JPH04152249A - Biochemical sensor with optical wave-guide path diffraction lattice - Google Patents

Biochemical sensor with optical wave-guide path diffraction lattice

Info

Publication number
JPH04152249A
JPH04152249A JP27703890A JP27703890A JPH04152249A JP H04152249 A JPH04152249 A JP H04152249A JP 27703890 A JP27703890 A JP 27703890A JP 27703890 A JP27703890 A JP 27703890A JP H04152249 A JPH04152249 A JP H04152249A
Authority
JP
Japan
Prior art keywords
diffraction grating
refractive index
optical waveguide
diffraction lattice
wave guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27703890A
Other languages
Japanese (ja)
Inventor
Masayuki Murabayashi
村林 眞行
Kiminori Ito
公紀 伊藤
Shuhei Wakita
修平 脇田
Toru Okamoto
徹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27703890A priority Critical patent/JPH04152249A/en
Publication of JPH04152249A publication Critical patent/JPH04152249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To facilitate fabrication of a sensor and enhance the sensitivity and processing accuracy by lowering the refraction factor of a material to an optical wave guide path, and heightening the refraction factor of material to a diffraction lattice. CONSTITUTION:An optical wave guide path 6 and a diffraction lattice 7 are made from different materials, and their respective characteristics are optimized. The material of the optical wave guide path 6 shall have a refraction factor as small as 1.45-1.55 so as to sink the loss of the wave guide beam 4, and a change in the wave guide path characteristic is suppressed, which is due to change in the clad 5 generated when used as a sensor. The material of the diffraction lattice 7 shall have a redraction factor as large as 1.85 so as to enlarge the difference in the refraction factor value from the aqueous solution which is a chief object to be sensed, and the wave guide beam exciting efficiency in the diffraction lattice 7 is increased. Further the easiness in processing is enhanced to a great extent by subjecting the material of diffraction lattice 7 to photo-resist or electron beam resist process. This facilitates fabrication of sensor and enhances the sensitivity and processing accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光導波路上に取り付けた回折格子構造を利用
してバイオケミカルセンサーを作製する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a biochemical sensor using a diffraction grating structure attached to an optical waveguide.

[従来の技術] 光導波路を用いたバイオケミカルセンサーでは、次のも
のが良く知られている。すなわち、スイスのグループは
ゾル−ゲル法を用いて厚さ1100n程度のS j 0
2とTi1tとの混合物の薄膜をガラス基板上に作製し
、この薄膜が柔らかい内に市販の回折格子を押し付けて
、直径2mm程度の回折格子のレリーフ(1)を持つ薄
膜光導波路(2)を作製した(例えば、W、Lukos
z and K、Tiefenthaler、5ens
ors  and  Actuators、  Is 
 f19+181 273−284)この薄膜光導波路
の回折格子部に第1図のようにレーザー光(3)を入射
して導波光を励起できる角度θは、第2図のようにクラ
ッド部(5)の屈折率ncに強く依存している。従って
、回折格子部(1)にタンパク質やイオンなどが吸着す
ることによってクラッド部(5)の屈折率ncが変化す
ると、導波光の強度(4)が変化する。これを利用して
バイオケミカルセンサーを作ることができる。しかし、
この光導波路回折格子バイオケミカルセンサーは現段階
では次に挙げた4項目のような欠点を持っている。
[Prior Art] The following are well known biochemical sensors using optical waveguides. That is, the Swiss group used the sol-gel method to create S j 0 with a thickness of about 1100 nm.
A thin film of a mixture of 2 and Ti1t was prepared on a glass substrate, and a commercially available diffraction grating was pressed onto the thin film while it was still soft to form a thin film optical waveguide (2) having a relief (1) of the diffraction grating with a diameter of about 2 mm. prepared (e.g., W, Lukos
z and K, Tiefenthaler, 5ens
ors and actuators, is
f19+181 273-284) The angle θ at which the laser beam (3) can be incident on the diffraction grating portion of this thin film optical waveguide as shown in Fig. 1 and the guided light can be excited is determined by the angle θ of the cladding portion (5) as shown in Fig. 2. It strongly depends on the refractive index nc. Therefore, when the refractive index nc of the cladding part (5) changes due to adsorption of proteins, ions, etc. to the diffraction grating part (1), the intensity (4) of the guided light changes. This can be used to create biochemical sensors. but,
At present, this optical waveguide grating biochemical sensor has the following four drawbacks.

