JPH04152245A - Particle analyzing device - Google Patents

Particle analyzing device

Info

Publication number
JPH04152245A
JPH04152245A JP2276766A JP27676690A JPH04152245A JP H04152245 A JPH04152245 A JP H04152245A JP 2276766 A JP2276766 A JP 2276766A JP 27676690 A JP27676690 A JP 27676690A JP H04152245 A JPH04152245 A JP H04152245A
Authority
JP
Japan
Prior art keywords
particle
image
inspected
transparent plate
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2276766A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azumaya
良行 東家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2276766A priority Critical patent/JPH04152245A/en
Publication of JPH04152245A publication Critical patent/JPH04152245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To facilitate analysis of particle to be inspected using a simple configuration by utilizing the photo-trapping phenomenon, and photographing and analyzing the image of particle seized in a certain place on the part to be inspected. CONSTITUTION:In the condition that a beam waist of a certain intensity is formed on a transparent plate 11, a good diluted particle floating liquid L for measurement is fed from a supply hole 24b followed by necessary treatment, and particle D to be inspected is discharged together with water contained in the liquid L to outside a nozzle 24a. By means of photo-trapping phenomenon a high pressure acts on the particle S in the direction of greater photo intensity, so that the particle S in the dripping liquid LO having hopped out of a particle separator device 24 will be trapped in the center of the beam waste on the transparent plate 11. In this condition the particle image is photographed. The image is taken into a frame memory 20 and a VTR 21 and stored as image information in the form of digital values and analog values, and analysis of the particle S is performed by an image processing device 22 on the basis of the image in the frame memory 20.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微小な粒子が浮遊する浮遊液中の個々の被検
粒子を、その画像を基に解析する粒子解析装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle analysis device that analyzes individual test particles in a suspended liquid in which minute particles are suspended based on images thereof.

し従来の技術] 従来の粒子解析装置は、第3図に示すように、ステージ
1上に載置されたシャーレ2内に生細胞等の被検粒子S
の浮遊液りを入れ、被検粒子像をレンズ3を介してCO
D等の二次元撮像素子4上に結像して、その被検粒子像
を用いて被検粒子の解析を行っている。この場合には、
先ずステージ1を装置光軸に垂直なX、Y軸上で移動し
て1個の被検粒子を把えた後に、ステージlを光軸のZ
軸方向に移動して合焦する。
[Prior art] As shown in FIG.
into the suspended liquid, and the image of the particles to be examined is exposed to CO
The image is formed on a two-dimensional image sensor 4 such as D, and the image of the particle to be inspected is used to analyze the particle to be inspected. In this case,
First, stage 1 is moved on the X and Y axes perpendicular to the optical axis of the apparatus to grasp one sample particle, and then stage 1 is moved along the Z axis of the optical axis.
Move in the axial direction to focus.

[発明が解決しようとする課題] しかしながら、上述の従来例においては、個々の被検粒
子に合焦する操作が煩わしく、ステージ1を三次元的に
移動するための駆動機構が複雑で、大型化する。また、
自動的に順次に被検粒子の画像を得るためには、粒子探
索手段、自動合焦手段も必要となる。
[Problems to be Solved by the Invention] However, in the conventional example described above, the operation to focus on individual particles to be examined is troublesome, and the drive mechanism for moving the stage 1 three-dimensionally is complicated and large. do. Also,
In order to automatically and sequentially obtain images of test particles, a particle search means and an automatic focusing means are also required.

本発明の目的は、簡素な構成であって、被検粒子の画像
によって解析を容易に行うことができる粒子解析装置を
提供することにある。
An object of the present invention is to provide a particle analysis device that has a simple configuration and can easily perform analysis using images of particles to be examined.

[課題を解決するための手段] 上述の目的を達成するために、本発明に係る粒子解析装
置においては、被検粒子を含む粒子浮遊液を収容するた
めの収容部と、該収容部から微量の粒子浮遊液を被検部
上に吐出する吐出手段と、前記被検部上にレーザー光束
を集光する集光手段と、前記被検部の画像を撮像する撮
像手段とを有することを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the particle analysis device according to the present invention includes a storage part for storing a particle suspension containing test particles, and a small amount of water from the storage part. The present invention is characterized by having a discharging means for discharging a particle suspension liquid onto the subject part, a condensing means for condensing a laser beam onto the subject part, and an imaging means for taking an image of the subject part. That is.

