JPH04151120A - Optical deflecting element of liquid crystal projector - Google Patents

Optical deflecting element of liquid crystal projector

Info

Publication number
JPH04151120A
JPH04151120A JP27582490A JP27582490A JPH04151120A JP H04151120 A JPH04151120 A JP H04151120A JP 27582490 A JP27582490 A JP 27582490A JP 27582490 A JP27582490 A JP 27582490A JP H04151120 A JPH04151120 A JP H04151120A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
polarized light
polarization
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27582490A
Other languages
Japanese (ja)
Inventor
Masaharu Hara
原 政春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP27582490A priority Critical patent/JPH04151120A/en
Publication of JPH04151120A publication Critical patent/JPH04151120A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Abstract

PURPOSE:To manufacture TN liquid crystal at low cost by rotating the polarization direction of linear polarized light by high polymer liquid crystal. CONSTITUTION:The polarization direction of one linear polarized light beam (s polarization) split by a polarization beam splitter 1 is rotated by 90 deg. by the high polymer liquid crystal 2 and matches the polarization direction of the other linear polarized light beam (p polarization) split by the polarization beam splitter 1. For example, chiral liquid crystal which is used as the high polymer liquid crystal 2 is easily manufactured by forming a liquid crystal film on a glass plate by coating, etc. to simplify the structure. Consequently, the optical deflecting element which can be manufactured at low cost is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] このは発明は、液晶プロジェクタ−(こ使用される光偏
向素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid crystal projector (a light deflection element used therein).

[従来の技術] 第2図は、液晶プロジェクタ−の−例を示すものである
[Prior Art] FIG. 2 shows an example of a liquid crystal projector.

同図において、LAはキセノンランプ等の白色ランプで
ある。この白色ランプLAがらの白色光9vは光偏向素
子PCに供給される6 光偏向素子PCでは、不定偏光である白色光9Wが互い
に偏光方向が直交するP偏光およびS偏光に分離され、
P偏光またはS偏光の一方の偏光方向は90°回転され
る。そして、光偏向素子PCからは、偏光方向の揃った
2つの直線偏光が、それぞれ後述する液晶パネルの一側
半分および他側半分に供給されるように出力される。
In the figure, LA is a white lamp such as a xenon lamp. The white light 9V from the white lamp LA is supplied to the light deflection element PC6. In the light deflection element PC, the white light 9W, which is undefined polarization, is separated into P polarized light and S polarized light whose polarization directions are orthogonal to each other.
The polarization direction of either the P-polarized light or the S-polarized light is rotated by 90°. The light deflection element PC outputs two linearly polarized lights with the same polarization direction so as to be supplied to one half and the other half of a liquid crystal panel, which will be described later.

この光偏向素子PCからの直線偏光である白色光は、フ
ィルタPLで紫外線および赤外線が除去されて赤反射グ
イクロイックミラーDMIに入射される。
The linearly polarized white light from the optical deflection element PC has ultraviolet rays and infrared rays removed by the filter PL, and is then incident on the red reflecting gichroic mirror DMI.

このグイクロイックミラーDMIで反射される赤色光Q
rは、全反射ミラーM2で反射されたのちコンデンサレ
ンズC1で電光されて赤液晶パネルLCDIに入射され
る。赤液晶パネルLCDIでは、各画素部分に対応する
赤色光9rがそれぞれ赤のビデオ信号でもって明暗変調
される。これにより、赤液晶パネルLCDiからは赤色
画像を得る ための赤の像光11riが出力される。
Red light Q reflected by this guichroic mirror DMI
After being reflected by the total reflection mirror M2, the light r is electrified by the condenser lens C1 and enters the red liquid crystal panel LCDI. In the red liquid crystal panel LCDI, red light 9r corresponding to each pixel portion is brightly and darkly modulated with a red video signal. As a result, red image light 11ri for obtaining a red image is output from the red liquid crystal panel LCDi.

