JPH0415320B2 - - Google Patents

Info

Publication number
JPH0415320B2
JPH0415320B2 JP30866387A JP30866387A JPH0415320B2 JP H0415320 B2 JPH0415320 B2 JP H0415320B2 JP 30866387 A JP30866387 A JP 30866387A JP 30866387 A JP30866387 A JP 30866387A JP H0415320 B2 JPH0415320 B2 JP H0415320B2
Authority
JP
Japan
Prior art keywords
zinc chloride
aqueous solution
washing
fibers
vulcanized fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30866387A
Other languages
Japanese (ja)
Other versions
JPH01156599A (en
Inventor
Katsumi Onozuka
Katsuya Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP30866387A priority Critical patent/JPH01156599A/en
Publication of JPH01156599A publication Critical patent/JPH01156599A/en
Publication of JPH0415320B2 publication Critical patent/JPH0415320B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、バルカナイズド・フアイバーの新規
な製造方法に関し、更に詳しくは、従来の方法に
比べて、破裂強度、剥離強度等の強度特性に優れ
た製品を与え、かつ、有機物濃度の少ない回収塩
化亜鉛希薄水溶液を与えることのできる新規な製
造方法に関するものである。 バルカナイズド・フアイバーは、天然繊維質材
料としては最も機械的強度に優れ、打抜き、折り
曲げ等の加工が可能で、かつ、耐衝撃性、耐摩耗
性、耐油性、電気絶縁性等に優れた材料である。 〔従来の技術〕 バルカナイズド・フアイバーの製造工程は、精
製天然セルロース・パルプよりなる原料紙を、塩
化亜鉛の濃厚水溶液中に浸漬し、その表面を膨
潤・溶解・膠化する工程、その後塩化亜鉛を水洗
除去して溶解反応を停止させる脱液工程と更に乾
燥を経てプレス、仕上する工程とからなつてい
る。なお、バルカナイズド・フアイバーの工業製
品は厚手のものが多い為とバルカナイズド化を完
全に行うために、工場では、通常、薄手の紙を膨
潤・溶解・膠化して、複数枚積層した後、水洗・
脱塩化亜鉛、次いで乾燥・仕上げしているが、1
枚の紙からなるバルカナイズド・フアイバーに
は、当然積層工程は不要である。 〔問題点を解決するための手段〕 このバルカナイズド・フアイバー製造の水洗・
脱液工程は、塩化亜鉛水溶液による溶解反応の停
止と有毒な塩化亜鉛を製品中に残さない為に必要
な工程であるが、塩化亜鉛は、水溶液中で、
〔ZnCl2OH〕-H+又は〔ZnCl2(OH)2=2H+の錯化
合物を作り、強酸性を呈して、水の存在下におい
て、セルロース繊維を酸加水分解するので、従来
の水洗・脱液工程では、次のような問題を起こし
ていた。 水洗工程での過度の酸加水分解により、セル
ロースが崩壊して製品の強度特性、特に表面強
度が劣化する。 セルロースの溶解反応が中々停止せず、フア
イバー・シート表面が溶解して滑り、シートが
蛇行する。 回収される希薄塩化亜鉛水溶液は、溶出した
セルロース分解物を主とする有機物を多く含む
ため、次の回収再生工程での濃縮及び漂白精製
の負荷を高め、エネルギーと漂白剤の消費が大
となる。 染料や顔料で着色したフアイバー原紙で、特
に厚物製品を製造する場合、脱液工程において
褪色が著しい。 そして、塩化亜鉛の除去を速めるために液温を
上昇させる方法もあるが、この液温上昇法は、水
洗効果を高めることはできても、却つて上記〜
の問題を加速する結果となる。 バルカナイズド・フアイバー製造の水洗・脱塩
化亜鉛工程で起こるセルロース繊維の酸加水分解
による上記諸問題点は、従来の水洗による塩化亜
鉛の除去方法である限り、程度の差はあつても避
けることができない。そこで、セルロースの崩壊
をもたらす酸加水分解反応が抑制できる環境条件
で脱塩化亜鉛して溶解反応を停止する必要があ
る。その一つの方法として、該水洗工程で用いる
洗浄水の温度を下げることが考えられるが、この
方法は、塩化亜鉛の除去速度を減じることになる
と共に、気温の上昇する夏場においては、冷却に
要するエネルギーコストがかさみ現実的な方法と
は云えない。 従つて、本発明の目的は、従来のバルカナイズ
ド・フアイバー製造工程における上記諸問題点を
解決すると共に、品質時に強度特性の優れた製品
を提供することである。 〔問題点を解決するための手段〕 以上に鑑み、本発明者らは、迅速に溶解反応を
停止させ、酸加水分解反応を停止させる方法につ
いて、鋭意検討を重ねた結果、塩化亜鉛の濃厚水
溶液で膨潤・膠化し、次いで積層した紙を、次の
水洗工程に移す前に、塩化亜鉛水溶液と混和し得
る極性有機溶剤で処理した場合に、前記した問題
が悉く解決されることを見いだし、本発明をなす
に至つた。 即ち、本発明は、セルロース繊維からなる1枚
又は2枚以上の原紙を、塩化亜鉛の濃厚水溶液に
浸漬し、その表面を膨潤・膠化する工程、2枚以
上の原紙を用いる場合は、それらを積層する工
程、水洗による脱塩化亜鉛工程、及び乾燥・仕上
工程を順次適用してバルカナイズド・フアイバー
を製造するに当たり、水洗による脱塩化亜鉛工程
とその直前の工程との間に、塩化亜鉛水溶液と混
和し得る極性有機溶剤で該工程適用紙に塗布或い
は含浸させる工程を設けたことを特徴とするバル
カナイズド・フアイバーの製造方法に関するもの
である。 以下、本発明を詳細に説明する。 本発明に用いられる原紙には、通常木綿パルプ
及び木材パルプなどの精製天然セルロース繊維パ
ルプからなる紙が用いられるが、最終製品の使用
目的に応じて、炭素繊維、ガラス繊維等の無機繊
維や各種合成繊維を混合して用いることができ
る。 本発明で用いられる極性有機溶剤としては、塩
化亜鉛の濃厚水溶液で処理された紙の表面を良く
濡らすものが好ましく、塩化亜鉛水溶液と混和し
得る極性有機溶剤が特に好ましい。 好ましい極性有機溶剤は、具体的には、メタノ
ール、エタノール、イソプロピルアルコール等の
アルコール類、アセトン、メチルエチルケトン等
のケトン類等である。 前記極性有機溶剤は、処理紙の繊維表面のみな
