JPH04151504A - Detecting device for relative angle - Google Patents

Detecting device for relative angle

Info

Publication number
JPH04151504A
JPH04151504A JP27319990A JP27319990A JPH04151504A JP H04151504 A JPH04151504 A JP H04151504A JP 27319990 A JP27319990 A JP 27319990A JP 27319990 A JP27319990 A JP 27319990A JP H04151504 A JPH04151504 A JP H04151504A
Authority
JP
Japan
Prior art keywords
light
photoelectric detection
light beam
change
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27319990A
Other languages
Japanese (ja)
Other versions
JPH0695013B2 (en
Inventor
Shinsuke Matsumoto
信介 松本
Hiroshi Takagi
博 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Mitsubishi Precision Co Ltd
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency, Mitsubishi Precision Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP2273199A priority Critical patent/JPH0695013B2/en
Publication of JPH04151504A publication Critical patent/JPH04151504A/en
Publication of JPH0695013B2 publication Critical patent/JPH0695013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To conduct regulation only by a part on one side and thereby to simplify the regulation by a method wherein a parallel light flux emitted from a light source is made to fall at a large incident angle on the light-sensing surfaces of photoelectric detecting elements located inside the light flux. CONSTITUTION:A parallel light flux 4 is emitted from a light source 3 fixed on a first reference part 1, while a photoelectric detector 5 made up of photoelectric detecting elements 51 and 52 is fixed on a second reference part 2. The light flux 4 falls on the elements 51 and 52 at a large incident angle. An angle formed by a light-sensing surface and the incident light flux is denoted by alpha and the angle alpha is set at an appropriate value. When alpha is changed in a minute amount in the vicinity of the value, an output of the detector 5 changes. By detecting the change in the output of the detector 5, accordingly, a change in a relative angle is determined. When alpha is set at the appropriate value, the change in the angle in the vicinity thereof is proportional to a difference between outputs of the two elements 51 and 52. When the value of alpha is small and approximate to zero, therefore, the sensitivity is increased and, besides, the output itself turns small. The precision in detection is improved consequently. As stated above, it is needed only to emit the light flux 4 toward the part 2, and regulation can be executed only by the part 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、離れた位置にある物体間の相対的方向変動を
精密に測定する相対角度検出装置に関し、例えば人工衛
星観測船において、ジャイロスコープ及び加速度計で構
成される慣性基準装置と人工衛星用アンテナ又は天測用
子午像との間の方向の較正に用いられる装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a relative angle detection device that precisely measures relative directional fluctuations between objects located far apart. The present invention also relates to a device used for calibrating the direction between an inertial reference device composed of an accelerometer and an artificial satellite antenna or a astronomical meridian image.

〔従来の技術〕 従来より精密な測定を行なうための装置において本来一
箇所に集中して設置する必要があるが構造上の制約等に
より、それが実現できず、離れた位置に設置されている
場合がある。このような場合、測定装置はそれぞれ基準
となる台の上に載せられ、固定されておりこの台の間の
相対間係の変動が測定精度に影響を与えることになる。
[Conventional technology] Conventionally, devices for performing more precise measurements must be installed in one central location, but due to structural constraints, etc., this has not been possible and the devices have been installed in separate locations. There are cases. In such a case, each measuring device is placed on a reference stand and is fixed, and variations in the relative distance between the stands will affect measurement accuracy.

このような例の一つに人工衛星観測船がある。この観測
船は第12図に示すように、ジャイロスコープ及び加速
度計で構成される慣性基準装置(INS)112と、人
工衛星追尾用アンテナ111と、天測用の子午像(図示
せず)とを備えている。慣性基準装置112は船の位置
を常時検出しているが、誤差の累積により検出精度が低
下するため、適宜人工衛星の観測又は天測により較正さ
れる必要がある。又は、逆に慣性基準装置112により
人工衛星の位置を精密に確認する必要がある場合もある
One such example is an artificial satellite observation vessel. As shown in Fig. 12, this observation vessel is equipped with an inertial reference system (INS) 112 consisting of a gyroscope and an accelerometer, an antenna 111 for satellite tracking, and a meridian image (not shown) for astronomical measurements. We are prepared. The inertial reference device 112 constantly detects the position of the ship, but since the detection accuracy decreases due to accumulation of errors, it is necessary to calibrate it by satellite observation or astronomical measurement as appropriate. Or, conversely, there may be cases where it is necessary to precisely confirm the position of the artificial satellite using the inertial reference device 112.

観測船での配置の関係上、慣性基準装置112、アンテ
ナ111、子午像は同一の位置に設置できず、離れた位
置、例えば30IIINれな位置に設置される。
Due to the arrangement on the observation ship, the inertial reference device 112, the antenna 111, and the meridian image cannot be installed at the same position, but are installed at distant positions, for example, 30 mm apart.

それぞれの装置は堅固な台1g、2gの上に載せられて
いるが、船の剛性との関係で台の相互の位1関係が変動
する。この変動は気象条件の影響を受け、特に台の方向
変動は観測精度に大きく影響するため、台の方向変動を
精密に測定し、観測結果を補正する必要がある。
Each device is mounted on solid platforms 1g and 2g, but the relative position of the platforms varies depending on the rigidity of the ship. This variation is affected by weather conditions, and in particular, variations in the direction of the platform greatly affect observation accuracy, so it is necessary to precisely measure the changes in the direction of the platform and correct the observation results.

そこで従来は第13図に示すような装置で相対角度の変
動を検出していた。第13図において角度の基準である
光源部3hと光電位置変換器121は、例えばアンテナ
の台に固定され、反射ミラー122は慣性基準装置の台
に固定されている。光源3hとしては通常レーザ光が用
いられるが、コリメートされた光ならばレーザに限らな
い、またミラーはプリズムでも良い、光電位置変換器1
21はCOD、四分割受光素子、ポジションセンサ等が
用いられる。
Conventionally, therefore, fluctuations in the relative angle have been detected using a device as shown in FIG. In FIG. 13, the light source unit 3h and the photoelectric position converter 121, which serve as angular references, are fixed to, for example, an antenna stand, and the reflection mirror 122 is fixed to an inertial reference device stand. A laser beam is normally used as the light source 3h, but it is not limited to a laser as long as it is collimated light, and the mirror may be a prism.The photoelectric position converter 1
Reference numeral 21 uses a COD, a four-part light receiving element, a position sensor, etc.

ジャイロスコープの初期設定時に、ミラー122を光束
に対してθ傾け、2θの角度で反射された光束が光電位
置変換器121の中心に当るように設定しておく6通常
は光束が外部の影響を受けないように、中間の光路部分
は、両端が可撓性部分で支えられたパイプ内にある。そ
のため光路はあまり大きくすることはできず、光電位置
変換器121は光源3hに隣接してθをできるだけ小さ
くしている。
When initially setting the gyroscope, the mirror 122 is tilted by θ with respect to the light beam, and the light beam reflected at an angle of 2θ is set so that it hits the center of the photoelectric position converter 1216.Normally, the light beam is free from external influences. To avoid interference, the intermediate optical path section is in a pipe supported at both ends by flexible sections. Therefore, the optical path cannot be made very large, and the photoelectric position converter 121 is placed adjacent to the light source 3h to make θ as small as possible.