また、ダイクロイックミラーDMIを透過するシアン光
は青反射ダイクロイックミラーDM2に入射される。こ
のダイクロイックミラーDM2で反射される青色光Qb
はコンデンサレンズC2で集光されたのち青液晶パネル
LCD2に入射される。
Further, the cyan light transmitted through the dichroic mirror DMI is incident on the blue reflecting dichroic mirror DM2. Blue light Qb reflected by this dichroic mirror DM2
After being condensed by a condenser lens C2, the light is incident on a blue liquid crystal panel LCD2.

青液晶パネルLCD2では、各画素部分に対応する青色
光9bがそれぞれ青のビデオ信号でも って明暗変調さ
れる。これにより、青液晶パネルLCD2からは青色画
像を得るための青の像光ffbiが出力される。
In the blue liquid crystal panel LCD2, the blue light 9b corresponding to each pixel portion is brightly and darkly modulated by a blue video signal. As a result, blue image light ffbi for obtaining a blue image is output from the blue liquid crystal panel LCD2.

また、ダイクロイックミラーDM2を透過する緑色光9
gはコンデンサレンズC3で集光されて緑液晶パネルL
CD3に入射される。緑液晶パネルLCD3では、各画
素部分に対応する緑色光Qgがそれぞれ緑のビデオ信号
でもって明暗変調される。
Also, the green light 9 transmitted through the dichroic mirror DM2
g is focused by condenser lens C3 and sent to green liquid crystal panel L
It is input to CD3. In the green liquid crystal panel LCD3, the green light Qg corresponding to each pixel portion is brightly and darkly modulated using a green video signal.

これにより、緑液晶パネルLCD3からは緑色画像を得
るための緑の像光11g1が出力される。
As a result, green image light 11g1 for obtaining a green image is output from the green liquid crystal panel LCD3.

赤液晶パネルLCDIより出力される赤の像光11ri
および青液晶パネルLCD2より出力される青の像光Q
biは、それぞれ青反射ダイクロイックミラーDM3に
入射される。像光11riはダイクロイックミラーDM
3を透過すると共に、像光11biはダイクロイックミ
ラーDM3で反射される。これにより、ダイクロイック
ミラーM3からの像光ffriおよびQbiの合成光が
出力され、この合成光は緑反射グイクロイックミラーD
MAに入射される。
Red image light 11ri output from red liquid crystal panel LCDI
and blue image light Q output from the blue liquid crystal panel LCD2.
bi are respectively incident on the blue reflective dichroic mirror DM3. Image light 11ri is dichroic mirror DM
The image light 11bi is transmitted through the dichroic mirror DM3 and reflected by the dichroic mirror DM3. As a result, a composite light of the image light ffri and Qbi from the dichroic mirror M3 is output, and this composite light is transmitted to the green reflective mirror D.
The light is input to the MA.

緑液晶パネルLCD3より出力される緑の像光Qgiは
全反射ミラーM3に入射され、この全反射ミラーM3で
反射された緑の像光RgiはダイクロイックミラーDM
4に入射される。ダイクロイックミラーDM3より出力
される像光Rriおよび9blの合成光はダイクロイッ
クミラーDM4を透過すると共に、全反射ミラーM3か
らの像光QglはダイクロイックミラーDM4で反射さ
れる。これにより、ダイクロイックミラーDM4からは
像光Qri、1lbiおよびffgiの合成光が出力さ
れ、この合成光は投射レンズLNを介してスクリーンS
Cに投射され、スクリーンSC上には拡大されたカラー
画像が表示される。
The green image light Qgi output from the green liquid crystal panel LCD3 is incident on the total reflection mirror M3, and the green image light Rgi reflected by the total reflection mirror M3 is reflected on the dichroic mirror DM.
4. The combined light of the image lights Rri and 9bl output from the dichroic mirror DM3 passes through the dichroic mirror DM4, and the image light Qgl from the total reflection mirror M3 is reflected by the dichroic mirror DM4. As a result, the dichroic mirror DM4 outputs a composite light of the image lights Qri, 1lbi, and ffgi, and this composite light passes through the projection lens LN to the screen S.
C, and an enlarged color image is displayed on the screen SC.