[作用] 上述の構成を有する粒子解析装置は、レーザー光束が集
光された被検部上に収容部から微量の粒子浮遊液を吐出
し、光トラツプ現象によって被検部上の一定場所に光ト
ラップされた被検粒子の画像を撮像してその解析を行う
[Function] The particle analysis device having the above-mentioned configuration discharges a small amount of particle suspension from the storage section onto the object to be examined on which the laser beam is focused, and uses the optical trap phenomenon to emit light to a certain place on the object to be examined. An image of the trapped test particle is captured and analyzed.

[実施例J 本発明を第1図、第2図に図示の実施例に基づいて詳細
に説明する。
[Embodiment J] The present invention will be explained in detail based on the embodiment shown in FIGS. 1 and 2.

第1図は本発明の一実施例を示し、例えば830nmの
レーザー光束を出射する半導体レーザー光源5の光軸0
1上には、濃度フィルタ6、ビームエキスパンダ7、ビ
ームスプリッタ8.800nm以下の可視光束のみを透
過するダイクロイックミラー9が配置され、ダイクロイ
ックミラー9の反射方向の光軸02上には、高い開口数
NA= 1 。
FIG. 1 shows an embodiment of the present invention. For example, the optical axis 0 of a semiconductor laser light source 5 that emits a laser beam of 830 nm is shown in FIG.
A concentration filter 6, a beam expander 7, and a beam splitter 8. A dichroic mirror 9 that transmits only visible light beams of 800 nm or less is arranged on the optical axis 02 of the dichroic mirror 9 in the reflection direction. Number NA=1.

25を有する液浸型の対物レンズ10、透明板11、レ
ンズ12、可視光束を出射する解明用光源13が順次に
配置され、対物レンズ10と透明板11との間には液浸
オイル14が注入されている。一方、ビームスプリッタ
8の反射方向には集光レンズ15、光検出器16が配置
され、ダイクロイックミラー9の背後の光軸02上には
濃度フィルタ17、集光レンズ18、CCD等の二次元
撮像素子19が配置されている。楢像素子19の出力は
フレームメモリ20、VTR21にそれぞれ接続され、
フレームメモリ20の出力は画像処理装置22に接続さ
れ、VTR21と画像処理装置22の出力がCRT23
に接続されている。また、透明板11に対向させて粒子
分離装置24が配置されており、この粒子分離装置24
は第2図(a)に示すように一端が開放された一辺が5
0μm程度の正方形断面のノズル24aの開口付近に粒
子浮遊液を供給するための供給口24bを取り付けた構
造であって、ノズル24aの内部には小型の加熱ヒータ
24cが設けられており、その熱伝導によって開口部付
近が昇温することを抑止するために、ノズル24aの開
口付近の外側には放熱部材24dが取り付けられている
An immersion type objective lens 10 having a diameter of 25, a transparent plate 11, a lens 12, and an elucidation light source 13 that emits visible light flux are arranged in this order, and an immersion oil 14 is placed between the objective lens 10 and the transparent plate 11. Injected. On the other hand, a condensing lens 15 and a photodetector 16 are arranged in the reflection direction of the beam splitter 8, and a concentration filter 17, a condensing lens 18, and a two-dimensional imaging device such as a CCD are arranged on the optical axis 02 behind the dichroic mirror 9. Element 19 is arranged. The output of the image element 19 is connected to a frame memory 20 and a VTR 21, respectively.
The output of the frame memory 20 is connected to the image processing device 22, and the outputs of the VTR 21 and the image processing device 22 are connected to the CRT 23.
It is connected to the. Further, a particle separator 24 is arranged to face the transparent plate 11, and this particle separator 24
As shown in Figure 2 (a), one side with one open end is 5
It has a structure in which a supply port 24b for supplying a particle suspension liquid is attached near the opening of a nozzle 24a with a square cross section of about 0 μm, and a small heater 24c is provided inside the nozzle 24a to absorb the heat. In order to prevent the temperature near the opening from increasing due to conduction, a heat dissipating member 24d is attached to the outside near the opening of the nozzle 24a.