この時、装置を登載した台の相対方向が、第13図の面
内でΔθ変化すると、光束に対するミラーの角度もΔθ
変化してθ+Δθになり、光束の反射方向は2Δθ変化
して2(θ十Δθ)になる。光電位置変換器121とミ
ラー122の距離をlとすると、光電位置変換器121
上での光束の位置変化ΔPは次式で表わされる。
At this time, if the relative direction of the table on which the device is mounted changes by Δθ within the plane of FIG. 13, the angle of the mirror with respect to the light flux also changes by Δθ
The light flux changes to θ+Δθ, and the reflection direction of the light flux changes by 2Δθ to 2(θ+Δθ). If the distance between the photoelectric position converter 121 and the mirror 122 is l, then the photoelectric position converter 121
The positional change ΔP of the luminous flux above is expressed by the following equation.

Δp=f(sin2(θ◆Δθ)−sin2θl:=2
1−Δθ・・・(1) したがって光電位置変換器121上の光束の位置変化Δ
Pを検出すれば方向変化Δθが求まる。
Δp=f(sin2(θ◆Δθ)−sin2θl:=2
1-Δθ...(1) Therefore, the position change Δ of the light flux on the photoelectric position converter 121
If P is detected, the direction change Δθ can be found.

但しここで検出できる方向変化は、光束を含む二つの直
交平面内の方向変化だけであり、光束に垂直な面内の方
向変化は検出できない。従来はこの方向の変動は小さい
ということで測定を行なっていなかった。
However, the direction change that can be detected here is only the direction change within two orthogonal planes containing the light beam, and the direction change within the plane perpendicular to the light beam cannot be detected. Conventionally, fluctuations in this direction have not been measured because they are small.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第13図に示すように光源3h、光電位置変換器121
ともある程度の大きさを有するため、途中の光束の通過
範囲はある程度の大きさは必要であり、配置上の制約と
なる。
As shown in FIG. 13, a light source 3h, a photoelectric position converter 121
Since both have a certain size, the passing range of the light beam on the way needs to have a certain size, which is a constraint on the arrangement.

更に光源及び光電位置変換器121と、ミラー122の
間は、例えば30−離れており、それぞれの部分に調整
箇所があり、これだけの距離だけ離れた部分を相互に調
整するには時間を要し、精度も得にくい。
Furthermore, the light source and photoelectric position converter 121 and the mirror 122 are separated by, for example, 30 mm, each having an adjustment point, and it takes time to mutually adjust the parts separated by this distance. , accuracy is also difficult to obtain.

また光電位置変換器121に対する入射角は2θであり
、ある程度θが大きくなるとこの角度分の補正が必要に
なる。
Further, the angle of incidence with respect to the photoelectric position converter 121 is 2θ, and when θ increases to a certain extent, correction for this angle becomes necessary.

及び前述のように、光束に垂直な面内での方向変化は検
出できず測定方法として充分でない。
Also, as mentioned above, it is not possible to detect a change in direction within a plane perpendicular to the light beam, making this method insufficient as a measurement method.

本発明は、上記問題点に鑑みてなされたものであり、離
れた相互に方向が変動しうる基準部分間の相対角度を検
出する装置において光路を大きくせず、調整は片側部分
でのみ行なうことで調整の簡略化を目的としたものであ
る。
The present invention has been made in view of the above-mentioned problems, and it is possible to perform adjustment only on one side of a device for detecting the relative angle between separate reference portions whose directions can vary without enlarging the optical path. The purpose is to simplify the adjustment.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は、本発明の基本原理を示す原理図である。第1
の基準部分1に固定された光源3から平行光束4が放射
されている。第2の基準部分2には光電検出素子51 
、52からなる光電検出器5が固定されている。光電検
出器5は、光源3より放射された平行光束4の内部に、
光電検出素子51 、52の受光面に大きな入射角で光
束が入射するように設置されている。
FIG. 1 is a principle diagram showing the basic principle of the present invention. 1st
A parallel beam of light 4 is emitted from a light source 3 fixed to a reference portion 1 of. The second reference portion 2 includes a photoelectric detection element 51.
, 52 is fixed. The photoelectric detector 5 detects inside the parallel light beam 4 emitted from the light source 3,
The photoelectric detection elements 51 and 52 are installed so that the light beam is incident on the light receiving surfaces at a large angle of incidence.

光電検出素子51 、52は、はぼ同一の特性を有し、
平行光束4に対する入射角もほぼ同一に設定されている
。6は処理部で、それぞれの光電検出素子からの出力の
差を検出する。
The photoelectric detection elements 51 and 52 have almost the same characteristics,
The angle of incidence with respect to the parallel light beam 4 is also set to be approximately the same. 6 is a processing section that detects the difference in output from each photoelectric detection element.

〔作 用〕[For production]

第1図において平行光束4は、光電検出素子51゜52
に対して大きな入射角で入射する。いま受光面と入射光
束のなす角度をαとする。ここで受光面に反射等がなく
、受光面は面積Aで−様な感度であるとすると、光電検
出器5の出力はαの関数であり、それをI(α)とする
とI(α)は次式で表わされる。
In FIG. 1, the parallel light beam 4 passes through the photoelectric detection elements 51°
incident at a large angle of incidence. Let the angle between the light-receiving surface and the incident light beam be α. Here, if there is no reflection etc. on the light receiving surface, and the light receiving surface has an area of A and a -like sensitivity, the output of the photoelectric detector 5 is a function of α, and if it is I(α), I(α) is expressed by the following equation.

I (a )= k As1nα−(2)但しkは所定
の定数である。
I(a)=kAs1nα-(2) where k is a predetermined constant.

また、角度αがΔα変化した時の光電検出素子51 、
52の出力の変化Δ■(α)は、(2)式をαで微分し
た次式で表わされる。
Also, the photoelectric detection element 51 when the angle α changes by Δα,
The change Δ■(α) in the output of 52 is expressed by the following equation, which is obtained by differentiating equation (2) with respect to α.

ΔI (a )= k AcosaΔa       
−(3)(3)式から角度変化に対する感度はeO8α
で表わされる。
ΔI (a) = k AcosaΔa
-(3) From equation (3), the sensitivity to angle change is eO8α
It is expressed as

そこで、αを適当な値に設定し、その付近でαを微小量
変化させると光電検出器5の出力が変化する。よって光
電検出器5の出力変動を検出すれば(3)式により相対
角度の変化が求まる。
Therefore, if α is set to an appropriate value and α is changed by a minute amount around that value, the output of the photoelectric detector 5 will change. Therefore, if the fluctuation in the output of the photoelectric detector 5 is detected, the change in relative angle can be determined using equation (3).

但し、その相対角度の変化を精密に検出する場合には出
力の微小な変動を捕える必要があり、高精度を得にくい
、そこで第1図に示すようにほぼ同一の光電検出素子5
1 、52を平行光束4に対して、はぼ同一の入射角に
なるように向い合せる。すると相対角度の変化に対して
光電検出素子51 、52のそれぞれの出力変化は逆方
向に変化し、次式のように表わされる。ここでI、とI
2は光電検出素子51 、52それぞれの出力である。
However, in order to accurately detect changes in the relative angle, it is necessary to capture minute fluctuations in the output, making it difficult to obtain high accuracy.
1 and 52 to face the parallel light beam 4 so that they have almost the same angle of incidence. Then, the respective outputs of the photoelectric detection elements 51 and 52 change in opposite directions with respect to changes in relative angle, and are expressed as in the following equation. Here I, and I
2 is the output of each of the photoelectric detection elements 51 and 52.