1、回折格子母材を押し付けて回折格子(1)を作製す
るので、均質で良質な回折格子を作るのが困難である上
、操作が面倒である。
1. Since the diffraction grating (1) is produced by pressing the diffraction grating base material, it is difficult to produce a homogeneous and high quality diffraction grating, and the operation is troublesome.

2、光導波路(2)となるSiO2TiOン混合膜の屈
折率と回折格子部(1)の屈折率は等しく、最大でも1
8であるために、試料溶液と接したときの励起導波光強
度が小さい。
2. The refractive index of the SiO2TiO mixed film that becomes the optical waveguide (2) and the refractive index of the diffraction grating part (1) are equal, and at most 1.
8, the intensity of the excitation guided light when it comes into contact with the sample solution is small.

3ゾル−ゲル法を採用しているために、上質の光導波路
を作製することが難しい、特に、ゾル−ゲル法に用いる
試薬が空気中の湿気と反応しやすいので、特に日本国内
においては過剰な湿気を避けるための装置が必要であり
、またしばしば導波光の減衰率の大きな膜しか得られな
い。
3. Because the sol-gel method is used, it is difficult to produce high-quality optical waveguides. In particular, the reagents used in the sol-gel method tend to react with moisture in the air, so it is difficult to produce high-quality optical waveguides, especially in Japan. A device is required to avoid moisture, and often only films with high attenuation of guided light can be obtained.

4、光導波路(2)の材料と回折格子部(1)の材料が
同じであるために、回折格子部(11以外に吸着する光
吸収物質や光散乱物質の影響が大きく、光導波路部(2
)の回折格子部(1)付近を他の材料で覆うことが必要
である。
4. Since the material of the optical waveguide (2) and the material of the diffraction grating part (1) are the same, the influence of light absorbing substances and light scattering substances adsorbed on parts other than the diffraction grating part (11) is large, and the optical waveguide part ( 2
) It is necessary to cover the vicinity of the diffraction grating portion (1) with another material.

また以下に述べるように、本発明を構成するためには、
高い屈折率を持ち、かつ操作性に優れたレジスト材料(
フォトレジストあるいは電子線レジスト)が薄膜を作製
することが必須であるが従来このような材料はなかった
6 [発明が解決しようとする課題] 本発明は、上述のような従来の光導波路回折格子バイオ
ケミカルセンサーの欠点を解決し、作製が容易で感度が
高く、かつ加工精度の高い光導波路回折格子バイオケミ
カルセンサーを作製する手法を与えることを目的とする
。また併せて1本発明に必須な高屈折率を持つレジスト
薄膜を開発することを目的としている。
Further, as described below, in order to configure the present invention,
A resist material with a high refractive index and excellent operability (
It is essential to fabricate a thin film using photoresist or electron beam resist, but there has been no such material in the past.6 [Problems to be Solved by the Invention] The present invention aims to The purpose of this study is to solve the drawbacks of biochemical sensors and provide a method for fabricating optical waveguide grating biochemical sensors that are easy to fabricate, have high sensitivity, and have high processing precision. Another object of the present invention is to develop a resist thin film with a high refractive index, which is essential to the present invention.

[課題を解決する手段] 上記の目的を達成するために1本発明では光導波路部分
(6)と回折格子部分(7)とを異なる材料で作製し、
各々の特性を最適化する。光導波路部(6)には屈折率
が1.45から1,55と小さい材料を用いて導波光(
4)の損失を下げまたセンサーとして用いるときに生ず
るクラッド(5)の変化による導波路特性変化を抑える
1回折格子部(7ンには屈折率が185以上と大きな値
の材料を用いて、主なセンシングの対象である水溶液と
の屈折率差を大きくして回折格子部(7)での導波光励
起効率を上げる。更に、回折格子部(7)の材料をフォ
トレジストあるいは電子線レジストとすることによって
加工性を格段に上げる。これは、我々が発見した次の事
実を利用して初めて可能となった。すなわち、無機フォ
トレジスト材料であると同時に電子線レジスト材料であ
るポリタングステン類の薄膜の屈折率は乾燥時間に依存
して約17から2.0以上にまで変化する。従って、例
えば三光束干渉法を用いることによって屈折率が2.0
以上もある材料で回折格子を容易に作ることができる。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, the optical waveguide portion (6) and the diffraction grating portion (7) are made of different materials,
Optimize each characteristic. The optical waveguide section (6) is made of a material with a small refractive index of 1.45 to 1.55 to guide the guided light (
4) The first diffraction grating section (7) is made of a material with a large refractive index of 185 or more, and the main The difference in refractive index with the aqueous solution that is the object of sensing is increased to increase the waveguide light excitation efficiency in the diffraction grating section (7).Furthermore, the material of the diffraction grating section (7) is photoresist or electron beam resist. This was possible for the first time by utilizing the following fact that we discovered: Thin films of polytungstens, which are both inorganic photoresist materials and electron beam resist materials. The refractive index varies from about 17 to more than 2.0 depending on the drying time. Therefore, for example, by using three-beam interferometry, the refractive index can be reduced to 2.0.
Diffraction gratings can be easily made from the materials listed above.

