ弾性率700k
g/m+n’以上)、不飽和ポリエステル樹脂(800
kg/ mm’以上)、ヒニルエステル樹脂、フェノー
ル系樹脂、メラミン系樹脂、尿素系樹脂等の#V硬化性
樹脂、ポリエチレンテレフタレート樹脂(同700kg
/+am”以上)、メタクリルエステル系樹脂、熱可塑
性ポリエステル、ポリフェニレンオキサイド、ポリカー
ボネート、ナイロン−66、ナイロン−MXD6などの
熱可塑性樹脂(同200kg/am”以上)などから選
ばれた樹脂である。この曲げ弾性率が小さいと切削性や
ねじ山の形態安定性が悪い。一方、曲げ弾性率が大きす
ぎると樹脂自身が脆くなるため衝撃によりねじ山の破損
の発生や剪断抵抗性を失ないねじとしての靭性が損なわ
れる。 また、樹脂には必要に応じてガラス繊維、全芳香族ポリ
エステル繊維、アラミド繊維、高強力ポリビニルアルコ
ール系繊維等の2■以下の短繊維を添加した樹脂組成物
として使用することもよい。 次に、合成樹脂成形体の姫造法は、熱硬化性樹脂の場合
、硬化性樹脂組成物またはその初期縮合物の液状物に補
強繊維を引き揃えたストランドを漫潰し、成形金型を通
過させて余剰の樹脂液を除去し、繊維含宵率を60体積
%以上とし、成型した後、少なくとも100℃の加熱帯
で熱処理し、樹脂を硬化させて棒状合成樹脂成形体を得
る。 成型体中の繊維のひきそろえはFRP棒状体の引張り強
度及び引張り弾性率、曲げ弾性率、剪断力に影響を及ぼ
す。それ故樹脂中の繊維が60%以上長さ方向に均一に
並んでいなければその物性は発揮されない。 次いで、棒状合成樹脂成形体は切削加工してねし溝を形
成するかまたは合成樹脂が変形性を有する状態でねじ型
で成型してねし溝を形成する。得られた合成樹脂製ねし
は必要に応じて熱処理などの仕上げ処理して製品化する
。 樹脂製ねじの性能は金属性のものに比へ錆が起らない、
酸、アルカリ、塩等に対し耐薬品性に優れる、又軽くて
取扱い性が容昌である等の利点がある。 機械的性能は引張り強度が80kg/l+a’以上と高
強力でなくてはならない、又その引張り弾性率は200
0kg/ mm’以上好ましくは3000kg/ ■”
以上が必要である。更に曲げ弾性率が150〜6000
kg/ am’である必要かある。150kg/+++
n’未満では柔軟なためクリープを起しネジの役目を果
さず、4000kg/ト2を越えては脆くなり取扱い上
好ましくない。 次に重要なことは引張り剪断応力が2kg/am’以上
であることである。これはボルトの表面部分に応力がか
かり中心部へその応力の伝達が均等でなければならず、
この剪断力が2kg/mm”以下では繊維と樹脂の界面
剥離が起りナツト部分の応力が伝達されないことになり
好ましくない。 又更に圧縮剪断法による剪断力はカーボン繊維、ガラス
繊維、アラミド繊維を用いたものでは樹脂と繊維の界面
剥離か容品に発生し、座屈現象を示してしまう。本発明
はこれらの座屈ポイントを有しない靭性の高いFRPネ
ジである。
The present invention has a flexural modulus of 150 kg/a after solidification or hardening.
m' or more, and 60% by volume or more of polyvinyl alcohol synthetic fibers having a tensile strength of 15 g/dr or more and a Young's modulus of 300 g/dr or more, and 60% or more of the polyvinyl alcohol synthetic fibers are aligned. This is a resin screw characterized by the fact that it is That is, the resin screw of the present invention has a tensile strength of 80 kg.
/am' or more, tensile modulus is 2000kg/am' or more, flexural modulus is 150-4000kg/■lI! in,
In addition, the resin material has no buckling point due to the compression shearing method and has a shear stress of 2 kg/gum' or more using the tensile shearing method. The fiber used as a reinforcing material in the present invention is a high-strength polyvinyl alcohol fiber having a cutting strength of 15 g/denier or more and a cutting elongation of 2.5 to 6%. If the physical properties of the fibers are outside the above range, the machinability and processability will be poor and a good finish will not be obtained, or the physical properties of the screw, especially the shear fracture strength, will be poor. The reinforcing fibers used are strands, twisted yarns, braided cords, etc. drawn in one direction to form a strand. The thickness of this reinforcing fiber strand is appropriately set depending on the size of the screw. Further, by making the polyvinyl alcohol fibers used in the present invention flat in cross section with a cross-sectional solidity of 70% or less, a screw having even better shear fracture strength can be obtained. (F: cross-sectional area, B: wide width in cross-sectional area) In addition, the synthetic resin forming the thread is selected from thermoplastic resins or thermosetting resins, and has a bending elastic modulus of 150 kg/mm' or more, preferably bending Synthetic resin with an elastic modulus of 180 to 1,800 kg/mm', such as epoxy resin (flexural modulus of 700 k