ΔI I((Z)= k Acosα・ΔαΔtz(α
)=  kAcosα・Δα   ・・・(4)Δα=
(Δr、(α)−ΔI2(α))/2kAcosα・・
・(5) (5)式よりαを適当な値に設定すればその付近の角度
変化は二個の光電検出素子51 、52の出力の差に比
例することがわかる。もしαの値が小さくゼロに近けれ
ばcosαの値はほぼ1になり、感度が上がる。しかも
(2)式より出力自体も小さいため検出精度は向上する
。また出力差は処理部6において差動増幅器を用いれば
高精度で検出可能であり、受光面での反射の影響も考慮
してαの値を設定する。いずれにしろ光電検出素子51
 、52の出力差を検出することにより、平行光束4と
光電検出器5の入射角の変化、すなわちそれぞれが固定
されている基準部分1と2の方向変化が検出できる。
ΔI I((Z)=k Acosα・ΔαΔtz(α
)= kAcosα・Δα ... (4) Δα=
(Δr, (α)−ΔI2(α))/2kAcosα・・
(5) From equation (5), it can be seen that if α is set to an appropriate value, the angle change in the vicinity is proportional to the difference in the outputs of the two photoelectric detection elements 51 and 52. If the value of α is small and close to zero, the value of cos α will be approximately 1, and the sensitivity will increase. Furthermore, since the output itself is smaller than in equation (2), the detection accuracy is improved. Further, the output difference can be detected with high accuracy by using a differential amplifier in the processing section 6, and the value of α is set in consideration of the influence of reflection on the light receiving surface. In any case, the photoelectric detection element 51
, 52, it is possible to detect a change in the angle of incidence of the parallel light beam 4 and the photoelectric detector 5, that is, a change in the direction of the reference portions 1 and 2 to which they are fixed.

以上のように基準部分1に固定された光源3からはコリ
メートされた平行光束4を基準部分2に向って放射する
だけで、基準部分2にある部分との調整は必要とせず、
調整は基準部分2のみで行なえる。更に光路は平行光束
の分だけである。
As described above, the light source 3 fixed to the reference part 1 simply emits the collimated parallel light beam 4 toward the reference part 2, and there is no need for adjustment with the part on the reference part 2.
Adjustments can be made only on the reference part 2. Furthermore, the optical path is only for the parallel light beam.

〔実施例〕〔Example〕

第1図に示した装置では紙面に垂直な方向での方向変化
のみ検出できたが、光電検出器を90°回転させた方向
にも設ければ、平行光束の光軸を含む紙面に垂直な方向
の方向変化も検出できる。その実施例の光電検出器の部
分のみを第2図に示す。
The device shown in Figure 1 was able to detect only changes in direction perpendicular to the plane of the paper, but if the photoelectric detector is also installed in a direction rotated 90 degrees, changes in direction perpendicular to the plane of the paper, including the optical axis of the parallel light beam, can be detected. Changes in direction can also be detected. Only the photoelectric detector portion of this embodiment is shown in FIG.

以下の図において同じ部分については同一番号にアルフ
ァベットを付して表わす。
In the following figures, the same parts are represented by the same numbers and alphabets.

第2図において、4aは平行光束である。51aから5
4aはそれぞれ光電検出素子であり、すべて同一の特性
で、平行光束4aに対し同じ入射角になるようにセンサ
ユニット50に取り付けられている。51dと52a及
び53aと54aをそれぞれ組にして出力の差動が求め
られ平行光束の光軸を含む二平面内の方向変動が検出さ
れる。
In FIG. 2, 4a is a parallel light beam. 51a to 5
Each of the photoelectric detection elements 4a has the same characteristics and is attached to the sensor unit 50 so as to have the same incident angle with respect to the parallel light beam 4a. 51d and 52a and 53a and 54a are set as a pair, and the difference in output is determined, and the directional fluctuation in two planes including the optical axis of the parallel light beam is detected.

光源3は、コリメートされた平行光束4を放射するもの
ならば良いが、できればHe−Neレーザ等のレーザ光
を用いるのが望ましい。
The light source 3 may be anything that emits a collimated parallel light beam 4, but it is preferable to use a laser beam such as a He-Ne laser if possible.

センサユニット50は、四個の光電検出素子51aから
54aを安定的に保持するための部材であり、光電検出
素子51aから54aの設定角度は検出精度に影響する
ため正確に保持される必要がある。またセンサユニット
50自体の反射や受光面での反射の影響を減らすため、
表面処理及び形状が考慮されている。
The sensor unit 50 is a member for stably holding the four photoelectric detection elements 51a to 54a, and the set angles of the photoelectric detection elements 51a to 54a need to be held accurately because they affect detection accuracy. . In addition, in order to reduce the influence of reflection from the sensor unit 50 itself and reflection from the light receiving surface,
Surface treatment and shape are taken into consideration.

つまり、光電検出素子51aから54aの受光面は平行
光束の入射角及び波長に対して有効な反射防止コーティ
ングが施されている。受光面での反射は、それ自体で受
光量を減少させると共に、反射光は他の受光素子に入射
するので誤差要因となり、それゆえ高精度の反射防止が
必要になる。
That is, the light-receiving surfaces of the photoelectric detection elements 51a to 54a are coated with an anti-reflection coating that is effective against the incident angle and wavelength of the parallel light beam. Reflection on the light-receiving surface reduces the amount of light received by itself, and the reflected light enters other light-receiving elements, causing errors, and therefore requires highly accurate anti-reflection measures.

また、平行光束4aは、できれば−様な光量分布をして
いることが望ましい。これは光電検出素子間の出力の差
を検出しているため光束内の位置により光の強度が異な
ると誤差要因となるためである0通常レーザビームは正
規分布に近い光量分布をしている。そこで−様な光量分
布にするにはレーザビームの光量分布と逆の特性を有す
る濃度フィルタを用いて補正することが考えられる。
Moreover, it is desirable that the parallel light beam 4a has a −-like light amount distribution if possible. This is because the difference in output between the photoelectric detection elements is detected, so if the intensity of light differs depending on the position within the light beam, it will cause an error.0 Normally, a laser beam has a light intensity distribution close to a normal distribution. Therefore, in order to obtain a light intensity distribution similar to that of the laser beam, it is conceivable to perform correction using a density filter having characteristics opposite to the light intensity distribution of the laser beam.

しかし−様な光量分布の平行光束を得ることは光路途中
の回折等のため容易でなく、コスト的にも問題がある。
However, it is not easy to obtain a parallel light beam with a similar light intensity distribution due to diffraction during the optical path, and there is also a problem in terms of cost.

そこで平行光束4の光量分布を正規分布とし、これを電
気的に補正する実施例を第3図に示す。
FIG. 3 shows an embodiment in which the light quantity distribution of the parallel light beam 4 is made into a normal distribution and this is electrically corrected.