第3図は、光偏向素子PCの具体構成を示す図である 同図において、白色ランプLAからの不定偏光である白
色光9vは偏光ビームスプリッタ21に供給され、偏光
方向が互いに直交する2つの直線偏光、つまりp偏光お
よびsN光に分離される。
FIG. 3 is a diagram showing a specific configuration of the optical deflection element PC. In the same figure, white light 9v, which is undefined polarization from a white lamp LA, is supplied to a polarization beam splitter 21, and is divided into two beams whose polarization directions are orthogonal to each other. It is separated into linearly polarized light, that is, p-polarized light and sN light.

反射する一方の偏光(S偏光)は、液晶パネルLCDI
〜LCD3の一側半分ALに供給されるように偏光ビー
ムスプリッタ21より出力される。
One of the reflected polarized lights (S polarized light) is reflected by the liquid crystal panel LCDI.
- It is outputted from the polarizing beam splitter 21 so as to be supplied to one half AL of the LCD 3.

透過する他方の偏光(p偏光)は、TN(ツイストネマ
ティック)型液晶22でもって偏光方向が90°回転さ
れ、さらに偏光ビームスプリッタ23で全反射させられ
、液晶パネルLCDI〜LCD3の他側半分BLに供給
されるように偏光ビームスプリッタ23より出力される
The polarization direction of the other polarized light (p-polarized light) that is transmitted is rotated by 90 degrees by the TN (twisted nematic) type liquid crystal 22, and then totally reflected by the polarizing beam splitter 23, and the other half BL of the liquid crystal panels LCDI to LCD3 is rotated by 90 degrees. It is output from the polarizing beam splitter 23 so as to be supplied to the polarizing beam splitter 23.

第3図例のように、光偏向素子PCを使用することによ
り、光源(白色ランプLA)からの光の利用効率を向上
させることができる。
As shown in the example in FIG. 3, by using the light deflection element PC, the efficiency of using light from the light source (white lamp LA) can be improved.

また、液晶パネルLCDI〜LCD3において不定偏光
を直線偏光に変換する偏向板(図示せず)に不定偏光で
はなく直線偏光が供給されるので、この偏光板における
熱吸収を略なくすことができ、さらには偏光板そのもの
を不要とできる。
In addition, since linearly polarized light is supplied to the polarizing plates (not shown) that convert irregularly polarized light into linearly polarized light in the liquid crystal panels LCDI to LCD3, instead of irregularly polarized light, heat absorption in these polarizing plates can be substantially eliminated. can eliminate the need for a polarizing plate itself.

才な、光偏向素子PCより偏向方向のそろった2つの直
線両光が出力され、それぞれ液晶パネルLCD1〜LC
D3の一側半分および他側半分に供給されるものであり
、2つの直線偏光・を合成用プリズム等で合成して液晶
パネルに供給するものではなく、光偏向素子PCは液晶
パネルLCDI〜LCD3との距離で仕様が変わること
はなく、興なる光学系で共通に使用できて安価に構成で
きる。
Two straight beams with the same polarization direction are output from the sophisticated optical deflection element PC, and each of them is sent to the liquid crystal panels LCD1 to LC.
It is supplied to one half and the other half of D3, and the two linearly polarized lights are not combined with a combining prism or the like and supplied to the liquid crystal panel, and the light deflection element PC is connected to the liquid crystal panels LCDI to LCD3 The specifications do not change depending on the distance from the optical system, and it can be used commonly in various optical systems and can be configured at low cost.

[発明が解決しようとする課題〕 ところで、第3図例における光偏向素子PCは、偏光(
P偏光)の偏光方向を90”回転させるのに、TNff
i液晶22を使用している。
[Problems to be Solved by the Invention] By the way, the optical deflection element PC in the example in FIG.
To rotate the polarization direction of P-polarized light by 90", TNff
i-liquid crystal 22 is used.

このTN型液晶22は低分子液晶で、製造に際してはガ
ラス間にシールして配向をそろえる複雑な工程が必要で
あるため高価であり、光偏向素子PC5したがって液晶
プロジェクタ−が高価となる欠点があった。
This TN type liquid crystal 22 is a low-molecular liquid crystal, and is expensive because it requires a complicated process of sealing between glasses and aligning the alignment, and has the disadvantage that the light deflection element PC5 and therefore the liquid crystal projector are expensive. Ta.

