JPH04152711A - Voltage controlled oscillator circuit - Google Patents

Voltage controlled oscillator circuit

Info

Publication number
JPH04152711A
JPH04152711A JP27716990A JP27716990A JPH04152711A JP H04152711 A JPH04152711 A JP H04152711A JP 27716990 A JP27716990 A JP 27716990A JP 27716990 A JP27716990 A JP 27716990A JP H04152711 A JPH04152711 A JP H04152711A
Authority
JP
Japan
Prior art keywords
terminal
inverting circuit
circuit
inverting
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27716990A
Other languages
Japanese (ja)
Inventor
Kazuya Miura
一也 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27716990A priority Critical patent/JPH04152711A/en
Publication of JPH04152711A publication Critical patent/JPH04152711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To attain stable oscillation by connecting the odd number of inverting circuits in series, connecting the output terminal of the inverting circuit of a final stage to the input terminal of a 1st inverting circuit and connecting the control terminals of the inverting circuits to a frequency control signal terminal. CONSTITUTION:Let the input signal of an inverting circuit 1 be 0V at a time T, the output of the inverting circuit 1 is inverted while charging a timing capacitor 4 and reaches a power supply voltage VDD. Moreover, the output of the inverting circuit 1 is delivered to inverting circuits 2, 3 and the level of the input terminal of the inverting circuit 1 goes to the VDD. Then the level of an output terminal of the inverting circuit 1 goes to 0V while discharging the timing capacitor 4 rapidly and when a signal is transported to the input terminal of the inverting circuit 1 again at a time T3, the level of the output terminal is again 0V, and the circuit acts like the oscillating circuit. Moreover, the logic threshold level of the inverting circuits 1, 2, 3 is adjusted by a voltage applied to a frequency control terminal 6 by a current flowing out of a P- channel MOS TR 13. Thus, the logic threshold level is not fluctuated by a current from the current source.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、位相同期ループ等で用いる電圧制御発振回路
に関し、特に、半導体集積回路に適した電圧制御発振回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a voltage controlled oscillation circuit used in a phase-locked loop or the like, and particularly to a voltage controlled oscillation circuit suitable for semiconductor integrated circuits.

従来の技術 従来の発振回路としては、第3(a)図に示すようなイ
ンバータが奇数段接続されたリングオシレータが知られ
ている。この従来の回路では、反転回路31が第3(a
)図に示すようなPチャネルトランジスタ34、Nチャ
ネルトランジスタ35と電源端子の間に電圧制御を流源
36を有し、反転回路31の出力端子にタイミング容量
37とインバータ32の入力端子が接続され、インバー
タ32の出力端子にインバータ33の入力端子が接続さ
れ、インバータ33の出力端子に反転回路31の入力端
子が接続され、インバータ33の出力端子から信号を取
り出す構成となっている。
2. Description of the Related Art As a conventional oscillation circuit, a ring oscillator in which an odd number of inverters are connected as shown in FIG. 3(a) is known. In this conventional circuit, the inverting circuit 31 is the third (a
) As shown in the figure, a voltage control current source 36 is provided between the P-channel transistor 34, the N-channel transistor 35, and the power supply terminal, and the timing capacitor 37 and the input terminal of the inverter 32 are connected to the output terminal of the inverting circuit 31. , the input terminal of an inverter 33 is connected to the output terminal of the inverter 32, the input terminal of the inverter 31 is connected to the output terminal of the inverter 33, and a signal is extracted from the output terminal of the inverter 33.