第3図は説明を簡単にするなめ2次元方向のみの変化を
検出する例を示しである。第3図に示すように平行光束
4bは正規分布の光強度分布を有している0周辺部は入
射口のアパチャで遮断されている。51 b 、 52
b 、 55b 、 56bは光電検出素子である。6
bは処理部で、各光電検出素子からの出力を外部からの
制御信号により増幅率を可変する増幅器63bから66
b、増幅器63bと64b及び65bと66bのそれぞ
れの出力の差を出力する差動増幅器61bと62b、差
動増幅器61bと62bの出力を加算し、差動出力とし
て出力する加算器69b、増幅器63bと64b、及び
65bと66bの出力を加算する加算器67b及び68
b、更にこの加算器67bと68bの出力を受は光電検
出素子の光束4b内の位置の変化に対する出力変化を求
め、各増幅器63bから66bの増幅率を変化させる補
正器70bより構成されている。
FIG. 3 shows an example in which changes in only two-dimensional directions are detected to simplify the explanation. As shown in FIG. 3, the parallel light beam 4b has a normal light intensity distribution, and the zero peripheral portion is blocked by the aperture of the entrance. 51b, 52
b, 55b, and 56b are photoelectric detection elements. 6
b is a processing section, which includes amplifiers 63b to 66 that vary the amplification factor of the output from each photoelectric detection element according to an external control signal.
b, differential amplifiers 61b and 62b that output the difference between the respective outputs of amplifiers 63b and 64b and 65b and 66b; adder 69b that adds the outputs of differential amplifiers 61b and 62b and outputs the result as a differential output; amplifier 63b; and 64b, and adders 67b and 68 that add the outputs of 65b and 66b.
b. Furthermore, a corrector 70b receives the outputs of the adders 67b and 68b, calculates the output change in response to a change in the position of the photoelectric detection element within the light beam 4b, and changes the amplification factor of each amplifier 63b to 66b. .

次に本実施例の動作を説明する。各光電検出素子51 
b 、 52b 、 55b 、 56bは同じ形状、
同じ特性を有するように作られていても入射する光の強
度が異なるため同一の出力とはならない。そこで初期設
定時には、光束4bと光電検出素子51b52b 、5
5b 、56bの位置を合せた上で、増幅器63bから
66bの出力が等しくなるように各々の増幅率を調整し
ておく。
Next, the operation of this embodiment will be explained. Each photoelectric detection element 51
b, 52b, 55b, 56b have the same shape,
Even if they are made to have the same characteristics, they will not produce the same output because the intensity of the incident light differs. Therefore, at the time of initial setting, the luminous flux 4b and the photoelectric detection elements 51b, 52b, 5
After aligning the positions of amplifiers 5b and 56b, the amplification factors of each amplifier are adjusted so that the outputs of amplifiers 63b to 66b are equal.

前述のように光束4bの方向が変化すると光電検出素子
51bと52b−55bと56bの間の出力に差が生じ
る。その出力差を検出するのが差動増幅器61bと62
bである0本実施例においてはより精度を向上するため
差動増幅器61bと62bの出力を平均するため加算器
69bを設け、この出力が方向変化を示す差動出力とな
る。
As described above, when the direction of the light beam 4b changes, a difference occurs in the output between the photoelectric detection elements 51b and 52b, and 55b and 56b. Differential amplifiers 61b and 62 detect the output difference.
b is 0 In this embodiment, in order to further improve accuracy, an adder 69b is provided to average the outputs of the differential amplifiers 61b and 62b, and this output becomes a differential output indicating a change in direction.

本実施例では更に、増幅器63bと64b、65bと6
6bのそれぞれの出力の和を検出する加算器67bと6
8bが備わっている。この出力は補正器70bに入力さ
れる。初期設定時には光束4bに対して光電検出素子5
1bと52b、55bと56bは対称に調整されている
ので加算器67bと68bの出力は等しい。
In this embodiment, further amplifiers 63b and 64b, 65b and 6
adders 67b and 6 which detect the sum of the respective outputs of 6b;
It is equipped with 8b. This output is input to the corrector 70b. At the initial setting, the photoelectric detection element 5 detects the light beam 4b.
Since 1b and 52b and 55b and 56b are adjusted symmetrically, the outputs of adders 67b and 68b are equal.

ところが光束4bと光電検出素子の相対位置が変化する
と光電検出素子それぞれの出力が変化し、加算器67b
と68bの出力にも差を生じる。光束4bの強度は正規
分布をしているので、この出力差は光束の位置ずれに対
応する。補正器70bは、この出力差から光束の位置ず
れを求め、各増幅器の増幅率を変化させる。これにより
光束の位置ずれによる出力変化に伴う誤差が除ける。も
ちろん光束4bの方向変化により、光電検出素子51b
However, when the relative position of the light beam 4b and the photoelectric detection element changes, the output of each photoelectric detection element changes, and the adder 67b
There is also a difference between the outputs of 68b and 68b. Since the intensity of the light beam 4b has a normal distribution, this output difference corresponds to the positional shift of the light beam. The corrector 70b determines the positional deviation of the light beam from this output difference, and changes the amplification factor of each amplifier. This eliminates errors caused by output changes due to positional deviations of the light beam. Of course, due to the direction change of the light beam 4b, the photoelectric detection element 51b
.

52b 、 55b 、 56bの光束内の位置も変化
するので、これに伴う誤差も除ける。
Since the positions of 52b, 55b, and 56b within the luminous flux also change, errors associated with this are also removed.

補正器70bは、差動増幅器を用いた回路で構成するこ
とも可能であるが、本実施例ではマイクロコンピュータ
を用いて構成されている。その構成を示したのが第4図
である。この回路は、通常のマイクロコンピュータを用
いる回路と同様に、マイクロコンピュータ(MCU)1
20 、 ROM121 、 ROM121を備えてい
る。この回路は更に、67b及び68bからの出力を受
け、デジタルデータに変換する2個のA/D変換器12
3 、124、及び増幅器63b〜66bの増幅率をそ
れぞれ設定するためのD/A変換器125〜128が備
わっている。
Although the corrector 70b can be configured using a circuit using a differential amplifier, in this embodiment, it is configured using a microcomputer. FIG. 4 shows the configuration. This circuit uses a microcomputer (MCU) 1, similar to a circuit using a normal microcomputer.
20, ROM121, and ROM121. This circuit further includes two A/D converters 12 which receive the outputs from 67b and 68b and convert them into digital data.
3, 124, and D/A converters 125-128 for setting the amplification factors of amplifiers 63b-66b, respectively.

第5図が、補正器70bのマイクロコンピュータ120
の動作の流れを示すフローチャートである。
FIG. 5 shows the microcomputer 120 of the corrector 70b.
3 is a flowchart showing the flow of operations.

その動作をフローチャートに従がって説明する。The operation will be explained according to the flowchart.

工程131では、加算器67bと68bの出力をA/D
変換器123と124を通して、デジタルデータの形で
取り込む。前述の通りこのデータは、光束内の強度が正
規分布であるとすると、受光素子51b。
In step 131, the outputs of adders 67b and 68b are A/D
The data is captured in the form of digital data through converters 123 and 124. As mentioned above, this data is based on the light receiving element 51b, assuming that the intensity within the light beam is normally distributed.