らず繊維内部にまで容易に浸透し、膨潤したセル
ロース分子間への侵入がより速やかで、その結
果、強度の高いバルカナイズド・フアイバーが得
られると同時に、次工程での水洗効率が高い。 本発明においては、この極性有機溶剤による処
理工程を付加する以外、他の工程は、従来周知慣
用の工程、即ち、塩化亜鉛の濃厚水溶液による処
理工程、積層工程、水洗脱塩化亜鉛工程、乾燥工
程、プレス仕上工程を用いれば良く、各工程の濃
度、温度、時間等の諸条件も従来慣用のもので良
く、特に限定しない。 〔作用〕 本発明の作用機構については、必ずしも明確で
はないが、次のように推定している。従来の水洗
脱液工程においては、紙を取り巻く溶液は強酸性
を呈しており、膨潤したセルロースや可溶化した
セルロース、ヘミセルロースは、水洗時の塩化亜
鉛の濃度低下により、酸加水分解を受ける程度が
大となる。一方、本発明によれば、極性有機溶剤
処理により、可溶化したセルロース、ヘミセルロ
ース等の多糖類は、凝固・再生され、未溶解繊維
の表面に沈着結合すると同時に膨潤化したセルロ
ースも近傍に存在する塩化亜鉛水溶液を押しのけ
再結晶化する。こうして再生されたセルロース、
ヘミセルロース類は、その後の水洗工程にも抵抗
性を有し、その結果、強度の高いバルカナイズ
ド・フアイバーが得られるものと考えられる。
又、濃厚塩化亜鉛水溶液により溶出した比較的分
子量の低いセルロースやヘミセルロースは、極性
有機溶剤により析出することで、水洗により回収
される希薄塩化亜鉛水溶液中の溶解固形分は減少
し、回収水からの塩化亜鉛の回収・再生工程での
エネルギー負荷が減少する。これらの推定は、次
の実施例や比較例及び第1,2図の電子顕微鏡写
真により、支持されているものと思われる。 〔実施例〕 次に、実施例を示す。 実施例に用いた評価法を以下に示す。 破裂強度:JIS P8112に準じて測定する。 回収塩化亜鉛中の有機物量:回収塩化亜鉛溶
液(濃度30゜Be)をアセトンで10V/V%とし
て析出物を0.5μPTFEメンブランフイルターで
濾過し重量を測定する。 厚さ、密度:JIS P8118に準じて測定する。 内層剥離強度:JIS P8139に準じ、幅0.5イン
チの試験片をオートグラフ(島津製作所製)で
測定する。 表面強度:薄板重ね接合片の引張剪断試験に
より測定する。 吸水率:10×10cmの試験片を水に1時間浸漬
した後の重量増加率による。 黒色濃度:カラー反射濃度計DS DM−400
(大日本スクリーン製造(株)製)で測定する。 光沢:グロスメータ(75゜−75゜)による。 実施例 1 NUKP/NDSP=70/30(重量比)からなる厚
さ0.18mm、透気度5秒の原紙1枚を塩化亜鉛の濃
厚水溶液に浸漬する。該溶液は濃度70゜Be、温度
35℃であつた。得られたシートは、ロール温度50
℃のロールドラムを通した。この後熟成を経て、
メタノール含浸槽を通り、次いで、液温25℃の水
洗で含有塩化亜鉛を除去した後、連続的にシリン
ダードライヤーにより乾燥し、最終的にカレンダ
ーにより仕上げを行い、0.1mm厚のバルカナイズ
ド・フアイバーを得た。 得られたバルカナイズド・フアイバーの強度と
回収された30゜Beの塩化亜鉛水溶液中の有機物量
を分析した結果を第1表に示した。
[Industrial Application Field] The present invention relates to a new method for producing vulcanized fibers, and more specifically, provides a product with superior strength properties such as bursting strength and peel strength compared to conventional methods, and The present invention relates to a new manufacturing method that can provide a recovered zinc chloride dilute aqueous solution with a low concentration of organic matter. Vulcanized fiber has the highest mechanical strength among natural fiber materials, can be processed by punching, bending, etc., and has excellent impact resistance, abrasion resistance, oil resistance, electrical insulation, etc. be. [Prior art] The manufacturing process of vulcanized fiber involves immersing raw paper made of purified natural cellulose pulp in a concentrated aqueous solution of zinc chloride, swelling, dissolving, and coagulating the surface, and then soaking the paper with zinc chloride. The process consists of a deliquoring process in which the dissolution reaction is stopped by washing with water, and a further process of drying, pressing, and finishing. In addition, because many industrial products of vulcanized fiber are thick, and in order to completely vulcanize it, factories usually swell, dissolve, and glue thin paper, stack multiple sheets, and then wash them with water.
Dechlorinated zinc, then dried and finished, 1
Vulcanized fibers made of sheets of paper naturally do not require a lamination process. [Means to solve the problem] Washing and washing of this vulcanized fiber manufacturing