また、ポリタングステン酸を合成する過程で、余分なH
2O2を除去するために従来は白金触媒を用いていたの
で終点の判断が困難であり上質のフォトレジストあるい
は上質の電子線レジストを得ることがしばしば困難であ
ったので1本発明では加熱法によって余分なH2O2を
除くことによって合成方法を改良する。
In addition, during the process of synthesizing polytungstic acid, excess H
Conventionally, a platinum catalyst was used to remove 2O2, which made it difficult to determine the end point and often made it difficult to obtain a high-quality photoresist or a high-quality electron beam resist. The synthesis method is improved by removing the H2O2.

[作用] このように回折格子部(7)と光導波路部(6)を異な
る材料で作ることにより、各々の部分の特性の最適化が
でき、該センサーの感度が上がると共に、製作行程が規
格化できるようになり、製品間のばらつきが著しく減少
した。また、回折格子部(7)を高屈折率を持つフォト
レジスト材料あるいは高屈折率を持つ電子線レジスト材
料で作製するので1回折格子部(7)の加工が容易にな
った。更に、ポリタングステン類の合成法に改良を加え
たので、高屈折率を持つフォトレジスト薄膜を容易に得
られるようになった。
[Function] By making the diffraction grating part (7) and the optical waveguide part (6) from different materials in this way, the characteristics of each part can be optimized, the sensitivity of the sensor is increased, and the manufacturing process can be standardized. As a result, variations between products have been significantly reduced. Furthermore, since the diffraction grating portion (7) is made of a photoresist material having a high refractive index or an electron beam resist material having a high refractive index, processing of the single diffraction grating portion (7) is facilitated. Furthermore, improvements were made to the synthesis method for polytungstens, making it easier to obtain photoresist thin films with a high refractive index.

[実施例] 以下に、実施例により本発明を更に具体的に説明する。[Example] The present invention will be explained in more detail below using Examples.

実施例 1 ポリタングステン#類のNMに185以上の屈折率を持
たせること、およびポリタングステン#類を容易に合成
することは本発明において本質的であるので1本実施例
ではポリタングステン酸類の薄膜の作製方法について述
べる。ポリタングステン酸類は種々あり、ここではイソ
ポリクンゲステンM(以下、W−rPAと略記するンに
ついて詳しく述べるが、他のポリタングステン類、例え
ばヘテロポリタングステンM(以下、W−HPAと略記
する)でも同様である。
Example 1 Since it is essential in the present invention to make the polytungsten NM have a refractive index of 185 or more and to easily synthesize the polytungsten #, this example uses a thin film of polytungstic acid. We will describe the fabrication method. There are various polytungstic acids, and here we will discuss in detail isopolyungsten M (hereinafter abbreviated as W-rPA), but other polytungstens, such as heteropolytungsten M (hereinafter abbreviated as W-HPA). But it's the same.

まず、タングステン粉末3gをH20t15mlに反応
溶解させ、透明な溶液を得た。タングステン粉末の替わ
りにタングステン酸を使うこともできる6M反応溶液か
ら余分なH21tを除去するのに、原種(T、Kudo
、 H,Okamoto、 K、 Matsumoto
First, 3 g of tungsten powder was reacted and dissolved in 15 ml of H20t to obtain a transparent solution. Tungstic acid can be used instead of tungsten powder.
, H, Okamoto, K, Matsumoto
.

and Y、 5asaki、 Inorg、 Chf
、^cta、111 (+91161L27)では白金
触媒を用いているが、本発明では加熱によって行った。
and Y, 5asaki, Inorg, Chf
, ^cta, 111 (+91161L27) uses a platinum catalyst, but in the present invention heating was used.