52b 、 55b 、 56bに対する光束の初期設
定時よりのずれを表わしている。そこで工程132で、
この加算器67bと68bの出力比から光束の位置ずれ
を求める。工程133ではこの位置すれから各受光素子
の光束内の位置を計算し、工程134で光束内の位置の
差により各受光素子の出力差をなくすように、増幅器6
3b〜66bの増幅率を求める。次いで工程135でD
/A変換器125〜128に上記増幅率に対応した値を
設定する。増幅器63b〜66bは、例えばFETのゲ
ートとソース間の電圧により変化するチャンネル抵抗と
オペアンプを組み合せた乗算回路で構成されており、D
/A変換器125〜128に設定された値は電流から電
圧に変換され、上記のゲートとソース間の電圧になる。
It represents the deviation from the initial setting of the luminous flux for 52b, 55b, and 56b. Therefore, in step 132,
The positional deviation of the light flux is determined from the output ratio of the adders 67b and 68b. In step 133, the position of each light-receiving element within the light beam is calculated from this positional deviation, and in step 134, the amplifier 6 is used to eliminate the output difference of each light-receiving element due to the difference in position within the light beam.
Find the amplification factors of 3b to 66b. Then in step 135 D
/A converters 125 to 128 are set to values corresponding to the amplification factors. The amplifiers 63b to 66b are composed of a multiplier circuit that combines an operational amplifier and a channel resistance that changes depending on the voltage between the gate and source of an FET, for example.
The values set in the /A converters 125 to 128 are converted from current to voltage, and become the voltage between the gate and source described above.

これにより増幅器63bから66bの増幅率を演算結果
に従がって設定することが可能になる。マイクロコンピ
ュータ120は第5図に示した動作を測定の前に行なう
This makes it possible to set the amplification factors of the amplifiers 63b to 66b in accordance with the calculation results. The microcomputer 120 performs the operations shown in FIG. 5 before measurement.

第3図の実施例では、差動出力として増幅器63bと6
4J65bと66bの出力差を平均したが、増幅器64
bと65bの出力差をそのまま差動出力としても良い。
In the embodiment of FIG. 3, amplifiers 63b and 6 are used as differential outputs.
The output difference between 4J65b and 66b was averaged, but the amplifier 64
The output difference between b and 65b may be directly used as a differential output.

この場合は増幅器63bと64b、65bと66bから
対称な出力が生じれば良いので、基本的には増幅率の調
整は必要とせず、加算器67bと68bの出力の差から
位置ずれに基づいて、増幅器64bと65bの出力差を
補正することで正確な方向変化を検出することも可能で
ある。
In this case, it is sufficient that symmetrical outputs are generated from the amplifiers 63b and 64b, and 65b and 66b, so basically there is no need to adjust the amplification factor. , it is also possible to accurately detect a change in direction by correcting the output difference between the amplifiers 64b and 65b.

更に第3図の実施例において増幅器63bから66bの
増幅率はそれぞれ固定とし、補正器70bが光束4bの
位置ずれを検出して、差動増幅器61bと62bに補正
を行なうことも可能である。
Furthermore, in the embodiment shown in FIG. 3, the amplification factors of the amplifiers 63b to 66b may be fixed, and the corrector 70b may detect the positional deviation of the light beam 4b and correct the differential amplifiers 61b and 62b.

第3図の実施例では、一方向の変化を検出する場合を示
したが、紙面に垂直な方向に同様の装置を設ければもう
一方の方向変化も検出可能である。
Although the embodiment shown in FIG. 3 shows a case in which changes in one direction are detected, changes in the other direction can also be detected if a similar device is provided in a direction perpendicular to the plane of the paper.

第3図の実施例では、方向変化検出用光電検出器を複数
個設けて、光束と光電検出器の相対位置の変動による出
力差を補正する装置について述べたが、光束内の位置検
出のために別に補助光電検出器を設けた例を第6図に示
す。
In the embodiment shown in Fig. 3, a device is described in which a plurality of photoelectric detectors for direction change detection are provided and the output difference due to fluctuations in the relative position of the light flux and the photoelectric detector is corrected. An example in which an auxiliary photoelectric detector is separately provided is shown in FIG.

第6図に示す実施例では、光束4cの方向変化検出用光
電検出素子51cから54cの他に、光束内の位置検出
用に補助光電検出素子81cから84cが設けられてい
る。補助光電検出素子81cから84cは光束4cに対
してほぼ垂直に受光面を有しているため、光束4cの方
向変化によっては出力ははとんと変化しない、そこで第
3図に示したのと同様に、処理部に補助光電検出素子8
1cと82c、83cと84cの出力差から光束4c内
の位置を検出するための補正部を設ける。そしてこの位
置ずれに応じて第3図の実施例と同様の方法で補正を行
なう。
In the embodiment shown in FIG. 6, in addition to the photoelectric detection elements 51c to 54c for detecting a change in the direction of the light beam 4c, auxiliary photoelectric detection elements 81c to 84c are provided for detecting the position within the light beam. Since the auxiliary photoelectric detection elements 81c to 84c have light-receiving surfaces almost perpendicular to the light beam 4c, the output does not change drastically depending on the direction change of the light beam 4c.Therefore, in the same way as shown in FIG. , an auxiliary photoelectric detection element 8 is installed in the processing section.
A correction section is provided to detect the position within the light beam 4c from the output difference between 1c and 82c, and 83c and 84c. Then, according to this positional deviation, correction is performed in the same manner as in the embodiment shown in FIG.

前述の通り従来の方法の問題点として光束の光軸に垂直
な面内での回転が検出できないという点がある。そこで
本発明では光の偏光を利用し、この方向の回転を検出可
能にする。この例を第7図に示す。
As mentioned above, a problem with the conventional method is that rotation of the light beam in a plane perpendicular to the optical axis cannot be detected. Therefore, in the present invention, the polarization of light is utilized to enable detection of rotation in this direction. An example of this is shown in FIG.

第7図において、91dは直線偏光フィルタであり、光
束4dを直線偏光にする。もし光源3dが直線偏光のレ
ーザ光であれば、偏光フィルタ91dは必要ない。92
dはある波長領域のみを通過させるフィルタで、外乱光
の影響を除くためのバンドパスフィルタである。これに
は干渉フィルタが適当である。93dは直線偏光フィル
タで、光束4dに対しこの直線偏光フィルタの偏光方向
が変化することで透過される光量が変化する。直線偏光
フィルタとしてはニコルプリズム等があるが、薄膜のコ
ーティングによる偏光子が性能的には適当である。51
dと52dは光電検出素子であり、前述のように出力差
により、処理部6dが光束の方向変化を検出すると共に
、偏光方向の変化による受光量の変化も検出する。
In FIG. 7, 91d is a linearly polarizing filter that converts the light beam 4d into linearly polarized light. If the light source 3d is a linearly polarized laser beam, the polarizing filter 91d is not necessary. 92
d is a filter that passes only a certain wavelength range, and is a bandpass filter for removing the influence of disturbance light. An interference filter is suitable for this purpose. Reference numeral 93d denotes a linearly polarizing filter, and as the polarization direction of this linearly polarizing filter changes with respect to the light beam 4d, the amount of transmitted light changes. Although there are Nicol prisms and the like as linear polarizing filters, a polarizer with a thin film coating is suitable in terms of performance. 51
d and 52d are photoelectric detection elements, and as described above, based on the output difference, the processing section 6d detects a change in the direction of the light flux, and also detects a change in the amount of received light due to a change in the polarization direction.