The deliquification process is a necessary process to stop the dissolution reaction caused by the zinc chloride aqueous solution and to prevent toxic zinc chloride from remaining in the product.
It forms a complex compound of [ZnCl 2 OH] - H + or [ZnCl 2 (OH) 2 ] = 2H + , exhibits strong acidity, and acid hydrolyzes cellulose fibers in the presence of water, so conventional water washing is not possible.・During the deliquification process, the following problems occurred. Excessive acid hydrolysis during the water washing process disintegrates the cellulose and deteriorates the strength properties of the product, especially the surface strength. The dissolution reaction of cellulose does not stop for some time, and the surface of the fiber sheet melts and slips, causing the sheet to meander. The recovered dilute zinc chloride aqueous solution contains a large amount of organic matter, mainly eluted cellulose decomposition products, which increases the burden of concentration and bleaching and refining in the next recovery and regeneration process, resulting in large consumption of energy and bleach. . Especially when manufacturing thick products using fiber base paper colored with dyes or pigments, the color fades significantly during the deliquoring process. There is also a method of increasing the temperature of the solution to speed up the removal of zinc chloride, but although this method of increasing the temperature of the solution can improve the water washing effect, it does not have the same effect as above.
This results in accelerating the problem. The above-mentioned problems caused by acid hydrolysis of cellulose fibers that occur during the water washing and zinc dechlorination process of vulcanized fiber production cannot be avoided, although they may vary in severity, as long as the conventional water washing method is used to remove zinc chloride. . Therefore, it is necessary to stop the dissolution reaction by dechlorinating zinc under environmental conditions that can suppress the acid hydrolysis reaction that causes the collapse of cellulose. One way to do this would be to lower the temperature of the washing water used in the washing process, but this method would reduce the removal rate of zinc chloride and, in the summer when temperatures rise, the temperature of the washing water used would be lowered. This is not a practical method due to high energy costs. Therefore, an object of the present invention is to solve the above-mentioned problems in the conventional vulcanized fiber manufacturing process and to provide a product with excellent quality and strength characteristics. [Means for Solving the Problems] In view of the above, the present inventors have conducted extensive studies on a method for quickly stopping the dissolution reaction and stopping the acid hydrolysis reaction, and have developed a concentrated aqueous solution of zinc chloride. The present inventors have discovered that all of the above problems can be solved