また第3図(a)に示した従来回路の動作原理は、第3
図(b)に示す信号波形区のように、反転回路31の入
力信号が時刻T1の時OVであったとすると反転回路3
1の出力端子はタイミング容量37を充電しながら上昇
する0反転回路31の出力が論理閾値をこえるとインバ
ータ32の出力は反転してOvとなり、インバータ33
の出力は電源電圧をVDDとするとVDDとなる。ここ
でインバータ33の出力が論理閾値をこえると、反転回
路31の出力は反転し、タイミング容量37を急速に放
電する。反転回路31の出力が論理閾値をこえるとイン
バータ32の出力は反転しVDDとなり、インバータ3
3の出力は0■となる。ここでインバータ33の出力が
論理閾値をこえると反転回路31の出力は再び反転し、
タイミング容量37を充電しながら上昇し始める。
Furthermore, the operating principle of the conventional circuit shown in Fig. 3(a) is as follows.
If the input signal of the inverting circuit 31 is OV at time T1 as shown in the signal waveform section shown in FIG.
The output terminal of 1 increases while charging the timing capacitor 37. When the output of the 0 inversion circuit 31 exceeds the logic threshold, the output of the inverter 32 is inverted and becomes Ov, and the output terminal of the inverter 33
The output becomes VDD when the power supply voltage is VDD. Here, when the output of the inverter 33 exceeds the logic threshold, the output of the inverting circuit 31 is inverted and the timing capacitor 37 is rapidly discharged. When the output of the inverter 31 exceeds the logic threshold, the output of the inverter 32 is inverted and becomes VDD, and the inverter 3
The output of 3 becomes 0■. Here, when the output of the inverter 33 exceeds the logic threshold, the output of the inverting circuit 31 is inverted again.
It begins to rise while charging the timing capacitor 37.

このように、従来例に示した回路は発振回路として動作
する。この時タイミング容量37を放電する時間とイン
バータ32.33の遅延時間が十分率さいとすると、発
振周波数はタイミング容量37を充電する時間で決まる
。充電する時間は定電流源から流れる電流値とタイミン
グ容量37の容量値の積に反比例するので、周波数制御
端子に印加される電圧により電流値が変わり、発振周波
数を変えることができる。
In this way, the circuit shown in the conventional example operates as an oscillation circuit. At this time, if the time for discharging the timing capacitor 37 and the delay time of the inverters 32 and 33 are sufficiently long, the oscillation frequency is determined by the time for charging the timing capacitor 37. Since the charging time is inversely proportional to the product of the current value flowing from the constant current source and the capacitance value of the timing capacitor 37, the current value changes depending on the voltage applied to the frequency control terminal, and the oscillation frequency can be changed.

発明が解決しようとする課題 上述した従来の電圧制御回路では、反転回路31の論理
閾値VアINVIは電流源の電流値をI。、Nチャネル
MOSトランジスタの閾値をV?N 、)ランジスタ利
得係数をβ9とし、NチャネルMOS トランジスタ2
のゲート幅をIIIN、チャネル長をLNとすると、V
丁INVI  = ((LN/WN)X  (IO/β
N))”2+VTN  ・=(1)となり、論理閾値V
TINV、がI。依存性を有するが、インバータ32.
33については、論理閾値が依存性がないために、電流
I。が大きくなると論理閾値VTINVIのずれは大き
くなる。また電流10が大きくなると周波数が高くなり
、振幅が小さくなるので発振しなくなるという欠点があ
る。
Problems to be Solved by the Invention In the conventional voltage control circuit described above, the logical threshold value VINVI of the inverting circuit 31 is equal to the current value of the current source I. , the threshold value of the N-channel MOS transistor is V? N,) transistor gain coefficient is β9, N channel MOS transistor 2
Let the gate width be IIIN and the channel length LN, then V
DINVI = ((LN/WN)X (IO/β
N))”2+VTN ・=(1), and the logical threshold V
TINV, is I. Although there is a dependence on the inverter 32.
33, the current I because the logic threshold is independent. As VTINVI increases, the deviation of the logical threshold value VTINVI increases. Furthermore, as the current 10 increases, the frequency increases and the amplitude decreases, so there is a drawback that oscillation no longer occurs.

本発明は従来の上記実情に鑑みてなされたものであり、
従って本発明の目的は、従来の技術に内在する上記欠点
を解消し、安定した発振動作を可能とした新規な電圧制
御発振回路を提供することにある。
The present invention has been made in view of the above-mentioned conventional situation,
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel voltage-controlled oscillation circuit which eliminates the above-mentioned drawbacks inherent in the conventional technology and enables stable oscillation operation.