以上の構成において、半導体レーザー光源5かも出射さ
れるレーザー光束は光軸01上を進み、濃度フィルタ6
、ビームエキスパンダ7を経て、その一部はビームスプ
リッタ8を透過してダイクロイックミラー9で反射され
、対物レンズ10、液浸オイル14を経て透明板11に
到達し、そこに強度勾配を有するビームウェストを形成
している。レーザー光束の一部はビームスプリッタ8に
よって反射されて、集光レンズ15によって光検出器1
6で受光され、その受光量に基づいて図示しない制御回
路によって半導体レーザー光源5から出射されるレーザ
ー光束の実出力が設定値となるように、半導体レーザー
光源5の発光量が制御される。
In the above configuration, the laser beam emitted from the semiconductor laser light source 5 also travels on the optical axis 01, and the density filter 6
, a part of the beam passes through the beam expander 7, passes through the beam splitter 8, is reflected by the dichroic mirror 9, passes through the objective lens 10 and the immersion oil 14, and reaches the transparent plate 11, where a beam having an intensity gradient is formed. It forms the waist. A part of the laser beam is reflected by the beam splitter 8 and sent to the photodetector 1 by the condensing lens 15.
Based on the received light amount, a control circuit (not shown) controls the amount of light emitted from the semiconductor laser light source 5 so that the actual output of the laser beam emitted from the semiconductor laser light source 5 becomes a set value.

このように、透明板11上に所望の強度のビームウェス
トを形成した状態で、第2図(at に示すように十分
に希釈された測定用粒子浮遊液りを供給口24bから供
給して、供給口24b内部に充満させた後に加熱ヒータ
27cを発熱させると、加熱された粒子浮遊液り内の水
分が瞬時に気化して、第2図tb+ に示すように気泡
Bが発生する。
In this way, with a beam waist of a desired intensity formed on the transparent plate 11, a sufficiently diluted measurement particle suspension liquid is supplied from the supply port 24b as shown in FIG. 2 (at). When the heater 27c is turned on to generate heat after the inside of the supply port 24b is filled, the water in the heated particle suspension liquid instantly vaporizes, and bubbles B are generated as shown in FIG. 2 tb+.

この気泡Bによって粒子浮遊液りの体積が膨張するため
、第2図(cl に示すように開口付近の1個の被検粒
子Sが粒子浮遊液りの水分と共にノズル24aの外側へ
吐出される。この時点で、加熱ヒータ27cの発熱を中
止すると気泡Bは冷却されて収縮するので、開口から吐
出した粒子浮遊液L°に対して引込力が働いて、被検粒
子Sを含む粒子浮遊液L゛が液滴LOとなって、第2図
fdl に示すように空気中に飛び出し透明板11上に
到達する。一般に、液体中に浮遊する微小粒子には、光
トラツプ現象によって光強度の大きい方向に高圧力が働
くので、粒子分離装置24から飛び出してきだ液滴LO
中の被検粒子Sは、常に透明板11のビームウェストの
中心位置に光トラップされることになる。
Since the volume of the particle suspension liquid expands due to the air bubbles B, one test particle S near the opening is discharged to the outside of the nozzle 24a together with the water in the particle suspension liquid, as shown in FIG. 2 (cl). At this point, when the heater 27c stops generating heat, the bubbles B are cooled and contracted, so a pulling force acts on the particle suspension liquid L° discharged from the opening, and the particle suspension liquid containing the test particles S is L becomes a droplet LO, which flies out into the air and reaches the transparent plate 11, as shown in Fig. 2 fdl.Generally, microparticles suspended in a liquid have a high light intensity due to the optical trapping phenomenon. Since high pressure is applied in the direction, droplets LO fly out from the particle separator 24.
The particles S to be detected inside are always optically trapped at the center position of the beam waist of the transparent plate 11.