すなわち、試験管容器に入れた該反応液を60°Cから
120°Cに熱した乾燥器中に置き、2h程度熱してH
2O2の除去を行った0M反応液が黄色を呈し始め、か
つ該反応液からの発泡が終わらないうちに乾燥器より取
り出した1次に該溶液を蒸発皿に移し、室温で送風して
乾燥し、黄色固体を得た。なお、反応液が黄色を呈する
前、あるいは発泡が完全に終了してから乾燥器から取り
出すと、乾燥固化の際に白色結晶が生じてしまう、しか
し、上述した反応終点の見分は方は容易であり、失敗は
少ない、但し、白色結晶が生じた場合は再び1(202
に溶解させれば該反応液とすることができる。これに対
して白金触媒を用いてH20pの分解を行うときは、発
泡が激しすぎるので終点を見分けるのが困難である。
That is, place the reaction solution in a test tube container in a dryer heated from 60°C to 120°C, and heat it for about 2 hours to remove H
When the 0M reaction solution from which 2O2 had been removed started to turn yellow and foaming from the reaction solution had not yet finished, the first solution was taken out from the dryer and transferred to an evaporation dish, and dried by blowing air at room temperature. , a yellow solid was obtained. Note that if the reaction solution is removed from the dryer before it turns yellow or after foaming is complete, white crystals will form during drying and solidification.However, it is easier to identify the end point of the reaction as described above. , and there are few failures, however, if white crystals are generated, 1 (202
The reaction solution can be obtained by dissolving it in . On the other hand, when decomposing H20p using a platinum catalyst, foaming is so intense that it is difficult to distinguish the end point.

実施例 2 メタノールなどのアルコールあるいは蒸留水1m]あた
りに、実施例1で作製したW−TPAあるいはW−1(
PAの固体を0.45g溶解させスピンコード用の溶液
を作製した。スピンコード時の回転数と、得られたW−
IPAの薄膜の膜厚の関係を第3図に示す、但し、この
膜厚は該薄膜を十分乾燥させた後測定した1回転時間は
30秒としたがこれ以上あるいはこれ以下でも良い。
Example 2 W-TPA or W-1 produced in Example 1 was added to 1 m of alcohol such as methanol or distilled water.
A solution for a spin code was prepared by dissolving 0.45 g of solid PA. Rotation speed during spin code and obtained W-
The relationship between the film thickness of the IPA thin film is shown in FIG. 3. However, although this film thickness was measured after sufficiently drying the thin film and the one rotation time was 30 seconds, it may be greater or less than this.

スピンコード後にW−ZPA@51を80°Cから12
0°Cで乾燥する時間とエリプソメトリ−で測定した該
薄膜の屈折率との関係を第4図に示す、十分に乾燥した
該薄膜の屈折率は約2.0となった。この事実は本発明
者らが初めて見いだしたことである。従来のフォトレジ
ストの屈折率は高々l 6であり1本実施例で示した約
2.0の屈折率は、フォトレジストの屈折率として、ま
たスピンコード可能な電子線レジストとして最も大きい
値である。但し、光照射によっては屈折率は余り変化し
なかった。
After spin code, W-ZPA@51 from 80°C to 12
The relationship between the drying time at 0 DEG C. and the refractive index of the thin film measured by ellipsometry is shown in FIG. 4. The refractive index of the thin film when sufficiently dried was about 2.0. This fact was discovered for the first time by the present inventors. The refractive index of conventional photoresists is at most 16, and the refractive index of about 2.0 shown in this example is the largest refractive index of photoresists and as an electron beam resist capable of spin coding. . However, the refractive index did not change much depending on the light irradiation.