by treating the laminated paper with a polar organic solvent that is miscible with an aqueous zinc chloride solution before proceeding to the next washing process. He came up with an invention. That is, the present invention involves the process of immersing one or more sheets of base paper made of cellulose fibers in a concentrated aqueous solution of zinc chloride to swell and coagulate the surface, and when using two or more sheets of base paper, When manufacturing vulcanized fibers by sequentially applying the process of laminating zinc chloride, dechlorinating zinc by washing with water, and drying/finishing, between the process of dechlorinating zinc by washing with water and the process immediately before that, zinc chloride aqueous solution and The present invention relates to a method for producing vulcanized fiber, which comprises a step of coating or impregnating the paper to which the process is applied with a miscible polar organic solvent. The present invention will be explained in detail below. The base paper used in the present invention is usually paper made of purified natural cellulose fiber pulp such as cotton pulp or wood pulp, but depending on the purpose of the final product, it may be made of inorganic fibers such as carbon fibers or glass fibers or various A mixture of synthetic fibers can be used. The polar organic solvent used in the present invention is preferably one that well wets the surface of paper treated with a concentrated aqueous solution of zinc chloride, and particularly preferably a polar organic solvent that is miscible with the aqueous zinc chloride solution. Preferred polar organic solvents are specifically alcohols such as methanol, ethanol, and isopropyl alcohol, and ketones such as acetone and methyl ethyl ketone. The polar organic solvent easily penetrates not only the surface of the fibers of the treated paper but also the interior of the fibers, and penetrates between the swollen cellulose molecules more quickly, resulting in a highly strong vulcanized fiber. , high water washing efficiency in the next process. In the present invention, other than the addition of this polar organic solvent treatment step, the other steps are conventionally well-known and commonly used steps, namely, a treatment step with a concentrated aqueous solution of zinc chloride, a lamination step, a water washing and dechlorination zinc step, and a drying step. The press finishing process may be used, and the conditions such as concentration, temperature, time, etc. for each process may be conventionally used and are not particularly limited. [Operation] Although the mechanism of action of the present invention is not necessarily clear, it is estimated as follows. In the conventional washing and dewatering process, the solution surrounding the paper is strongly acidic, and swollen cellulose, solubilized cellulose, and hemicellulose are subject to acid hydrolysis due to the decrease in the concentration of zinc chloride during washing. becomes large. On the other hand, according to the present invention, by treatment with a polar organic solvent, solubilized polysaccharides such as cellulose and hemicellulose are coagulated and regenerated, and are deposited and bonded to the surface of undissolved fibers, while swollen cellulose also exists nearby. Push away the zinc chloride aqueous solution and recrystallize. Cellulose thus regenerated,