g/m+n'), unsaturated polyester resin (800
kg/mm' or more), #V curable resins such as hinyl ester resins, phenol resins, melamine resins, urea resins, polyethylene terephthalate resins (700 kg or more)
/+am"), methacrylic ester resins, thermoplastic polyesters, polyphenylene oxide, polycarbonate, nylon-66, nylon-MXD6, and other thermoplastic resins (200 kg/am" or more). If this bending modulus is small, machinability and thread shape stability are poor. On the other hand, if the bending modulus is too large, the resin itself becomes brittle, resulting in damage to the threads due to impact and loss of toughness as a screw without losing shear resistance. Further, the resin may be used as a resin composition in which short fibers of 2 cm or less, such as glass fibers, wholly aromatic polyester fibers, aramid fibers, and high-strength polyvinyl alcohol fibers, are added as necessary. Next, in the Hime-zukuri method for synthetic resin moldings, in the case of thermosetting resins, strands of reinforcing fibers are crushed in a liquid material of a curable resin composition or its initial condensate, and passed through a molding die. Excess resin liquid is removed to make the fiber content 60% by volume or more, and after molding, heat treatment is performed in a heating zone of at least 100°C to harden the resin to obtain a rod-shaped synthetic resin molded body. The arrangement of fibers in the molded body affects the tensile strength, tensile modulus, bending modulus, and shearing force of the FRP rod. Therefore, unless 60% or more of the fibers in the resin are uniformly arranged in the length direction, the resin will not exhibit its physical properties. Next, the rod-shaped synthetic resin molded body is cut to form a threaded groove, or the synthetic resin has deformability and is molded with a thread mold to form a threaded groove. The resulting synthetic resin dough is subjected to finishing treatments such as heat treatment, if necessary, and then manufactured into a product. The performance of resin screws is that they do not rust compared to metal ones.
It has the advantages of excellent chemical resistance to acids, alkalis, salts, etc., and is light and easy to handle. Mechanical performance must be high, with a tensile strength of 80 kg/l+a' or more, and a tensile modulus of 200
0kg/mm' or more preferably 3000kg/■"
The above is necessary. Furthermore, the bending elastic modulus is 150 to 6000.
Does it need to be kg/am'? 150kg/+++
If it is less than n', it will be too flexible and will creep and will not function as a screw, and if it exceeds 4,000 kg/t2, it will become brittle and unfavorable in terms of handling. The next important thing is that the tensile shear stress is 2 kg/am' or more. This means that stress is applied to the surface of the bolt and the stress must be transmitted evenly to the center.
If this shearing force is less than 2 kg/mm, interfacial separation between the fiber and resin will occur and the stress in the nut part will not be transmitted, which is not preferable. If the screws were used, interfacial peeling between the resin and the fibers would occur in the container, resulting in a buckling phenomenon.The present invention is a highly tough FRP screw that does not have these buckling points.