実施例 3 市販スライドガラスを400°Cの溶融したKN O]
に2h浸漬する熱イオン交換法によって作製した導波層
の有効厚み約2μmのガラス光導彼路(6)上に、膜厚
的1500nmのW−IPAあるいはW−HPAの薄膜
をスピンコード法によって形成した。120”Cで30
分間乾燥させ該薄膜を乾燥させた後、He−Cdレーザ
ーを用いた二光束干渉法によって該薄膜上に周期0. 
5μmの回折格子を第5図のように作製した0w−IP
AおよびW−HPAはネガ型のフォトレジストであるの
で、レーザー光が照射された部分のみ硬化し、5mmx
5mmの回折格子(7)が形成された。現像は蒸留水で
行った。120°Cで更に加熱乾燥を行って屈折率を2
,0にした。  Taや Nbなどを含む他のポリタン
グステン酸類の薄膜についても同様に高い屈折率を持つ
回折格子を作ることができる。
Example 3 KN O obtained by melting a commercially available slide glass at 400°C]
A thin film of W-IPA or W-HPA with a film thickness of 1500 nm is formed by a spin coding method on a glass optical guide path (6) with an effective thickness of about 2 μm of a waveguide layer prepared by a thermal ion exchange method by immersing it in water for 2 hours. did. 30 at 120”C
After drying the thin film for a few minutes, a period of 0.
0w-IP with a 5 μm diffraction grating made as shown in Figure 5.
Since A and W-HPA are negative photoresists, only the areas irradiated with laser light are cured, and the 5mm x
A 5 mm diffraction grating (7) was formed. Development was performed with distilled water. Further heat drying is performed at 120°C to reduce the refractive index to 2.
, set it to 0. Diffraction gratings with high refractive indexes can be made with thin films of other polytungstic acids containing Ta, Nb, etc.

このようにして得た回折格子(7)付きのガラス光導波
路(6)を、第6図のようにセンサーに組んだ9本実施
例では溶液室(8)はアクリル樹脂性、光導波路(6)
と接する部分には屈折率が1.3程度と低いテフロンシ
ートC9)を挟んで導波光の漏れを防いだ、テフロンシ
ート(9)の代わりに、屈折率の低いM g F 2な
どを光導波路(6)の面に蒸着し、この上に溶液室(8
)をエポキシ樹脂などで固定しても良い、溶液室(8)
に蒸留水を満たした状態でHe−Neレーザー光(3)
を回折格子(7)に入射し、導波光(4)を励起した後
、pHの異なる溶液を導入したところ導波光(4)の強
度が大きく変わり、pHと導波光強度との関係はほぼ線
形であった。また、タンパク質溶液(例文ばアルブミン
)を溶液室(8)に導入したところ、導波光(4)の強
度が大きく変化し、タンパク質の濃度と導波光強度変化
とは第7図のようにほぼ比例した。ゾル−ゲル法による
光導波路回折格子バイオケミカルセンサーの感度との比
較を報告例を基にして行ったところ、本センサーの方が
5倍程度良かった。
In this embodiment, the glass optical waveguide (6) with the diffraction grating (7) thus obtained was assembled into a sensor as shown in FIG. )
A Teflon sheet C9) with a low refractive index of about 1.3 is sandwiched between the parts in contact with the optical waveguide to prevent leakage of the guided light. The solution chamber (8) is deposited on the surface of the solution chamber (8).
) may be fixed with epoxy resin, etc., in the solution chamber (8)
He-Ne laser light (3) in a state filled with distilled water
is incident on the diffraction grating (7) to excite the guided light (4), and then a solution with a different pH is introduced, the intensity of the guided light (4) changes significantly, and the relationship between pH and guided light intensity is almost linear. Met. Furthermore, when a protein solution (for example, albumin) is introduced into the solution chamber (8), the intensity of the guided light (4) changes greatly, and the protein concentration and the change in the guided light intensity are almost proportional as shown in Figure 7. did. When we compared the sensitivity of an optical waveguide grating biochemical sensor using the sol-gel method based on reported examples, this sensor was about 5 times better.

実施例 4 スタンプ法あるいはホログラフィック回折格子法と光硬
化性ポリマーとを用いて、第8図のような回折格子(1
0ンつき光導波11i(11)を作製した。該ポリマー
光導波路〔11〕および該回折格子(10)の屈折率は
1.52であり、このままで水溶液に接すると水溶液と
の屈折率差が小さいために回折効率が極めて小さくなる
1次に、実施例1のようにして作製したw−rpΔある
いはW−HPAを、スピンコード法によってポリマー光
導波路(11〕および回折格子(10)上にコートした
。さらにHe−Cdレーザー光あるいは低圧水銀灯の光
を該回折格子部分のみに照射して、第9図のように該回
折格子のみW−IPAあるいはW−HPAで覆われるよ
うにした。W−IPAあるいはW−HPAとポリマーと
の間の濡れを良くするために該ポリマー膜を濃硫酸に浸
漬する。
Example 4 Using a stamp method or a holographic diffraction grating method and a photocurable polymer, a diffraction grating (1
An optical waveguide 11i (11) with an ion was fabricated. The refractive index of the polymer optical waveguide [11] and the diffraction grating (10) is 1.52, and if they come into contact with an aqueous solution as they are, the difference in refractive index with the aqueous solution is small, so the diffraction efficiency will be extremely small. The w-rpΔ or W-HPA produced as in Example 1 was coated on the polymer optical waveguide (11) and the diffraction grating (10) by a spin coding method. Furthermore, the light from a He-Cd laser or a low-pressure mercury lamp was applied. was applied to only the diffraction grating portion, so that only the diffraction grating was covered with W-IPA or W-HPA as shown in Figure 9. Wetting between W-IPA or W-HPA and the polymer was To improve the quality, the polymer membrane is immersed in concentrated sulfuric acid.