そこで、この発明では、安価に製造できる光偏向素子を
提供するものである。
Therefore, the present invention provides an optical deflection element that can be manufactured at low cost.

[課題を解決するための手段] この発明は、光源からの不定偏光を互いに直交する偏光
方向を有する第1および第2の直線偏光に分離する偏光
分離手段と、この偏光分離手段より出力される第2の直
線偏光の偏光方向を90゜回転させる高分子液晶と、こ
の高分子液晶で90°回転された第2の直線偏光の出力
方向を、偏光分離手段より出力される第1の直線偏光の
出力方向に合わせる反射部材とを備えてなるものである
[Means for Solving the Problems] The present invention includes a polarization separation means for separating irregularly polarized light from a light source into first and second linearly polarized light having mutually orthogonal polarization directions, and a polarization separation means output from the polarization separation means. A polymer liquid crystal that rotates the polarization direction of the second linearly polarized light by 90 degrees, and the output direction of the second linearly polarized light rotated by 90 degrees by the polymer liquid crystal is the first linearly polarized light output from the polarization separation means. and a reflecting member that matches the output direction of the output direction.

[作 用コ 偏光分離手段1で分離される一方の直線偏光の偏光方向
が高分子液晶2でもって90°回転され、偏光分離手段
1で分離される他方の直線偏光の偏光方向と一致するよ
うにされる。
[Function] The polarization direction of one linearly polarized light separated by the polarization separation means 1 is rotated by 90 degrees by the polymer liquid crystal 2 so that it matches the polarization direction of the other linearly polarized light separated by the polarization separation means 1. be made into

高分子液晶2、例えばキラル型液晶はガラス板にコーテ
ィング等で液晶膜を形成することで、簡単に製造できる
The polymer liquid crystal 2, for example, a chiral liquid crystal, can be easily manufactured by forming a liquid crystal film on a glass plate by coating or the like.

したがって、上述構成の光偏向素子は安価に製造できる
ことになる。
Therefore, the optical deflection element having the above structure can be manufactured at low cost.

[実 施 例] 以下、第1図を参照しながら、この発明の一実施例につ
いて説明する。この第1図において、第3図と対応する
部分には同一符号を付して示している。
[Embodiment] An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, parts corresponding to those in FIG. 3 are designated by the same reference numerals.

同図において、白色ランプLAからの不定偏光である白
色光9vは偏光ビームスプリッタ1に供給され、偏光方
向が互いに直交する2つの直線偏光、つtつpH光およ
びS偏光に分離される。
In the figure, white light 9v, which is irregularly polarized light, from a white lamp LA is supplied to a polarizing beam splitter 1, and is separated into two linearly polarized lights whose polarization directions are orthogonal to each other, a pH light and an S-polarized light.

透過する一方の偏光(p偏光)は、液晶パネルLCDI
〜LCD3の一側半分ALに供給されるように偏光ビー
ムスプリッタ1より出力される。
One polarized light (p-polarized light) that passes through the liquid crystal panel LCDI
It is output from the polarizing beam splitter 1 so as to be supplied to one half AL of the LCD 3.

反射する他方の偏光(S偏光)は、偏向ビームスプリッ
タ1の側面に形成される高分子液晶2を通過することに
より偏光方向が90°回転される。
The other polarized light (S-polarized light) that is reflected passes through a polymer liquid crystal 2 formed on the side surface of the polarizing beam splitter 1, so that its polarization direction is rotated by 90 degrees.

高分子液晶2としては1例えばキラル型液晶が使用され
る。キラル型液晶は低分子のTN液晶に対して高分子の
液晶であり、ガラス基板にコーティング算で液晶膜を形
成したものである。この場合、偏光方向の回転角度は膜
厚に依存する。上述せずも、本例においては、回転角度
が90°となるように膜厚が設定されている。
As the polymer liquid crystal 2, for example, a chiral type liquid crystal is used. Chiral type liquid crystal is a polymeric liquid crystal as opposed to a low molecular weight TN liquid crystal, and has a liquid crystal film formed on a glass substrate by coating. In this case, the rotation angle of the polarization direction depends on the film thickness. Although not mentioned above, in this example, the film thickness is set so that the rotation angle is 90 degrees.