【作 用】[For use]

本発明は、特定の繊維物性を有するポリビニルアルコー
ル系繊維を引き揃え1ニストラントと、特定の曲げ弾性
率の合成樹脂とから成形した成型体は、繊維と合成樹脂
の切削特性を近似させることか出来、ねしの切削か良好
になると共に、繊維と樹脂の親和性が良いため靭性の高
い、剪断破壊強力の優れた樹脂製ねじを得ることができ
る。
According to the present invention, a molded body made of a single strand of polyvinyl alcohol fibers having specific fiber properties and a synthetic resin having a specific flexural modulus can approximate the cutting characteristics of the fibers and the synthetic resin. In addition to improving the cutting ability of the screw, it is possible to obtain a resin screw with high toughness and excellent shear fracture strength due to the good affinity between the fiber and the resin.

【実施例】【Example】

次に、本発明の実施態様を具体的な実施例で説明する。 なお、実施例中の部および%はことわりのない限り体積
に関するものである。 a)用いる樹脂およびねじの曲げ弾性率はJTSK −
6911に準じて測定した。 b)得られたねじの引張り弾性率はJIS−に−711
3に準じて測定した。 C)剪断破壊強度の測定方法 第1図に測定方法の例を示し、この図に沿って以下に説
明する。 ・ショートビーム法 支点間距離、及び供試体長さを各々ロッド直径の3倍、
4倍として18mm、24n+mとし、三点載荷により
その応力〜たわみ曲線から最終強度を測定する方法であ
る。最終点ては座屈点が出るたぬその時の応力と断面積
から剪断力を求めることができる。 ・圧縮剪断法 ロッド直径の1/2まで1mmの巾で切り込みを相対す
る対照方向に入れる。切れ込みの内側距離を供試作直径
の167倍とし、供試体全長をロッド直径の4倍としf
二。即ち剪断距離10+nm、圧縮距離24mmとし、
サンプルロットの両端面は鏡面仕上げをし、両端から圧
縮荷重Pを加えた時の荷重〜歪曲線から座屈強力を求め
、その応力断面積から圧縮剪断力を求ぬた。 ・引張り剪断法は ロット直径の1/2まで1mmの巾で切り込みを相対す
る対照方向に入れる。切れ込みの内側距離を供試体直径
の2.0倍とし即ち12mmとして両端部固定治具に取
り付は一定速度で引張りながらその荷重Pを求め、剪断
断面積で除してその引張り剪断力とした。 実施例1〜3 高強力ポリビニルアルコール系繊維(切断強度17.3
g/dr、切断伸度4,9%、以下rPVA繊維」とす
る) 1800dr −1000filのフィラメント
糸を176本合糸してストランドを形成した。一方、繊
維に付与する合成樹脂として次の3種類の樹脂組成物ま
たは樹脂を準備した。 (1)エポキシ樹脂組成物(“EPX”とする)硬化樹
脂の引張強度590kg/a11’、切断伸度3.2%
、曲げ強度920kg/cm’、曲げ弾性率730kg
/mm″(2)不飽和ポリエステル樹脂組成物(“tJ
PE”とする) 硬化樹脂の引張強度455kg/cm’、切断伸度3.
0%、曲げ強度825kg/cm”、曲げ弾性率105
0kg/mm’ (3)ポリアミド樹脂(“PAM” とする)樹脂の引
張強度810kg/cm’、切断伸度48%、曲げ強度
1100kg/ cm’、曲げ弾性率270kg、/+
nm’次に、エポキシ樹脂組成物および不飽和ポリエス
テル樹脂組成物は、樹脂含浸槽中で引き揃えた繊維スト
ランドを浸漬処理し、ついで110℃に加温した成形ノ
ズルを通して丸棒に引き抜き成形し、120℃の室内で
7時間キュアー処理して直径6.2mmの丸棒を得た。 また、ポリアミド樹脂は溶融押出機を用い、溶融帯温度
275℃、成形ダイ温度280℃で溶融ポリアミド樹脂
を引き揃えた繊維ストランドに含有させて引き取り、冷
却して直径線6.2mmの丸棒を得た。これらの丸棒は
ダイスでねし切りを施して直径6mmのボルトを作った
。 比較例1 実施例1のポリビニルアルコール系繊維に替えて、ガラ
ス繊維ロービングを11本引き揃えたガラス繊維ストラ
ンドを使用して、エボキソ樹脂組成物を含浸し、実施例
1と同様にして直径7.2mmのボルトを作った。得ら
れ1ニボルトの物性を測定して表1に示した。 (以下余白) すなわち、実施例の製品は剪断破壊強力に優れ、更に切
削仕上がりの良好なものであった。それに対して、比較
例の製品は比較的低荷重で剪断破壊を生じた。この破壊
部分を観察すると繊維と樹脂が剥離し、一体成形体を形
成していないことが判明した。
Next, embodiments of the present invention will be explained with specific examples. Note that parts and percentages in the examples refer to volumes unless otherwise specified. a) The bending elastic modulus of the resin and screw used is JTSK -
Measured according to 6911. b) The tensile modulus of the obtained screw is JIS-711
Measured according to 3. C) Method for Measuring Shear Fracture Strength An example of the measuring method is shown in FIG. 1, and will be explained below with reference to this figure.・Short beam method distance between fulcrums and specimen length are each 3 times the rod diameter,
This is a method in which the final strength is measured by three-point loading using a stress-deflection curve of 18 mm and 24 n+m. At the final point, the shear force can be determined from the stress and cross-sectional area at the moment when the buckling point occurs. - Compression shear method Make cuts with a width of 1 mm up to 1/2 of the rod diameter in opposite and symmetrical directions. The inner distance of the notch is 167 times the diameter of the specimen, and the total length of the specimen is 4 times the diameter of the rod.