課題を解決するための手段 上記目的を達成する為に、本発明に係る電圧制御発振回
路は、第1のMOSトランジスタのドレイン端子を第2
のMOSトランジスタのドレイン端子を接続して出力端
子とし、前記第1のMOS )−ランジスタのゲート端
子を該第2のMOSトランジスタのゲート端子と接続し
て入力端子とし、前記第1のMOSトランジスタのソー
ス端子を第3のMOS トランジスタのドレイン端子と
接続し、該第3のMOS )ランジスタのゲート端子を
制御入力端子とし、前記第3のMOS )ランジスタの
ソース端子を第1の電源に接続し、前記第2のMOSト
ランジスタのソース端子を第2の電源に接続して形成さ
れた反転回路を直列に奇数個接続し、最終段の反転回路
の出力端子を第1番目の反転回路の入力端子に接続し、
これらの反転回路の制御端子を周波数制御信号端子に接
続して構成される。
Means for Solving the Problems In order to achieve the above object, the voltage controlled oscillation circuit according to the present invention connects the drain terminal of the first MOS transistor to the second MOS transistor.
The drain terminal of the first MOS transistor is connected to serve as an output terminal, the gate terminal of the first MOS transistor is connected to the gate terminal of the second MOS transistor as an input terminal, and the gate terminal of the first MOS transistor is connected as an input terminal. a source terminal is connected to a drain terminal of a third MOS transistor, a gate terminal of the third MOS transistor is used as a control input terminal, a source terminal of the third MOS transistor is connected to a first power supply, An odd number of inverting circuits formed by connecting the source terminal of the second MOS transistor to a second power supply are connected in series, and the output terminal of the final stage inverting circuit is connected to the input terminal of the first inverting circuit. connection,
The control terminals of these inversion circuits are connected to a frequency control signal terminal.

実施例 次に本発明をその好ましい一実施例について図面を参照
して具体的に説明する。
Embodiment Next, a preferred embodiment of the present invention will be specifically explained with reference to the drawings.

第1図(a) 、(b)は本発明による第1の実施例を
示す回路ブロック構成図である。
FIGS. 1(a) and 1(b) are circuit block configuration diagrams showing a first embodiment of the present invention.

第1図(a) 、 (b)を参照するに、第1図(a)
は反転回路1の回路構成図であり、反転回路1は、Pチ
ャネルMO5)ランジスタ11.13.Nチャネル)4
0S)ランジスタ12によって構成され、PチャネルM
O5トランジスタ11のドレイン端子はNチャネルMO
S )ランジスタ12のドレインと接続され、反転回路
1の出力となり、ゲート端子はNチャネルMOSトラン
ジスタ12のゲート端子と接続されて反転回路1の入力
端子となり、ソース端子はPチャネルMOSトランジス
タ13のドレイン端子に接続されている。PチャネルM
OSトランジスタ13のゲート端子は制御端子となり、
ソース端子は電源に接続され、NチャネルMOSトラン
ジスタ12のソース端子は接地されている。
Referring to FIGS. 1(a) and (b), FIG. 1(a)
is a circuit configuration diagram of the inverting circuit 1, and the inverting circuit 1 includes P-channel MO5) transistors 11, 13, . N channel) 4
0S) consists of a transistor 12, P channel M
The drain terminal of the O5 transistor 11 is an N-channel MO
S) Connected to the drain of the transistor 12 and becomes the output of the inverting circuit 1, its gate terminal is connected to the gate terminal of the N-channel MOS transistor 12 and becomes the input terminal of the inverting circuit 1, and its source terminal is connected to the drain of the P-channel MOS transistor 13. connected to the terminal. P channel M
The gate terminal of the OS transistor 13 becomes a control terminal,
A source terminal is connected to a power supply, and a source terminal of N-channel MOS transistor 12 is grounded.

第1図(b)において、反転回路2.3は反転回路1と
同じ構成である0反転回路1の出力端子102に第2の
端子が接地されたタイミング容量4の第1の端子と反転
回路2の入力端子101が接続され、反転回路2の出力
端子102が反転回路3の入力端子101に接続され反
転回路3の出力端子102は、反転回路1の入力端子1
01と出力端子5に接続され出力端子5から出力信号が
取り出され、反転回路1.2.3の制御端子103は周
波数制御端子6に接続される構成となっている。
In FIG. 1(b), the inverting circuit 2.3 has the same configuration as the inverting circuit 1, and the first terminal of the timing capacitor 4 whose second terminal is grounded to the output terminal 102 of the 0 inverting circuit 1 and the inverting circuit The output terminal 102 of the inverting circuit 2 is connected to the input terminal 101 of the inverting circuit 3, and the output terminal 102 of the inverting circuit 3 is connected to the input terminal 1 of the inverting circuit 1.
01 and an output terminal 5, and the output signal is taken out from the output terminal 5, and the control terminal 103 of the inverting circuit 1.2.3 is connected to the frequency control terminal 6.