第7図の実施例の動作について説明する。偏光フィルタ
93dは基準部分2dに固定されており、基準部分1d
と2dが光束4dの光軸に垂直な面内で回転変化が生じ
ると光束4dと直線偏光フィルタ93dの偏光方向が変
化し、透過光量が変化する。光電検出素子51dと52
dの出力は処理部6dの加算器71dにより出力和が求
められる。この出力和は透過光量に比例しており、これ
により、直線偏光フィルタ93dと光束4dの偏光方向
の変化、すなわち基準部分1dと2dの光束4dの光軸
に垂直な面内の方向変化が求まる。処理部6dでは差動
増幅器61dにより光電検出器51dと52dの出力差
により、光束の別の二方向の変化も検出される。この際
加算器71dの出力により総光量の変化に対する補正が
差動増幅器61dに対して行なわれる。
The operation of the embodiment shown in FIG. 7 will be explained. The polarizing filter 93d is fixed to the reference portion 2d, and the polarizing filter 93d is fixed to the reference portion 1d.
When rotational change occurs in and 2d within a plane perpendicular to the optical axis of the light beam 4d, the polarization directions of the light beam 4d and the linear polarizing filter 93d change, and the amount of transmitted light changes. Photoelectric detection elements 51d and 52
The output sum of the outputs of d is calculated by the adder 71d of the processing section 6d. This output sum is proportional to the amount of transmitted light, and from this, the change in the polarization direction of the linearly polarizing filter 93d and the light beam 4d, that is, the change in the direction in the plane perpendicular to the optical axis of the light beam 4d of the reference portions 1d and 2d can be determined. . In the processing section 6d, a differential amplifier 61d detects changes in the luminous flux in two other directions based on the output difference between the photoelectric detectors 51d and 52d. At this time, the output of the adder 71d is used to correct the change in the total amount of light to the differential amplifier 61d.

いずれにしろこれによりすべての方向の変化が検出可能
になる。直線偏光フィルタ93dと光束4dの偏光方向
による光量変化は、偏光方向の差をβとすると透過光量
E(β)は次式で表わされる。
In any case, this allows changes in all directions to be detected. Regarding the change in the amount of light due to the polarization direction of the linearly polarizing filter 93d and the light beam 4d, the amount of transmitted light E(β) is expressed by the following equation, where β is the difference between the polarization directions.

E(β)=に、cosβ         −(6)す
なわちβ=0°の時に最大になり、β=90°の時にほ
ぼゼロとなる。変化率は(6)式をβで微分して次式で
表わされる。
E(β)=cosβ−(6), that is, reaches a maximum when β=0°, and becomes almost zero when β=90°. The rate of change is expressed by the following equation by differentiating equation (6) with respect to β.

ΔE(β)−k 1sinβ・Δβ     −(7)
(7)式によりβをある値に設定すれば、その近傍での
偏光方向の変化は総光量の変化を測定すれば求まる。
ΔE(β)−k 1sinβ・Δβ−(7)
If β is set to a certain value according to equation (7), the change in the polarization direction in the vicinity can be found by measuring the change in the total amount of light.

(7)式により検出感度を高めるにはβを90°付近に
設定することが良いことがわかるが、βが90’付近に
なると透過総光量が小さく光電検出器に充分な光量が入
射されないため、検出感度と光量を考慮して設定する必
要がある。
Equation (7) shows that it is best to set β near 90° to increase the detection sensitivity. However, when β becomes near 90', the total amount of transmitted light is small and not enough light is incident on the photoelectric detector. , it is necessary to set the detection sensitivity and light amount in consideration.

これまでの例はすべて光電検出器が光束に対してほぼ同
じ入射角で向い合っていた例について述べたが、第8図
に示すように光束に対する入射角は同じで三個の光電検
出素子57eから59eを組み合せた例もある。この場
合にはこれまでのように向い合う素子間の差動をとると
いう訳にはいかず、例えば第8図においては、一方は5
7eと586の出力差、もう一方は57eと586の出
力の和の半分と596の出力差を求める等の処理を行な
う。
All the examples so far have been described in which the photoelectric detectors face the light beam at approximately the same angle of incidence, but as shown in FIG. There are also examples of combinations of 59e and 59e. In this case, it is not possible to create a differential between opposing elements as in the past; for example, in FIG.
Processing is performed such as calculating the output difference between 7e and 586, and the output difference between 596 and half of the sum of the outputs of 57e and 586 on the other side.

光電検出素子の受光面への光束の入射角により感度が異
なることは前述したが、入射角が大きくなると測定可能
な変化範囲が小さくなるので、第9図に示すように異な
る入射角の組み合せを複数個設けて、測定範囲に応じて
素子の組を切り換えることで、測定性能を保ちながら、
測定範囲を広げられる。
As mentioned above, the sensitivity varies depending on the angle of incidence of the light beam on the light-receiving surface of the photoelectric detection element, but as the angle of incidence increases, the range of change that can be measured becomes smaller, so it is possible to combine different angles of incidence as shown in Fig. By installing multiple elements and switching the element set according to the measurement range, it is possible to maintain measurement performance while maintaining measurement performance.
Measurement range can be expanded.

これまでの実施例の説明において本発明の相対角度検出
装置について述べてきたが、以下の記述においては本検
出装置を使用する例について説明する。応用例としては
既に従来の技術の項で人工衛星観測船の例について述べ
たが、他の応用例を第10図に示す。これは航空機10
0の翼101の先端部分に飛翔体102が取り付けられ
ている例である。
In the description of the embodiments so far, the relative angle detection device of the present invention has been described, and in the following description, an example in which the present detection device is used will be described. As an example of application, an example of an artificial satellite observation ship has already been described in the section on conventional technology, and another example of application is shown in FIG. This is aircraft 10
This is an example in which a flying object 102 is attached to the tip portion of a wing 101 of a flying object.

飛翔体102としては観測用の物体の運搬手段やミサイ
ル等がある。これらの飛翔体102はそれ自身に慣性基
準装置が備えられている。そして切り離し時に航空機1
00の慣性基準装置のデータに基づいて飛翔体102の
慣性基準装置が初期化される。
The flying object 102 includes means for transporting objects for observation, missiles, and the like. These flying objects 102 are equipped with their own inertial reference devices. And at the time of separation, aircraft 1
The inertial reference device of the flying object 102 is initialized based on the data of the inertial reference device of 00.

ところ・が翼101は飛行の際に風圧等の影響で大きく
振動しており、この振動のため初期値に誤差が生じ、飛
翔体102が正常に航行しないという問題がある。そこ
で本発明の相対角度検出装置を、航空機100の慣性基
準装置と飛翔体102が固定されている翼101の先端
基準部105との間の相対角度の検出に用いる。そして
この検出結果に基づいて初期設定の補正を行なうことに
より飛翔体102の慣性基準装置の精度向上を図ること
が可能になる。
However, the wing 101 vibrates greatly during flight due to the influence of wind pressure, etc., and this vibration causes an error in the initial value, causing the problem that the flying object 102 does not fly normally. Therefore, the relative angle detection device of the present invention is used to detect the relative angle between the inertial reference device of the aircraft 100 and the tip reference portion 105 of the wing 101 to which the flying object 102 is fixed. By correcting the initial settings based on this detection result, it is possible to improve the accuracy of the inertial reference device of the flying object 102.