It is believed that hemicelluloses have resistance to the subsequent water washing process, and as a result, a vulcanized fiber with high strength can be obtained.
In addition, the relatively low molecular weight cellulose and hemicellulose eluted by the concentrated zinc chloride aqueous solution is precipitated by the polar organic solvent, so that the dissolved solid content in the dilute zinc chloride aqueous solution recovered by washing with water decreases, and the amount of dissolved solids from the recovered water decreases. The energy load in the zinc chloride recovery and regeneration process is reduced. These estimates are believed to be supported by the following Examples and Comparative Examples and the electron micrographs in FIGS. 1 and 2. [Example] Next, an example will be shown. The evaluation method used in the examples is shown below. Bursting strength: Measured according to JIS P8112. Amount of organic matter in recovered zinc chloride: The recovered zinc chloride solution (concentration 30°Be) is adjusted to 10V/V% with acetone, the precipitate is filtered through a 0.5 μPTFE membrane filter, and the weight is measured. Thickness, density: Measured according to JIS P8118. Inner layer peel strength: Measure a 0.5 inch wide test piece using an Autograph (manufactured by Shimadzu Corporation) according to JIS P8139. Surface strength: Measured by tensile shear test of laminated thin plate joints. Water absorption rate: Based on the weight increase rate after immersing a 10 x 10 cm test piece in water for 1 hour. Black density: Color reflection densitometer DS DM-400
(manufactured by Dainippon Screen Manufacturing Co., Ltd.). Gloss: According to gloss meter (75°-75°). Example 1 A sheet of base paper having a thickness of 0.18 mm and an air permeability of 5 seconds and consisting of NUKP/NDSP=70/30 (weight ratio) is immersed in a concentrated aqueous solution of zinc chloride. The solution has a concentration of 70°Be and a temperature of
It was 35℃. The resulting sheet is rolled at a temperature of 50
Passed through a roll drum at °C. After this, after maturation,
After passing through a methanol impregnation bath and then washing with water at a temperature of 25°C to remove the zinc chloride contained, it was continuously dried with a cylinder dryer and finally finished with a calender to obtain a vulcanized fiber with a thickness of 0.1 mm. Ta. Table 1 shows the results of analysis of the strength of the obtained vulcanized fiber and the amount of organic matter in the recovered 30° Be zinc chloride aqueous solution.