two. That is, the shearing distance is 10+nm, the compression distance is 24mm,
Both end surfaces of the sample lot were mirror-finished, and the buckling strength was determined from the load-strain curve when a compressive load P was applied from both ends, and the compressive shearing force was determined from the stress cross-sectional area. - For the tensile shearing method, make cuts with a width of 1 mm up to 1/2 of the lot diameter in opposite directions. The inner distance of the notch was set to 2.0 times the diameter of the specimen, that is, 12 mm, and the load P was determined while pulling at a constant speed to attach it to the fixing jig at both ends, and the tensile shear force was obtained by dividing it by the shear cross-sectional area. . Examples 1 to 3 High strength polyvinyl alcohol fiber (cutting strength 17.3
g/dr, cutting elongation 4.9%, hereinafter referred to as "rPVA fiber") 176 filament yarns of 1800 dr - 1000 fil were combined to form a strand. On the other hand, the following three types of resin compositions or resins were prepared as synthetic resins to be applied to the fibers. (1) Epoxy resin composition (referred to as "EPX") Cured resin tensile strength 590 kg/a11', cutting elongation 3.2%
, bending strength 920 kg/cm', bending modulus 730 kg
/mm" (2) Unsaturated polyester resin composition ("tJ
The tensile strength of the cured resin is 455 kg/cm', and the cutting elongation is 3.
0%, bending strength 825 kg/cm", bending modulus 105
0 kg/mm' (3) Polyamide resin (referred to as "PAM") Resin tensile strength 810 kg/cm', cutting elongation 48%, bending strength 1100 kg/cm', flexural modulus 270 kg, /+
nm' Next, the epoxy resin composition and the unsaturated polyester resin composition are prepared by dipping the aligned fiber strands in a resin impregnation tank, and then drawing them into a round bar through a molding nozzle heated to 110°C. A round bar with a diameter of 6.2 mm was obtained by curing in a room at 120° C. for 7 hours. In addition, the polyamide resin is made by using a melt extruder at a melting zone temperature of 275°C and a molding die temperature of 280°C, and the molten polyamide resin is incorporated into aligned fiber strands, which are taken out and cooled to form round bars with a diameter of 6.2 mm. Obtained. These round bars were threaded with a die to make bolts with a diameter of 6 mm. Comparative Example 1 Instead of the polyvinyl alcohol fiber of Example 1, a glass fiber strand made of 11 glass fiber rovings was used and impregnated with an epoxy resin composition, and the diameter was 7.5 mm in the same manner as in Example 1. I made a 2mm bolt. The physical properties of the obtained 1 nvolt were measured and shown in Table 1. (Hereinafter referred to as margins) In other words, the products of Examples had excellent shear fracture strength and also had a good cutting finish. In contrast, the product of the comparative example suffered shear failure at a relatively low load. Observation of this fractured part revealed that the fibers and resin had separated and no integral molded body was formed.