高分子液晶2で偏光方向が90°回転された直線偏光は
、偏向ビームスプリッタ1に隣接して配設された直角プ
リズム3で全反射させられる。そして、この直線偏光は
液晶パネルLCDI〜LCD3の他側半分BLに供給さ
れるように直角プリズム3より出力される。
The linearly polarized light whose polarization direction has been rotated by 90 degrees by the polymer liquid crystal 2 is totally reflected by the right angle prism 3 disposed adjacent to the polarizing beam splitter 1. Then, this linearly polarized light is outputted from the right angle prism 3 so as to be supplied to the other half BL of the liquid crystal panels LCDI to LCD3.

このように本例においては、偏向ビームス1リツタlで
分離される一方の直線偏光(S偏向)の偏光方向が高分
子液晶2でもって90°回転され、偏光ビームスプリッ
タ1で分離される他方の直線偏光(p偏向)の偏光方向
と一致するようにされ高分子液晶2として使用される、
例えばキラル型液晶はガラス板にコーティング等で液晶
膜を形成することで、簡単に製造できる。
In this example, the polarization direction of one linearly polarized light (S polarization) separated by the polarizing beam splitter 1 is rotated by 90 degrees by the polymer liquid crystal 2, and the polarization direction of the other linearly polarized light (S polarized light) separated by the polarizing beam splitter 1 is rotated by 90 degrees. It is made to match the polarization direction of linearly polarized light (p polarization) and is used as a polymer liquid crystal 2.
For example, chiral liquid crystals can be easily manufactured by forming a liquid crystal film on a glass plate by coating or the like.

したがって、本例によれば、従来のようにTN型液晶を
使用して偏光方向を回転させるものに比べて、安価に製
造することができる。
Therefore, according to this example, it can be manufactured at a lower cost than the conventional one in which the polarization direction is rotated using a TN type liquid crystal.

なお 高分子液晶としては、キラル型液晶に限定される
ものでないことは勿論である。
It goes without saying that the polymer liquid crystal is not limited to chiral liquid crystal.

また、偏光分離手段は偏光ビームスプリッタ1に限定さ
れるものでなく、反射手段は直角プリズム3に限定され
るものではない。
Further, the polarization separation means is not limited to the polarization beam splitter 1, and the reflection means is not limited to the right angle prism 3.

[発明の効果] 以上、説明したように、この発明によれば、直線偏光の
偏光方向の回転を製造の容易な高分子液晶でもって行な
う構成としたので、TN型液晶を使用する従来のものに
比べて、安価に製造することができる。
[Effects of the Invention] As explained above, according to the present invention, since the rotation of the polarization direction of linearly polarized light is performed using a polymer liquid crystal that is easy to manufacture, the conventional method using a TN type liquid crystal can be used. It can be manufactured at a lower cost than the .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第 2図は液晶プロジェクタ−の−例の構成図、第3 図は従来例の構成図である。 偏光ビームスプリッタ 高分子液晶 直角プリズム FIG. 1 is a configuration diagram showing an embodiment of the present invention. Figure 2 is a configuration diagram of an example of a liquid crystal projector. The figure is a configuration diagram of a conventional example. polarizing beam splitter polymer liquid crystal right angle prism

Claims (1)

【特許請求の範囲】[Claims] (1)光源からの不定偏光を互いに直交する偏光方向を
有する第1および第2の直線偏光に分離する偏光分離手
段と、 上記偏光分離手段より出力される第2の直線偏光の偏光
方向を90°回転させる高分子液晶と、上記高分子液晶
で90°回転された第2の直線偏光の出力方向を、上記
偏光分離手段より出力される第1の直線偏光の出力方向
に合わせる反射部材とを備えてなる液晶プロジェクター
の光偏向素子。
(1) Polarization separation means for separating undefined polarized light from a light source into first and second linearly polarized light having mutually orthogonal polarization directions, and a polarization direction of the second linearly polarized light outputted from the polarization separation means at a polymer liquid crystal rotated by 90 degrees; and a reflecting member that aligns the output direction of the second linearly polarized light rotated by 90 degrees with the output direction of the first linearly polarized light output from the polarization separation means. A light deflection element for a liquid crystal projector.
JP27582490A 1990-10-15 1990-10-15 Optical deflecting element of liquid crystal projector Pending JPH04151120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27582490A JPH04151120A (en) 1990-10-15 1990-10-15 Optical deflecting element of liquid crystal projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27582490A JPH04151120A (en) 1990-10-15 1990-10-15 Optical deflecting element of liquid crystal projector