【表】 実施例 2 カーボンを内添した木綿原料からなる厚さ0.18
mm、透気度3秒の黒色原紙料ロール8本から巻き
解かれる紙を同時に塩化亜鉛の濃厚水溶液に浸漬
し、積層接着した。実施例1で用いたメタノール
に代えてイソプロピルアルコールを片面塗布し、
以下同様条件にて処理して0.8mm厚みのバルカナ
イズド・フアイバーを得た。第2表にその性質を
示す。
[Table] Example 2 Made of cotton material with internal addition of carbon, thickness 0.18
Paper unwound from eight rolls of black stock stock with an air permeability of 3 seconds and an air permeability of 3 seconds were simultaneously dipped in a concentrated aqueous solution of zinc chloride and laminated and bonded. Applying isopropyl alcohol to one side instead of methanol used in Example 1,
The following treatment was carried out under the same conditions to obtain a 0.8 mm thick vulcanized fiber. Table 2 shows its properties.

〔発明の効果〕〔Effect of the invention〕

本発明における方法で得た実施例1及び2のバ
ルカナイズド・フアイバーは、従来法の物に比
べ、強度の向上が大で、光沢を帯びた外観とな
り、着色バルカナイズド・フアイバーでは、濃色
となることを示し、回収塩化亜鉛水溶液中の有機
物汚染を大きく削減していることが分かる。 原紙が、広葉樹木材パルプや塩化亜鉛に反応し
ない無機繊維や合成繊維を含む場合には、積層原
紙間の剥離強度が低くなりがちであるから、本発
明の方法は、それらの強度不足を補える点で、特
に効果的である。 なお、本発明の方法で処理したバルカナイズ
ド・フアイバーの表面は、添付の走査型電子顕微
鏡の観察写真で示すように、従来法による物の表
面と明らかな差異がある。即ち、第2図の従来法
による物の表面が、糸状に見えるフイブリルで覆
われているのに対し、第1図の本発明の物の表面
は、フイルム状の物質が繊維表面上を覆つてお
り、表面がつるりとした感じに見える。本発明以
外の方法、例えば、水温調節による方法によつて
も、このようなすつきりした表面形態は得られ
ず、本発明の方法に従つて、初めて得られる表面
形態である。
The vulcanized fibers of Examples 1 and 2 obtained by the method of the present invention have a large improvement in strength and a glossy appearance compared to those obtained by the conventional method, and the colored vulcanized fibers have a dark color. It can be seen that the organic contamination in the recovered zinc chloride aqueous solution is greatly reduced. If the base paper contains hardwood pulp or inorganic fibers or synthetic fibers that do not react with zinc chloride, the peel strength between the laminated base papers tends to be low, so the method of the present invention can compensate for the lack of strength. And it's especially effective. The surface of the vulcanized fiber treated by the method of the present invention has a clear difference from the surface of the vulcanized fiber treated by the conventional method, as shown in the attached scanning electron microscope photograph. That is, while the surface of the product according to the conventional method shown in FIG. 2 is covered with fibrils that look like threads, the surface of the product according to the present invention shown in FIG. The surface appears smooth. Even with methods other than the present invention, such as methods based on water temperature control, such a smooth surface morphology cannot be obtained, and this surface morphology can be obtained for the first time according to the method of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法で製造したバルカナイ
ズド・フアイバーの表面の繊維形態を示す走査型
電子顕微鏡写真(倍率500)、第2図は、従来の方
法で製造したバルカナイズド・フアイバーの表面
の繊維形態を示す走査型電子顕微鏡写真(倍率
500)である。
Figure 1 is a scanning electron micrograph (500 magnification) showing the fiber morphology on the surface of the vulcanized fiber produced by the method of the present invention, and Figure 2 is the fiber morphology on the surface of the vulcanized fiber produced by the conventional method. Scanning electron micrograph showing morphology (magnification
500).