【発明の効果】【Effect of the invention】

本発明は高強力ポリビニルアルコール系繊維を引き揃え
たストランドを補強繊維に使用し、特定の曲げ弾性率の
合成樹脂を付与して成形したことで、繊維と樹脂との親
和性の高い合成樹脂成形体を得ることができ、靭性の高
い、剪断破壊強力の優れた合成樹脂製ねじが得られる。 更に繊維と合成樹脂の切削特性を近似させることが出来
、ねじの切削加工性が良好で、小さいねじから大きいね
じまで仕上がりの良い合成樹脂製ねじが得られる。
The present invention uses strands of high-strength polyvinyl alcohol fibers as reinforcing fibers, and molds them with a synthetic resin having a specific bending elastic modulus, resulting in a synthetic resin molding that has a high affinity between the fibers and the resin. A synthetic resin screw with high toughness and excellent shear fracture strength can be obtained. Furthermore, it is possible to approximate the cutting characteristics of fibers and synthetic resins, resulting in good thread machinability and synthetic resin screws with a good finish from small screws to large screws.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明に用いた剪断破壊強度の測定方法の模式
図を示す。 第 図
FIG. 1 shows a schematic diagram of the method for measuring shear fracture strength used in the present invention. Diagram

Claims (1)

【特許請求の範囲】[Claims] 固化又は硬化後の曲げ弾性率が150kg/mm^2以
上の樹脂と、引張り強度が15g/dr以上、ヤング率
が300g/dr以上のポリビニルアルコール系合成繊
維が60体積%以上とからなり、該ポリビニルアルコー
ル系合成繊維の60%以上が引き揃えられていることを
特徴とする樹脂製ねじ。
It consists of a resin with a flexural modulus of 150 kg/mm^2 or more after solidification or hardening, and 60 volume % or more of polyvinyl alcohol-based synthetic fibers with a tensile strength of 15 g/dr or more and a Young's modulus of 300 g/dr or more. A resin screw characterized in that 60% or more of polyvinyl alcohol-based synthetic fibers are aligned.
JP27797490A 1990-10-16 1990-10-16 Screw made from resin Pending JPH04153228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27797490A JPH04153228A (en) 1990-10-16 1990-10-16 Screw made from resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27797490A JPH04153228A (en) 1990-10-16 1990-10-16 Screw made from resin

Publications (1)

Publication Number Publication Date
JPH04153228A true JPH04153228A (en) 1992-05-26

Family

ID=17590866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27797490A Pending JPH04153228A (en) 1990-10-16 1990-10-16 Screw made from resin

Country Status (1)

Country Link
JP (1) JPH04153228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974165B2 (en) 2012-11-12 2015-03-10 Kitagawa Industries Co., Ltd. Screw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974165B2 (en) 2012-11-12 2015-03-10 Kitagawa Industries Co., Ltd. Screw

Similar Documents

Publication Publication Date Title
Peijs et al. Hybrid composites based on polyethylene and carbon fibres Part 2: influence of composition and adhesion level of polyethylene fibres on mechanical properties
US9028635B2 (en) Fiber reinforced plastic bolt and method for producing the same
Rijsdijk et al. Continuous-glass-fibre-reinforced polypropylene composites: I. Influence of maleic-anhydride-modified polypropylene on mechanical properties
EP1737633B1 (en) Epoxy resin impregnated yarn and the use thereof for producing a preform
Tanwer Mechanical properties testing of uni-directional and bi-directional glass fibre reinforced epoxy based composites
EP1892072A1 (en) Recycling fibres reinforced plastics (FRP) in injection moulding process
Gnanavelbabu et al. Mechanical strengthening effect by various forms and orientation of glass fibre reinforced isopthalic polyester polymer composite
Gupta et al. Effect of fillers on tensile strength of pultruded glass fiber reinforced polymer composite
KR102200947B1 (en) Fiber reinforced composites and method for manufacturing the same
Vasudevan et al. Effect of Kevlar ply orientation on mechanical characterization of Kevlar-glass fiber laminated composites
Choi et al. Stress fields on and beneath the surface of short-fiber-reinforced composites and their failure mechanisms
JPH04153228A (en) Screw made from resin
JP4863630B2 (en) Carbon fiber reinforced resin
JPH04152129A (en) Screw made of synthetic resin
Ghafaar et al. Behavior of woven fabric reinforced epoxy composites under bending and compressive loads
KR102483485B1 (en) Long fiber reinforced thermoplastics and molded article fabricated by the same
KR102439573B1 (en) Manufacturing method of carbon fiber-reinforced Acrylonitrile-Butadiene-Styrene composite by LFT process and long-fiber reinforced Acrylonitrile-Butadiene-Styrene composite manufactured thereby
KR102439566B1 (en) Manufacturing method of carbon fiber-reinforced PA6 composite by LFT process and long-fiber reinforced PA6 composite manufactured thereby
Ali et al. Mechanical characterization of glass/epoxy polymer composites sprayed with vapor grown carbon nano fibers
Gauthier et al. Characterization of thermoplastic poly (ethylene terephthalate)‐glass fibre composites, 2. Mechanical behaviour
JPH03129040A (en) Concrete reinforcement
JP2621399B2 (en) Glass fiber reinforced plastic
Zhu et al. An Innovative Composite Reinforced with Bone-Shaped Short Fibers
DE10125494B4 (en) Unidirectional fiber-reinforced prepreg with thermosetting curing matrix and process for its preparation
JPH04281999A (en) Lock bolt