このように、被検粒子Sを透明板11上で杷えた状態で
照明用光源13を点灯すると、可視光束は光軸02上を
進み、レンズ12を介して透明板11上の被検粒子Sを
照明し、その被検粒子像は液浸オイル14、対物レンズ
1o、ダイクロイックミラー9、濃度フィルタ17、集
光レンズ18を介して撮像素子19上に結像される。こ
の画像はフレームメモリ20及びVTR21に取り込ま
れてデジタル値及びアナログ値の画像情報として記憶さ
れ、画像処理装置22でフレームメモリ20内の画像か
ら被検粒子Sの解析が行われ、その結果はCRT23又
は図示しないプリンタ等に出力される。予め、撮像光学
系の焦点を透明板11のビームウェストの中心位置と一
致させる調整を行っておけば、この被検粒子像は常に合
焦されているので合焦手段を設ける必要が無(、次々と
粒子分離装置24から飛び出す液滴LOを焦点位置で把
えて被検粒子Sの鮮明な画像から解析を行うことが可能
である。なお、VTR21の画像もCRT23に出力す
ることが可能で、−旦VTR21に記憶された画像を、
後に再生してA/D変換してからフレームメモリ20に
記憶させてもよい。
In this way, when the illumination light source 13 is turned on with the test particles S suspended on the transparent plate 11, the visible light beam travels on the optical axis 02 and passes through the lens 12 to the test particles S on the transparent plate 11. is illuminated, and the image of the particles to be detected is formed on the image sensor 19 via the immersion oil 14, the objective lens 1o, the dichroic mirror 9, the density filter 17, and the condensing lens 18. This image is taken into the frame memory 20 and VTR 21 and stored as image information of digital values and analog values, and the image processing device 22 analyzes the test particles S from the image in the frame memory 20, and the results are displayed on the CRT 23. Alternatively, it is output to a printer (not shown) or the like. If the focal point of the imaging optical system is adjusted in advance to match the center position of the beam waist of the transparent plate 11, the particle image to be examined will always be in focus, so there is no need to provide a focusing means. It is possible to grasp the droplets LO that successively fly out from the particle separator 24 at the focal position and perform analysis from a clear image of the test particles S.In addition, the image of the VTR 21 can also be output to the CRT 23. -The images stored in the VTR 21,
The data may be played back later, subjected to A/D conversion, and then stored in the frame memory 20.

なお、液滴吐出方法は上述のように熱エネルギによって
気泡を発生させて吐出させるものに限らず、例えばピエ
ゾ素子等の電歪振動子を使ったオンデマンド型液滴吐出
ノズルを用いて液滴を吐出させてもよい。
Note that the droplet ejection method is not limited to the above-mentioned method of ejecting bubbles by generating bubbles using thermal energy. may be discharged.

レーザー光束の光強度は被検粒子Sをビームウェストの
中心位置に移動できる程度であって、被検粒子Sを破壊
することが無いように制御する必要がある。また、半導
体レーザー光源5のレーザー光束の波長は、例えばこの
実施例のように生細胞に障害を与えない領域のものにす
る等、被検粒子を考慮して設定する必要がある。
The light intensity of the laser beam needs to be controlled so as to move the test particle S to the center position of the beam waist, but not to destroy the test particle S. Further, the wavelength of the laser beam from the semiconductor laser light source 5 needs to be set in consideration of the particles to be detected, for example, in a range that does not harm living cells as in this embodiment.