あるいは酸素プラズマに喝すことによって該ポリマー膜
の表面を親水化することは有効である。
Alternatively, it is effective to make the surface of the polymer film hydrophilic by exposing it to oxygen plasma.

このようにして得られた得られた回折格子(10)付き
光導波路(11)を第5図と同様なセンサーに組んだ、
センサー特性は実施例3とほぼ同様であった。
The optical waveguide (11) with the diffraction grating (10) thus obtained was assembled into a sensor similar to that shown in FIG.
The sensor characteristics were almost the same as in Example 3.

実施例 5 第10図のように、まずスライドガラス基板あるいはア
クリル樹脂製基板(13)の上に三光束干渉法あるいは
電子線真先法によってW−IPAあるいはW−HPAの
回折格子(14〕を作った。
Example 5 As shown in Fig. 10, first, a W-IPA or W-HPA diffraction grating (14) is formed on a slide glass substrate or an acrylic resin substrate (13) by three-beam interference method or electron beam beam method. Had made.

次に、この上を第11図のように光硬化性樹脂あるいは
ガラスで覆って光導波路部(15)を作製した。光硬化
性樹脂の場合はスピンコード法で、ガラスの場合はスパ
ッタリング法で薄膜を形成した。このようにして作製し
た回折格子付き光導波路を第5図と同様なセンサーに組
んだ、センサー特性は実施例3とほぼ同様であった。
Next, as shown in FIG. 11, this was covered with a photocurable resin or glass to produce an optical waveguide section (15). A thin film was formed using a spin code method in the case of a photocurable resin, and a sputtering method in the case of glass. The optical waveguide with a diffraction grating thus produced was assembled into a sensor similar to that shown in FIG. 5, and the sensor characteristics were almost the same as in Example 3.

[発明の効果] 本発明は以下に記載されるような効果を奏する。[Effect of the invention] The present invention produces effects as described below.

本発明になる光導波路回折格子バイオケミカルセンサー
では、光導波路部の材料の屈折率を低(し、回折格子部
の材料の屈折率を高くしであるので、光導波路部での導
波光の減衰が減り、また溶液中の物質の光導波路部への
吸着の影響が減少するとともに回折格子部での回折効率
が上がってセンサーの感度が増した。また、該センサー
の回折格子部の材料として本発明者らが見いだした1゜
85以上の高屈折率を持つレジスト材料を用いているた
めに1回折格子構造の工作精度が上がるとともに加工も
容易になった。更に、該レジスト材料の合成過程を改良
したので、容易に該レジスト材料が得られるようになっ
た。
In the optical waveguide diffraction grating biochemical sensor of the present invention, the refractive index of the material of the optical waveguide part is low (and the refractive index of the material of the diffraction grating part is high), so that the guided light is attenuated in the optical waveguide part. In addition, the influence of adsorption of substances in the solution to the optical waveguide section is reduced, and the diffraction efficiency at the diffraction grating section is increased, increasing the sensitivity of the sensor. By using a resist material discovered by the inventors that has a high refractive index of 1°85 or higher, the machining accuracy of the single diffraction grating structure has been improved and processing has become easier. Thanks to this improvement, the resist material can now be easily obtained.