なお、104は光路であり、これは翼内部に設けても良
い。
Note that 104 is an optical path, which may be provided inside the blade.

更に他の応用例について説明する。第11図は、この応
用例を示す図であり、船舶の慣性基準装置の初期設定に
関する応用例である。船舶の慣性基準装置では、航法座
標に対してピッチ、ロール、ヨーと呼ばれる3軸角度の
相対角度を設定する必要がある。従来は、慣性基準装置
を自己設定(セルフアライメント)モードと呼ばれる高
感度状態にして、重力及び地球自転角速度を検出し設定
を行なっていた。但し、船舶自体が揺れているなめ、計
測を多数回行ない平均化して揺れの影響を除いていた。
Further, other application examples will be explained. FIG. 11 is a diagram showing an example of this application, and is an example of application related to initial setting of an inertial reference device of a ship. In the inertial reference device of a ship, it is necessary to set relative angles of three axes called pitch, roll, and yaw with respect to navigation coordinates. Conventionally, the inertial reference device was set in a highly sensitive state called self-alignment mode to detect gravity and the Earth's rotational angular velocity. However, since the ship itself was shaking, measurements were taken many times and averaged to eliminate the effects of shaking.

しかし高精度の設定を行なうためには、サンプリング回
数を多くする必要があり、この初期設定のため数時間を
必要としていた。
However, in order to perform highly accurate settings, it is necessary to increase the number of samplings, and several hours are required for this initial setting.

そこで第11図のように、本発明の発光部31を、岸壁
106に設置する。もちろん発光部31は航法座標に対
して所定の角度に設定されている。船舶107の慣性基
準装置1031は内部に設置されており、本発明の受光
部50iがこの慣性基準装置に取り付けられている。発
光部31からの光束は遮光カバ1041の内部を通って
、船舶107の内部の受光部50iに至る。受光部50
iで光束に対する相対角度、すなわち航法座標に対する
相対角度が瞬時に検出されることになる。これにより初
期設定の時間を大幅に短縮できる。このようなことが可
能になるのは、光束が1本で、受光部側のみで相対角度
の検出を行なえることによる。
Therefore, as shown in FIG. 11, the light emitting section 31 of the present invention is installed on the quay 106. Of course, the light emitting section 31 is set at a predetermined angle with respect to the navigation coordinates. An inertial reference device 1031 of the ship 107 is installed inside, and the light receiving section 50i of the present invention is attached to this inertial reference device. The light beam from the light emitting section 31 passes through the light shielding cover 1041 and reaches the light receiving section 50i inside the ship 107. Light receiving section 50
At i, the relative angle with respect to the light beam, that is, the relative angle with respect to the navigation coordinates, is instantaneously detected. This can significantly shorten initial setup time. This is possible because there is only one light beam and the relative angle can be detected only on the light receiving section side.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、離れた部分の相対
角度の変化を単一の光路で測定できるため設計上の自由
度が増加すると共に設置及び設定時の調整が一方の側の
みで行なえるため調整の簡単化が図れるという効果が得
られる。
As explained above, according to the present invention, changes in the relative angle of distant parts can be measured using a single optical path, which increases the degree of freedom in design and allows adjustment during installation and setting to be performed only on one side. Therefore, the effect of simplifying the adjustment can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本原理を示す原理図。 第2図は、二方向の変化を検出するための光電検出器の
配置を示す構成図。 第3図は、更に光電検出器の数を増し、各素子の出力に
より光束内の不均一な光量分布による影響を補正する実
施例を示す構成図。 第4図は、第3図の実施例における補正器のマイクロコ
ンピュータを用いた場合の構成例を示す図。 第5図は、第4図に示した補正器の動作を示すフローチ
ャート。 第6図は、光束内の不均一な光量分布による影響を補正
するために補助光電検出器を設けた例を示す原理図。 第7図は、直線偏光フィルタを利用して光束の光軸に垂
直な面内での方向変化を測定する例を示す構成図。 第8図は、光電検出器が三個の場合の配置例を示す構成
図。 第9図は、入射角の異なる光電検出器を組み合せた例を
示す原理図。 第10図は、航空機に別の慣性基準装置を有する飛翔体
が取り付けられた場合への応用を示す構成図。 第11図は、船舶用慣性基準装置の初期設定へ、本発明
を応用した例を示す図。 第12図は、人工衛星観測船を示す側面図。 第13図は、従来の方向変化を測定する方法を示す原理
図。 図において、 1・・・第1の基準部分、2・・・第2の基準部分、3
・・・光源、     4・・・光束、51 、52 
、53 、54 、55 、56・・・光電検出素子、
6・・・処理部、 81c 、 82c 、 83c 、 84c・・・補
助光電検出素子、91d、93d・・・直線偏光フィル
タ、92d・・・バンドパスフィルタ。
FIG. 1 is a principle diagram showing the basic principle of the present invention. FIG. 2 is a configuration diagram showing the arrangement of photoelectric detectors for detecting changes in two directions. FIG. 3 is a configuration diagram showing an embodiment in which the number of photoelectric detectors is further increased and the influence of uneven light intensity distribution within the light beam is corrected by the output of each element. FIG. 4 is a diagram showing an example of the configuration of the corrector in the embodiment of FIG. 3 when a microcomputer is used. FIG. 5 is a flowchart showing the operation of the corrector shown in FIG. 4. FIG. 6 is a principle diagram showing an example in which an auxiliary photoelectric detector is provided to correct the influence of uneven light intensity distribution within the light beam. FIG. 7 is a configuration diagram showing an example of measuring a change in direction of a light beam in a plane perpendicular to the optical axis using a linear polarization filter. FIG. 8 is a configuration diagram showing an example of arrangement when there are three photoelectric detectors. FIG. 9 is a principle diagram showing an example of combining photoelectric detectors with different incident angles. FIG. 10 is a configuration diagram showing an application to a case where a flying object having another inertial reference device is attached to an aircraft. FIG. 11 is a diagram showing an example in which the present invention is applied to initial setting of an inertial reference device for a ship. Figure 12 is a side view of the satellite observation ship. FIG. 13 is a principle diagram showing a conventional method for measuring direction change. In the figure, 1...first reference part, 2...second reference part, 3
...Light source, 4...Light flux, 51, 52
, 53, 54, 55, 56... photoelectric detection element,
6... Processing unit, 81c, 82c, 83c, 84c... Auxiliary photoelectric detection element, 91d, 93d... Linear polarization filter, 92d... Bandpass filter.