続いて本発明による第1の実施例の動作原理について説
明する。基本動作原理は、従来例に示したリングオシレ
ータと同様である。第1図(C)に示す信号波形図のよ
うに、反転回路1の入力信号が時刻T1の時OVであっ
たとすると、通常反転回路1の論理閾値は電源電圧をV
DDとするとVDD/2に設定されるので、反転回路1
の出力はタイミング容量4を充電しながら反転してVD
Dとなる。さらに反転回路1の出力は反転回路2.3と
伝達され、時刻T2には反転回路1の入力端子がVDD
となる。すると反転回路1の出力端子はタイミング容量
4を急速に放電しなから0■となり、反転回路2.3と
伝搬し時刻T3に再度反転回路1の入力端子に伝搬され
るときには、再び0■となり、発振回路として動作する
0反転回路2.3の遅延時間がタイミング容量4を充電
する時間に較べて十分小さいとすると、発振周波数はタ
イミング容量4を充放電する時間で決定される。タイミ
ング容量4を充電する時間は電流源である反転回路1の
PチャネルMOS )ランジスタ13から流れでる電流
に反比例する。周波数制御端子6に印加される電圧によ
り電流源トランジスタ13から流れでる電流は変わるの
で電圧により発振周波数を制御することができる。
Next, the principle of operation of the first embodiment of the present invention will be explained. The basic operating principle is the same as that of the ring oscillator shown in the conventional example. As shown in the signal waveform diagram shown in FIG. 1(C), if the input signal of the inverting circuit 1 is OV at time T1, the logic threshold of the inverting circuit 1 is normally set to V
If it is DD, it will be set to VDD/2, so inverting circuit 1
The output of is inverted while charging the timing capacitor 4 and becomes VD.
It becomes D. Further, the output of the inverting circuit 1 is transmitted to the inverting circuit 2.3, and at time T2, the input terminal of the inverting circuit 1 reaches VDD.
becomes. Then, the output terminal of the inverting circuit 1 becomes 0■ without rapidly discharging the timing capacitor 4, and when it propagates to the inverting circuit 2.3 and is again propagated to the input terminal of the inverting circuit 1 at time T3, it becomes 0■ again. Assuming that the delay time of the zero inversion circuit 2.3 operating as an oscillation circuit is sufficiently smaller than the time for charging the timing capacitor 4, the oscillation frequency is determined by the time for charging and discharging the timing capacitor 4. The time for charging the timing capacitor 4 is inversely proportional to the current flowing from the P-channel MOS transistor 13 of the inverting circuit 1, which is a current source. Since the current flowing from the current source transistor 13 changes depending on the voltage applied to the frequency control terminal 6, the oscillation frequency can be controlled by the voltage.

また反転回路1.2.3の論理閾値はPチャネルMOS
 )ランジスタ13から流れでる電流が周波数制御端子
6に印加する電圧で調整されることにより、従来例のよ
うに電流源の電流値により論理閾値が変動することはな
い。
In addition, the logic threshold of inverting circuit 1.2.3 is a P-channel MOS
) Since the current flowing from the transistor 13 is adjusted by the voltage applied to the frequency control terminal 6, the logic threshold value does not vary depending on the current value of the current source as in the conventional example.

第2図(a)、(b)は本発明による第2の実施例を示
す回路ブロック構成図である。
FIGS. 2(a) and 2(b) are circuit block configuration diagrams showing a second embodiment of the present invention.