4、4,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光導波路回折格子バイオケミカルセンサ
ーの縦断面図、第2図は回折格子からレーザー光を入射
して導波光を励起する時の最適角度とクラッド部の屈折
率との関係である。第3図は、W−IPAをスピンコー
ド法によって作製するときの回転数と膜厚との関係であ
り、第4図はスピンコードによって得られたW−IPA
薄膜の屈折率と乾燥時間との関係である。第5図はW−
IPAからなる回折格子構造を取り付けたガラス光導波
路の斜視図、第6図は第5図の光導波路をバイオケミカ
ルセンサーに組んだ状態の縦断面図、第7図は第6図の
センサーを用いて溶液中のアルブミンのセンシングを行
った例である。第8図は光硬化性樹脂を用いて作製した
回折格子つき光導波路の縦断面図、第9図は第8図の回
折格子をW−TPAまたはW−HPAで覆った状態の縦
断面図である。第10図はガラス基板上にW−IPAま
たはW−HPAからなる回折格子を取り付けた状態の縦
断面図、第11図は第10図に示した基板と回折格子を
先導波層で覆った状態の縦断面図である。 1・・・回折格子レリーフ、2.11.15・・・薄膜
光導波路あるいは導波層、3・・・レーザー光、4・・
・導波光、5・・・クラッド部、6・・・ガラス光導波
路、7,10.14・・・回折格子、8・・・溶液室、
9・・・テフロンシート、12・・・高屈折率フォトレ
ジスト膜、13・・・スライドガラス
Figure 1 is a vertical cross-sectional view of a conventional optical waveguide grating biochemical sensor, and Figure 2 shows the relationship between the optimal angle and the refractive index of the cladding when laser light is input from the diffraction grating to excite the guided light. be. Figure 3 shows the relationship between the rotation speed and film thickness when W-IPA is produced by the spin code method, and Figure 4 shows the relationship between the rotation speed and film thickness when W-IPA is produced by the spin code method.
This is the relationship between the refractive index of the thin film and the drying time. Figure 5 shows W-
A perspective view of a glass optical waveguide equipped with a diffraction grating structure made of IPA, Fig. 6 is a vertical cross-sectional view of the optical waveguide shown in Fig. 5 assembled into a biochemical sensor, and Fig. 7 shows the use of the sensor shown in Fig. 6. This is an example of sensing albumin in a solution. Figure 8 is a vertical cross-sectional view of an optical waveguide with a diffraction grating made using a photocurable resin, and Figure 9 is a vertical cross-sectional view of the diffraction grating shown in Figure 8 covered with W-TPA or W-HPA. be. Fig. 10 is a vertical cross-sectional view of a diffraction grating made of W-IPA or W-HPA attached to a glass substrate, and Fig. 11 is a state in which the substrate and diffraction grating shown in Fig. 10 are covered with a leading wave layer. FIG. 1... Diffraction grating relief, 2.11.15... Thin film optical waveguide or waveguide layer, 3... Laser light, 4...
- Waveguide light, 5... Clad part, 6... Glass optical waveguide, 7, 10.14... Diffraction grating, 8... Solution chamber,
9... Teflon sheet, 12... High refractive index photoresist film, 13... Slide glass

Claims (1)

【特許請求の範囲】 1、屈折率が1.45から1.55の材料からなる光導
波層(6)の上部に取り付けた1.85以上の屈折率を
持つ材料からなる回折格子(7)が感応部であることを
特徴とする光導波路回折格子バイオケミカルセンサー。 2、回折格子構造(7)を1.85以上の屈折率を持つ
フォトレジスト材料あるいは1.85以上の屈折率を持
つ電子線レジスト材料で作製することを特徴とする請求
項1記載の光導波路回折格子バイオケミカルセンサー。 3、イソポリタングステン酸あるいはヘテロポリタング
ステン酸あるいはこれらポリタングステン酸類を構成要
素の一つとする材料からなる薄膜を形成した後に乾燥固
化させることを特徴とする1.85以上の屈折率を持つ
フォトレジスト薄膜の作製法。 4、反応溶液から余分なH_2O_2を加熱によって除
去することを特徴とするイソポリタングステン酸あるい
はヘテロポリタングステン酸の合成法。
[Claims] 1. A diffraction grating (7) made of a material with a refractive index of 1.85 or more attached on top of an optical waveguide layer (6) made of a material with a refractive index of 1.45 to 1.55. An optical waveguide diffraction grating biochemical sensor characterized in that is a sensitive part. 2. The optical waveguide according to claim 1, wherein the diffraction grating structure (7) is made of a photoresist material having a refractive index of 1.85 or more or an electron beam resist material having a refractive index of 1.85 or more. Diffraction grating biochemical sensor. 3. A photoresist thin film having a refractive index of 1.85 or more, which is characterized by forming a thin film made of isopolytungstic acid, heteropolytungstic acid, or a material containing these polytungstic acids as one of its constituent elements, and then drying and solidifying it. How to make it. 4. A method for synthesizing isopolytungstic acid or heteropolytungstic acid, which comprises removing excess H_2O_2 from the reaction solution by heating.
JP27703890A 1990-10-16 1990-10-16 Biochemical sensor with optical wave-guide path diffraction lattice Pending JPH04152249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27703890A JPH04152249A (en) 1990-10-16 1990-10-16 Biochemical sensor with optical wave-guide path diffraction lattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27703890A JPH04152249A (en) 1990-10-16 1990-10-16 Biochemical sensor with optical wave-guide path diffraction lattice