Claims (1)

【特許請求の範囲】 1、第1の基準部分(1)に固定され、該第1の基準部
分(1)に対し外部要因により変動しうる第2の基準部
分(2)に向けて平行光束(4)を放射する手段(3)
、 該第2の基準部分(2)に固定され、受光面が該平行光
束(4)の光軸に対し、略同一の入射角で該平行光束内
に配置された複数の光電検出手段(51、52)、及び 複数の該光電検出手段(51、52)の出力を受け、該
光電検出手段(51、52)間の出力差を検出する処理
手段(6)を備え、該第1の基準部分(1)と該第2の
基準部分(2)の相対角度の変動を検出するようにした
相対角度検出装置。 2、該処理手段(6)は、光電検出手段(51b、52
b、55b、56b)の出力に基づいて、光量分布が不
均一である該平行光束(4)内の位置による該光電検出
手段(51b、52b、55b、56b)の出力の変動
の補正を更に行なう補正手段を備えた請求項の1に記載
の相対角度検出装置。 3、更に複数の補助検出手段(81c、82c、83c
、84c)が、該平行光束(4c)内に、該光電検出手
段(51c、52c、53c、54c)に近接して設け
られており、 該処理手段(6)は、複数の該補助光電検出手段(81
c、82c、83c、84c)の出力に基づいて、光量
分布が不均一である該平行光束(4c)内の位置による
該光電検出手段(51c、52c、53c、54c)の
出力の変動の補正を更に行なう補正手段を備えた請求項
の1に記載の相対角度検出装置。 4、該平行光束(4d)は、直線偏光した平行光束であ
り、 偏光フィルタ(93d)が、該光電検出手段(51d、
52d)の前に、該第2の基準部分(2d)に固定され
て更に備えられており、 該処理部(6d)は、複数の該光電検出手段(51d、
52d)の出力の和に基づいて、該平行光束(4d)と
該偏光フィルタ(93d)の偏光方向の変化に起因する
該平行光束の光量変化の検出を更に行ない、該平行光束
(4d)の光軸に垂直な面内での該第1の基準部(1d
)と該第2の基準部(2d)の回転変動を更に検出する
検出手段を備えた請求項の1に記載の相対角度検出装置
[Claims] 1. A parallel beam of light directed toward a second reference portion (2) that is fixed to a first reference portion (1) and can vary with respect to the first reference portion (1) due to external factors. (4) Means of emitting (3)
, a plurality of photoelectric detection means (51) fixed to the second reference part (2), the light receiving surfaces of which are arranged within the parallel beam (4) at substantially the same incident angle with respect to the optical axis of the parallel beam (4); , 52), and processing means (6) for receiving the outputs of the plurality of photoelectric detection means (51, 52) and detecting the output difference between the photoelectric detection means (51, 52), A relative angle detection device configured to detect a change in relative angle between a portion (1) and the second reference portion (2). 2. The processing means (6) includes photoelectric detection means (51b, 52
Further, based on the outputs of the photoelectric detection means (51b, 52b, 55b, 56b), the variation in the output of the photoelectric detection means (51b, 52b, 55b, 56b) due to the position in the parallel light beam (4) where the light amount distribution is uneven is corrected. The relative angle detection device according to claim 1, further comprising a correction means for performing the correction. 3. Furthermore, a plurality of auxiliary detection means (81c, 82c, 83c
, 84c) are provided in the parallel light beam (4c) in close proximity to the photoelectric detection means (51c, 52c, 53c, 54c), and the processing means (6) includes a plurality of auxiliary photoelectric detection means. Means (81
c, 82c, 83c, 84c), correction of fluctuations in the output of the photoelectric detection means (51c, 52c, 53c, 54c) due to the position in the parallel light beam (4c) where the light amount distribution is non-uniform. The relative angle detection device according to claim 1, further comprising a correction means for performing the following. 4. The parallel light beam (4d) is a linearly polarized parallel light beam, and the polarizing filter (93d) is connected to the photoelectric detection means (51d,
52d), the processing section (6d) is further provided with a plurality of photoelectric detection means (51d,
Based on the sum of the outputs of the parallel light beams (4d), a change in the light amount of the parallel light beams (4d) due to a change in the polarization direction of the polarizing filter (93d) is further detected. The first reference portion (1d
) and the second reference portion (2d).
JP2273199A 1990-10-15 1990-10-15 Relative angle detector Expired - Lifetime JPH0695013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273199A JPH0695013B2 (en) 1990-10-15 1990-10-15 Relative angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273199A JPH0695013B2 (en) 1990-10-15 1990-10-15 Relative angle detector

Publications (2)

Publication Number Publication Date
JPH04151504A true JPH04151504A (en) 1992-05-25
JPH0695013B2 JPH0695013B2 (en) 1994-11-24

Family

ID=17524480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273199A Expired - Lifetime JPH0695013B2 (en) 1990-10-15 1990-10-15 Relative angle detector

Country Status (1)

Country Link
JP (1) JPH0695013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530966A (en) * 2004-03-30 2007-11-01 コミッサリヤ ア レネルジ アトミック Method and apparatus for determining human behavior

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102407U (en) * 1979-12-29 1981-08-11
JPS59133477A (en) * 1983-01-20 1984-07-31 Seiko Instr & Electronics Ltd Optical angle detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102407U (en) * 1979-12-29 1981-08-11
JPS59133477A (en) * 1983-01-20 1984-07-31 Seiko Instr & Electronics Ltd Optical angle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530966A (en) * 2004-03-30 2007-11-01 コミッサリヤ ア レネルジ アトミック Method and apparatus for determining human behavior

Also Published As

Publication number Publication date
JPH0695013B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US7924415B2 (en) Apparatus and method for a light direction sensor
US6288381B1 (en) Integrated system for line-of-sight stabilization and auto-alignment of off-gimbal passive and active electro-optical sensors
US8190393B2 (en) Helicopter blade position detector
JPH02236108A (en) Solar sensor
US5155327A (en) Laser pointing system
US10054427B2 (en) Orientation variation measurement system, satellite, and orientation variation measurement method
US3326619A (en) Gyro stabilized sight system utilizing a mirror with front and back reflecting surfaces
JP2004109137A (en) Radiation measuring device and method
JP2740920B2 (en) Method for astronomical observation by scanning and measurement of angular velocity of spacecraft, observation apparatus for executing the method, and spacecraft equipped with the observation apparatus
CN108731593A (en) A kind of the position and attitude optical measurement structure and method of front and back binocular
JPH04151504A (en) Detecting device for relative angle
US5883719A (en) Displacement measurement apparatus and method
US10228465B2 (en) Steering mirror assist for laser pointing
US20030197117A1 (en) Method and apparatus for compensating a vector command to a galvanometer with light beam pointing error information
SE425618B (en) DIRECTION DETERMINATION DEVICE
CN210005211U (en) high-speed wind tunnel schlieren instrument focal spot monitoring and damping system
KR102341437B1 (en) Spectroscopic analysis apparatus, spectroscopic analysis method, manufacturing method of steel strip, and quality assurance method of steel strip
CN108444397B (en) Displacement sensor and measuring method thereof
TW202026591A (en) Laser interferometer positioning system including a laser light source, a beam splitting unit, two interference module units, and two signal acquisition module units
US4003658A (en) Triangular interferometric light-source tracker
US11693148B1 (en) Active pointing and tracking system
EP4279940A1 (en) Detection device, system and method for determination of incidence angle of an optical beam
JPH0244219A (en) Wavelength detector
JP2009186254A (en) Beam angle detector
EP1460379B1 (en) Angular motion measurement arrangement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 16

EXPY Cancellation because of completion of term