第2図(a) 、(b)を参照するに、第2図(a)は
反転回路1の回路構成図であり、この反転回路1は、P
チャネルMOS )ランジスタ11、NチャネルMOS
トランジスタ12.13によって構成されPチャネルM
OS )ランジスタ11のドレイン端子はNチャネルM
OS )ランジスタ12のドレイン端子と接続されて反
転回路1の出力となり、ゲート端子はNチャネルMOS
トランジスタ12のゲート端子に接続されて反転回路1
の入力となり、ソース端子は電源に接続される。Nチャ
ネルMOSトランジスタ13のドレイン端子はNチャネ
ルMOS トランジスタ12のソース端子に接続され、
ゲート端子は反転回路1の制御端子となり、ソース端子
は接地されている。
Referring to FIGS. 2(a) and 2(b), FIG. 2(a) is a circuit configuration diagram of an inverting circuit 1, and this inverting circuit 1 has P
channel MOS) transistor 11, N channel MOS
P-channel M constituted by transistors 12 and 13
OS) The drain terminal of transistor 11 is N channel M
OS) is connected to the drain terminal of the transistor 12 and becomes the output of the inverting circuit 1, and the gate terminal is an N-channel MOS
The inverting circuit 1 is connected to the gate terminal of the transistor 12.
The source terminal is connected to the power supply. The drain terminal of N-channel MOS transistor 13 is connected to the source terminal of N-channel MOS transistor 12,
The gate terminal becomes a control terminal of the inverting circuit 1, and the source terminal is grounded.

第2図(b)において、反転回路2.3は反転回路1と
同じ構成である0反転回路1の出力端子102に第2の
端子が接地されたタイミング容量4の第1の端子と反転
回路2の入力端子101が接続され、反転回路2の出力
端子102が反転回路3の入力端子101に接続され、
反転回路3の出力端子102は反転回路1の入力端子1
01に接続され反転回路3の出力端子102が出力端子
5に接続され、出力端子5から出力信号が取り出され、
反転回路1.2.3の制御端子103は周波数制御端子
6に接続される構成となっている。
In FIG. 2(b), an inverting circuit 2.3 has the same configuration as the inverting circuit 1, and a first terminal of a timing capacitor 4 whose second terminal is grounded to the output terminal 102 of the 0 inverting circuit 1 and an inverting circuit. The input terminal 101 of the inverting circuit 2 is connected to the input terminal 101 of the inverting circuit 2, and the output terminal 102 of the inverting circuit 2 is connected to the input terminal 101 of the inverting circuit 3.
Output terminal 102 of inverting circuit 3 is input terminal 1 of inverting circuit 1
01, the output terminal 102 of the inverting circuit 3 is connected to the output terminal 5, and the output signal is taken out from the output terminal 5.
The control terminal 103 of the inverting circuit 1.2.3 is connected to the frequency control terminal 6.

続いて第2の実施例の動作原理について説明する。基本
動作原理は従来例に示したリングオシレータと同様であ
る。第1図(C)に示す信号波形図のように、反転回路
1の入力信号が時刻T1の時Ovであったとすると、通
常反転回路1の論理閾値は電源電圧をVDDとするとV
DD/2に設定されるので、反転回路1の出力はタイミ
ング容量4を充電しながら反転してVDDとなる0反転
回路1の出力はさらに反転回路2.3と伝達され、時刻
T2には反転回路1の入力端子がVDDとなる。すると
反転回路1の出力端子はタイミング容量4を急速に放電
しなから0■となり、反転回路2.3と伝搬し、時刻T
3に再度反転回路1の入力端子に伝搬されるときには再
びOVとなり、発振回路として動作する0反転回路2.
3の遅延時間がタイミング容量4を充電する時間に比べ
て十分小さいとすると、発振周波数はタイミング容量4
を充放電する時間で決定される。タイミング容量4を充
電する時間は、電流源である反転回路1のNチャネルM
O5トランジスタ13に流れ込む電流に反比例する0周
波数制御端子6に印加される電圧により、電流源トラン
ジスタ13に流れ込む電流は変わるので、電圧により発
振周波数を制御することができる。
Next, the operating principle of the second embodiment will be explained. The basic operating principle is the same as that of the ring oscillator shown in the conventional example. As shown in the signal waveform diagram shown in FIG. 1(C), if the input signal of the inverting circuit 1 is Ov at time T1, the logic threshold of the inverting circuit 1 is usually VDD when the power supply voltage is VDD.
Since it is set to DD/2, the output of the inverting circuit 1 is inverted to VDD while charging the timing capacitor 4. The output of the 0 inverting circuit 1 is further transmitted to the inverting circuit 2.3, and is inverted at time T2. The input terminal of circuit 1 becomes VDD. Then, the output terminal of the inverting circuit 1 becomes 0■ without rapidly discharging the timing capacitor 4, propagates to the inverting circuit 2.3, and reaches the time T.
3, when it is propagated again to the input terminal of the inverting circuit 1, it becomes OV again, and the 0 inverting circuit 2.3 operates as an oscillation circuit.
If the delay time of 3 is sufficiently small compared to the time to charge timing capacitor 4, the oscillation frequency will be equal to the timing capacitor 4.
determined by the time it takes to charge and discharge. The time to charge the timing capacitor 4 is determined by the N channel M of the inverting circuit 1 which is a current source.
Since the current flowing into the current source transistor 13 changes depending on the voltage applied to the 0 frequency control terminal 6, which is inversely proportional to the current flowing into the O5 transistor 13, the oscillation frequency can be controlled by the voltage.