Publications (1)

Publication Number Publication Date
JPH04152249A true JPH04152249A (en) 1992-05-26

Family

ID=17577916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27703890A Pending JPH04152249A (en) 1990-10-16 1990-10-16 Biochemical sensor with optical wave-guide path diffraction lattice

Country Status (1)

Country Link
JP (1) JPH04152249A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139430A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Method for measuring concentration of component to be measured
WO2017006679A1 (en) * 2015-07-07 2017-01-12 古野電気株式会社 Measuring chip, measurement device, and measurement method
JP2019049530A (en) * 2017-07-12 2019-03-28 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung Diffractive biosensor
WO2020027197A1 (en) * 2018-07-31 2020-02-06 積水化学工業株式会社 Inspecting method, inspecting instrument, and inspecting device
EP3896530A4 (en) * 2018-12-11 2022-03-16 Sony Group Corporation Hologram recording composition, hologram recording medium, diffraction optical element, and optical device, optical component, and image display device in which diffraction optical element is used

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139430A (en) * 2000-11-06 2002-05-17 Kurabo Ind Ltd Method for measuring concentration of component to be measured
WO2017006679A1 (en) * 2015-07-07 2017-01-12 古野電気株式会社 Measuring chip, measurement device, and measurement method
US10732104B2 (en) 2015-07-07 2020-08-04 Furuno Electric Co., Ltd. Measuring chip, measuring device and measuring method
JP2019049530A (en) * 2017-07-12 2019-03-28 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung Diffractive biosensor
WO2020027197A1 (en) * 2018-07-31 2020-02-06 積水化学工業株式会社 Inspecting method, inspecting instrument, and inspecting device
JPWO2020027197A1 (en) * 2018-07-31 2021-09-24 積水化学工業株式会社 Inspection method, inspection equipment and inspection equipment
EP3896530A4 (en) * 2018-12-11 2022-03-16 Sony Group Corporation Hologram recording composition, hologram recording medium, diffraction optical element, and optical device, optical component, and image display device in which diffraction optical element is used

Similar Documents

Publication Publication Date Title
US6510263B1 (en) Waveguide plate and process for its production and microtitre plate
US5224197A (en) Integrated optics using photodarkened polystyrene
US5208136A (en) Fabricating of integrated optics
US4842969A (en) Transmittance modulation photomask, process for producing the same, and process for producing diffraction gratings using the same
JPH0784666B2 (en) Interferometry for device fabrication
KR20110033025A (en) Uv high transmittance double layer wire grid polarizer for manufacturing photo-alignment film and preparation method thereof
JP2006308438A (en) Probe used for optically measuring scanning probe excitation and manufacturing method for same probe
JPH0139573B2 (en)
CN104198434B (en) A kind of preparation method and applications of normal transmission type local plasmon resonance index sensor
RU2151412C1 (en) Method for manufacturing of optical waveguide
US5178978A (en) Fabricating integrated optics
JPH04152249A (en) Biochemical sensor with optical wave-guide path diffraction lattice
Judeinstein et al. Photochromic organic–inorganic nanocomposites as holographic storage media
US6327415B1 (en) Optical waveguide made of polymer material and a method of fabricating the same
US4208637A (en) Tunable optical device
US20080305438A1 (en) Method for fabricating polymer ridged waveguides by using tilted immersion lithography
JP2009281870A (en) Optical grid and its manufacturing method, linear encoder equipped with optical grid, and optical microscope
JP2001108612A (en) Surface plasmon resonance sensor
JPS6052820A (en) Compound optical apparatus and manufacture thereof
JPH07294730A (en) Production of polarizing element
US5035478A (en) Material for micro optical component and optical component using the same
JPH0477883B2 (en)
US20050069637A1 (en) Method for manufacturing planar optical waveguide
JPH07104590B2 (en) Transmittance modulation type photomask, its manufacturing method and diffraction grating manufacturing method using the same
JPH0456284B2 (en)