[発明の効果] 以上説明したように本発明に係る粒子解析装置は、レー
ザー光束が集光された被検部上に収容部から微量の粒子
浮遊液を吐出し、光トラツプ現象によって被検部上の一
定場所に把えた被検粒子の画像を撮像してその解析を行
うため、合焦操作が省略されて解析が容易となる。また
、被検部の駆動手段、被検粒子探索手段、合焦手段が一
切不要で構成も簡素である。
[Effects of the Invention] As explained above, the particle analysis device according to the present invention discharges a small amount of particle suspension liquid from the storage section onto the specimen on which the laser beam is focused, and uses the optical trap phenomenon to Since an image of the target particle grasped at a fixed location above is captured and analyzed, a focusing operation is omitted, making analysis easier. Furthermore, the structure is simple, with no need for a drive means for the test section, a test particle search means, or a focusing means.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図、第2図は本発明に係る粒子解析装置の実施
例を示し、第1図は本発明の実施例の構成図、第2図は
動作原理の説明図であり、第3図は従来例の構成図であ
る。 符号5は半導体レーザー光源、6.17は濃度フィルタ
、7はビームエキスパンダ、8はビームスプリッタ、9
はダイクロイックミラー、13は照明用光源、14は液
浸オイル、19は撮像素子、20はフレームメモリ、2
2は画像処理装置、21はVTR,23はCRT、24
は粒子分離装置、24aはノズル、24bは供給口、2
4cは加熱ヒータ、24dは放熱部材である。 特許出願人  キャノン株式会社 第1図 第3図
Drawings 1 and 2 show an embodiment of the particle analysis device according to the present invention, FIG. 1 is a configuration diagram of the embodiment of the present invention, FIG. 2 is an explanatory diagram of the operating principle, and FIG. is a configuration diagram of a conventional example. 5 is a semiconductor laser light source, 6.17 is a concentration filter, 7 is a beam expander, 8 is a beam splitter, 9
13 is a dichroic mirror, 13 is an illumination light source, 14 is immersion oil, 19 is an image sensor, 20 is a frame memory, 2
2 is an image processing device, 21 is a VTR, 23 is a CRT, 24
2 is a particle separator, 24a is a nozzle, 24b is a supply port, 2
4c is a heater, and 24d is a heat radiation member. Patent applicant Canon Co., Ltd. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、被検粒子を含む粒子浮遊液を収容するための収容部
と、該収容部から微量の粒子浮遊液を被検部上に吐出す
る吐出手段と、前記被検部上にレーザー光束を集光する
集光手段と、前記被検部の画像を撮像する撮像手段とを
有することを特徴とする粒子解析装置。
1. A storage part for storing a particle suspension containing test particles, a discharge means for discharging a small amount of the particle suspension from the storage part onto a test part, and a laser beam focused on the test part. A particle analysis device comprising: a condensing means for emitting light; and an imaging means for taking an image of the test area.
JP2276766A 1990-10-16 1990-10-16 Particle analyzing device Pending JPH04152245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2276766A JPH04152245A (en) 1990-10-16 1990-10-16 Particle analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2276766A JPH04152245A (en) 1990-10-16 1990-10-16 Particle analyzing device

Publications (1)

Publication Number Publication Date
JPH04152245A true JPH04152245A (en) 1992-05-26

Family

ID=17574060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2276766A Pending JPH04152245A (en) 1990-10-16 1990-10-16 Particle analyzing device

Country Status (1)

Country Link
JP (1) JPH04152245A (en)

Similar Documents

Publication Publication Date Title
US5247339A (en) Flow imaging cytometer
US5159398A (en) Flow imaging cytometer
US4896967A (en) Motility scanner and method
US4786165A (en) Flow cytometry and apparatus therefor
US5159397A (en) Flow imaging cytometer
US5471294A (en) Flow imaging cytometer
EP0556748B1 (en) Method and apparatus for particle manipulation, and measuring apparatus utilizing the same
JP3187129B2 (en) Particle analyzer
JP6560694B2 (en) microscope
JPH04270940A (en) Flow image sight meter
JPH0291545A (en) Optical trap device
JPS6394156A (en) Method and instrument for analyzing cell in fluid
JP7353623B2 (en) Particle separation device and particle separation method
US7502107B2 (en) Apparatus and method for transport of microscopic object(s)
JPH04152245A (en) Particle analyzing device
JP3218108B2 (en) Imaging flow cytometer
JP2005291831A (en) Imaging flow site meter
JP2004530111A (en) Continuous sample observation device by fluorescence
JPH07270302A (en) Imaging flow sight meter
JPH08234110A (en) Vertical illuminating microscope
JP2002303800A (en) Particulate operating device by light
JP2003021590A (en) Particle imaging device
JPH052138A (en) Particulate grasping device and particulate operating device
JPH03110510A (en) Fine body trapping device by laser light
JPH04356183A (en) Light pressure-type cell sorter