発明の詳細 な説明したように、本発明の回路によれば、接続した全
反転回路に電流源を有しているために、全反転回路の論
理量値のずれはなくなり、電源f。が大きくなり、振幅
が小さくなっても安定した発振をさせることができる6
As described in detail, according to the circuit of the present invention, since the connected all-inverting circuit has a current source, there is no deviation in the logic value of the all-inverting circuit, and the power supply f. becomes larger, allowing stable oscillation even if the amplitude becomes smaller6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明による第1の実施例
を示す回路構成図、第1図(c)は第1図(b)に示し
た回路の信号波形図、第2図(a) 、(b)は本発明
による第2の実施例を示す回路構成図、第3図(a)は
従来例の回路図、第3図(b)は第3図(a)に示した
回路の信号波形図である。 1.2.3・・・反転回路、4.37・・・タイミング
容量、5.102・・・出力端子、6.1(D・・・周
波数制御端子、11.13.34.36・・・Pチャネ
ルMO3)ランジスタ、12.35・・・Nチャネル1
4OSトランジスタ、32.33・・・インバータ、1
01・・・入力端子特許出願人  日本電気株式会社 代 理 人  弁理士 熊谷雄太部 4Il財C
1(a) and 1(b) are circuit configuration diagrams showing a first embodiment of the present invention, FIG. 1(c) is a signal waveform diagram of the circuit shown in FIG. 1(b), and FIG. (a) and (b) are circuit configuration diagrams showing a second embodiment of the present invention, FIG. 3(a) is a circuit diagram of a conventional example, and FIG. 3(b) is a circuit diagram shown in FIG. 3(a). FIG. 3 is a signal waveform diagram of the circuit. 1.2.3... Inverting circuit, 4.37... Timing capacity, 5.102... Output terminal, 6.1 (D... Frequency control terminal, 11.13.34.36...・P channel MO3) transistor, 12.35...N channel 1
4OS transistor, 32.33... Inverter, 1
01... Input terminal patent applicant NEC Corporation Representative Patent attorney Yutabe Kumagai 4Il Financials C

Claims (1)

【特許請求の範囲】[Claims] 第1のMOSトランジスタのドレイン端子を第2のMO
Sトランジスタのドレイン端子と接続して出力端子とし
、前記第1のMOSトランジスタのゲート端子を該第2
のMOSトランジスタのゲート端子と接続して入力端子
とし、前記第1のMOSトランジスタのソース端子を第
3のMOSトランジスタのドレイン端子と接続し、該第
3のMOSトランジスタのゲート端子を制御入力端子と
し、該第3のMOSトランジスタのソース端子を第1の
電源に接続し、前記第2のMOSトランジスタのソース
端子を第2の電源に接続して形成された反転回路を直列
に奇数個接続し、最終段の反転回路の出力端子を第1番
目の反転回路の入力端子に接続し、前記各反転回路の制
御端子を周波数制御信号端子に接続したことを特徴とす
る電圧制御発振回路。
The drain terminal of the first MOS transistor is connected to the second MOS transistor.
The drain terminal of the S transistor is connected to the output terminal, and the gate terminal of the first MOS transistor is connected to the second MOS transistor.
The source terminal of the first MOS transistor is connected to the drain terminal of a third MOS transistor, and the gate terminal of the third MOS transistor is used as a control input terminal. , an odd number of inverting circuits formed by connecting the source terminal of the third MOS transistor to a first power source and connecting the source terminal of the second MOS transistor to a second power source are connected in series; A voltage controlled oscillation circuit characterized in that an output terminal of a final stage inverting circuit is connected to an input terminal of a first inverting circuit, and a control terminal of each of the inverting circuits is connected to a frequency control signal terminal.
JP27716990A 1990-10-16 1990-10-16 Voltage controlled oscillator circuit Pending JPH04152711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27716990A JPH04152711A (en) 1990-10-16 1990-10-16 Voltage controlled oscillator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27716990A JPH04152711A (en) 1990-10-16 1990-10-16 Voltage controlled oscillator circuit