Claims (1)

【特許請求の範囲】[Claims] 1 セルロース繊維からなる1枚又は2枚以上の
原紙を、塩化亜鉛の濃厚水溶液に浸漬し、その表
面を膨潤・膠化する工程、2枚以上の原紙を用い
る場合は、それらを積層する工程、水洗による脱
塩化亜鉛工程、及び乾燥・仕上工程を順次適用し
てバルカナイズド・フアイバーを製造するに当た
り、水洗による脱塩化亜鉛工程とその直前の工程
との間に、塩化亜鉛水溶液と混和し得る極性有機
溶剤で該工程適用紙に塗布或いは含浸させる工程
を設けたことを特徴とするバルカナイズド・フア
イバーの製造方法。
1. A step in which one or more sheets of base paper made of cellulose fibers is immersed in a concentrated aqueous solution of zinc chloride to swell and coagulate the surface. If two or more sheets of base paper are used, a step of laminating them; When producing vulcanized fiber by sequentially applying the zinc dechlorination process by water washing and the drying/finishing process, a polar organic compound that is miscible with the zinc chloride aqueous solution is A method for producing vulcanized fiber, comprising a step of coating or impregnating paper to which the process is applied with a solvent.
JP30866387A 1987-12-08 1987-12-08 Production of vulcanized fiber Granted JPH01156599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30866387A JPH01156599A (en) 1987-12-08 1987-12-08 Production of vulcanized fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30866387A JPH01156599A (en) 1987-12-08 1987-12-08 Production of vulcanized fiber

Publications (2)

Publication Number Publication Date
JPH01156599A JPH01156599A (en) 1989-06-20
JPH0415320B2 true JPH0415320B2 (en) 1992-03-17

Family

ID=17983785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30866387A Granted JPH01156599A (en) 1987-12-08 1987-12-08 Production of vulcanized fiber

Country Status (1)

Country Link
JP (1) JPH01156599A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775881B2 (en) * 1990-01-24 1995-08-16 信越化学工業株式会社 Complex
EP0889978A1 (en) * 1996-03-27 1999-01-13 Akzo Nobel N.V. Process for producing cellulose fibres and cellulosic fibre products
JP2002105894A (en) * 2000-09-27 2002-04-10 Toyo Fiber Kk Vulcanized fiber and method for producing the same
JP6077432B2 (en) * 2013-11-07 2017-02-08 北越紀州製紙株式会社 Method for producing vulcanized fiber

Also Published As

Publication number Publication date
JPH01156599A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
CN108026697B (en) Surface sizing of dense membranes
DE69515316T2 (en) GENTLE MULTILAYER TISSUE PAPER WITH HIGH WET RESISTANCE
EP3535315A1 (en) Method for forming a film comprising nanocellulose
EP3887435B1 (en) Process for production of film or coating comprising cellulosic nanomaterial
WO2023236784A1 (en) Barrier and heat-sealable cellulose film, preparation method therefor, and application thereof
NO169973B (en) MODIFIED FIBROSICAL PRODUCTS AND PROCEDURES FOR PRODUCING THESE
JPH0415320B2 (en)
KR20200105704A (en) Sheet
WO2021130412A1 (en) Dispersion of cellulose fibers and method of producing the same
Nemoto et al. All-cellulose material prepared using aqueous zinc chloride solution
KR20200085334A (en) Sheet
US1996858A (en) Translucent paper
WO2007012617A1 (en) Aminoplast resin film for coating substrates
JP3496107B2 (en) Manufacturing method of vulcanized fiber
US3354032A (en) Production of paper of cellulose and polyamide fibers
WO2020044209A1 (en) Method for treating a nanocellulose film and a film treated according to the method
US1745557A (en) Paper towel and process of producing the same
RU2770532C1 (en) Method for making paper for banknotes and valuable documents and paper made using this method
JP4262444B2 (en) Processed paper and paper wallpaper using it
EP3724233A1 (en) Method for oxidation of cellulose
CN112552539B (en) Low-adsorption hydrophobic cellulose membrane and preparation method and application thereof
JP2002105894A (en) Vulcanized fiber and method for producing the same
US2975093A (en) Method of laminating cellulose films
JPH02127596A (en) Converted paper and production thereof
SE545910C2 (en) Process to manufacture acid hydrolysed celluloses