Publications (1)

Publication Number Publication Date
JPH04152711A true JPH04152711A (en) 1992-05-26

Family

ID=17579768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27716990A Pending JPH04152711A (en) 1990-10-16 1990-10-16 Voltage controlled oscillator circuit

Country Status (1)

Country Link
JP (1) JPH04152711A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203856A (en) * 2004-12-20 2006-08-03 Renesas Technology Corp Oscillator and charge pump circuit using same
JP2013138436A (en) * 2007-11-08 2013-07-11 Qualcomm Inc Adjustable duty cycle circuit
US8791740B2 (en) 2009-07-16 2014-07-29 Qualcomm Incorporated Systems and methods for reducing average current consumption in a local oscillator path
US8847638B2 (en) 2009-07-02 2014-09-30 Qualcomm Incorporated High speed divide-by-two circuit
US8854098B2 (en) 2011-01-21 2014-10-07 Qualcomm Incorporated System for I-Q phase mismatch detection and correction
US8970272B2 (en) 2008-05-15 2015-03-03 Qualcomm Incorporated High-speed low-power latches
US9154077B2 (en) 2012-04-12 2015-10-06 Qualcomm Incorporated Compact high frequency divider

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203856A (en) * 2004-12-20 2006-08-03 Renesas Technology Corp Oscillator and charge pump circuit using same
US7804368B2 (en) 2004-12-20 2010-09-28 Renesas Technology Corp. Oscillator and charge pump circuit using the same
JP2013138436A (en) * 2007-11-08 2013-07-11 Qualcomm Inc Adjustable duty cycle circuit
US8970272B2 (en) 2008-05-15 2015-03-03 Qualcomm Incorporated High-speed low-power latches
US8847638B2 (en) 2009-07-02 2014-09-30 Qualcomm Incorporated High speed divide-by-two circuit
US8791740B2 (en) 2009-07-16 2014-07-29 Qualcomm Incorporated Systems and methods for reducing average current consumption in a local oscillator path
US8854098B2 (en) 2011-01-21 2014-10-07 Qualcomm Incorporated System for I-Q phase mismatch detection and correction
US9154077B2 (en) 2012-04-12 2015-10-06 Qualcomm Incorporated Compact high frequency divider

Similar Documents

Publication Publication Date Title
US4236199A (en) Regulated high voltage power supply
KR920004335B1 (en) Voltage controled oscillator
US5426384A (en) Voltage controlled oscillator (VCO) with symmetrical output and logic gate for use in same
US5182529A (en) Zero crossing-current ring oscillator for substrate charge pump
US5485126A (en) Ring oscillator circuit having output with fifty percent duty cycle
JP2559931B2 (en) CMOS receiver input interface circuit
EP0613246B1 (en) Wide-range variable delay line and ring oscillator
EP0936736B1 (en) Delay elements arranged for a signal controlled oscillator
JPS6153759A (en) Substrate bias generator
US7489205B2 (en) VCO buffer circuit
JPH031609A (en) Ring oscillator having frequency unrelated to supply voltage
US5545941A (en) Crystal oscillator circuit
US5621360A (en) Voltage supply isolation buffer
JPH04152711A (en) Voltage controlled oscillator circuit
EP0361529A3 (en) Voltage controlled oscillator
US4383224A (en) NMOS Crystal oscillator
US6504439B1 (en) Voltage controlled oscillation circuit having oscillation frequency variable control units inserted between inversion circuit elements
JP2002176340A (en) Delay circuit and voltage-controlled oscillation circuit
JPH0254698B2 (en)
JPH0766693A (en) Ring oscillator type vco
JP2001094418A (en) Voltage controlled oscillator
JP3087683B2 (en) Voltage controlled oscillator
JPH0494210A (en) Voltage controlled oscillator circuit
JPH07202646A (en) Voltage controlled oscillation circuit
JPS63260316A (en) Oscillation circuit