Publications (1)

Publication Number Publication Date
JPH04151120A true JPH04151120A (en) 1992-05-25

Family

ID=17560938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27582490A Pending JPH04151120A (en) 1990-10-15 1990-10-15 Optical deflecting element of liquid crystal projector

Country Status (1)

Country Link
JP (1) JPH04151120A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184130A (en) * 1997-09-12 1999-03-26 Sumitomo Bakelite Co Ltd Sheet-like polarizing element and liquid crystal display element using the same
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9370333B2 (en) 2000-08-21 2016-06-21 Biosensors International Group, Ltd. Radioactive-emission-measurement optimization to specific body structures
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US10964075B2 (en) 2004-01-13 2021-03-30 Spectrum Dynamics Llc Gating with anatomically varying durations

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184130A (en) * 1997-09-12 1999-03-26 Sumitomo Bakelite Co Ltd Sheet-like polarizing element and liquid crystal display element using the same
US9370333B2 (en) 2000-08-21 2016-06-21 Biosensors International Group, Ltd. Radioactive-emission-measurement optimization to specific body structures
US8909325B2 (en) 2000-08-21 2014-12-09 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures
US10964075B2 (en) 2004-01-13 2021-03-30 Spectrum Dynamics Llc Gating with anatomically varying durations
US9040016B2 (en) 2004-01-13 2015-05-26 Biosensors International Group, Ltd. Diagnostic kit and methods for radioimaging myocardial perfusion
US9470801B2 (en) 2004-01-13 2016-10-18 Spectrum Dynamics Llc Gating with anatomically varying durations
US9943278B2 (en) 2004-06-01 2018-04-17 Spectrum Dynamics Medical Limited Radioactive-emission-measurement optimization to specific body structures
US9316743B2 (en) 2004-11-09 2016-04-19 Biosensors International Group, Ltd. System and method for radioactive emission measurement
US9943274B2 (en) 2004-11-09 2018-04-17 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US10136865B2 (en) 2004-11-09 2018-11-27 Spectrum Dynamics Medical Limited Radioimaging using low dose isotope
US8837793B2 (en) 2005-07-19 2014-09-16 Biosensors International Group, Ltd. Reconstruction stabilizer and active vision
US8894974B2 (en) 2006-05-11 2014-11-25 Spectrum Dynamics Llc Radiopharmaceuticals for diagnosis and therapy
US9275451B2 (en) 2006-12-20 2016-03-01 Biosensors International Group, Ltd. Method, a system, and an apparatus for using and processing multidimensional data

Similar Documents

Publication Publication Date Title
US4989076A (en) Video projection apparatus
US5575548A (en) Full color three dimensional projector
KR101092576B1 (en) Liquid crystal display projection system, light engine arrangement and method for generating pictures that can be viewed stereoscopically
JP2002544567A (en) Color imaging system and method
JPH04347994A (en) Projector for solid
JP2001318426A5 (en)
JPH04151120A (en) Optical deflecting element of liquid crystal projector
JPS63182987A (en) Light polarizing element for liquid crystal display projector
KR20110105351A (en) Liquid crystal device and projection display device
US7359122B2 (en) Prism assembly
JPH11212051A (en) Liquid crystal projector
KR20020050854A (en) Device for color separation and combination
KR20040082393A (en) Brighter light engine architecture for a liquid crystal display projection system
US7318645B2 (en) Beam splitter
JPH08220657A (en) Projector
KR100632518B1 (en) Transmissive Illumination Optics
JPH0463318A (en) Liquid crystal projector
JPH0341434A (en) Projection type display device
JPH04216543A (en) Liquid crystal projector
CN1393720A (en) Light splitting-gathering flat projection display
JP3570693B2 (en) LCD video projector
JP3570693B6 (en) LCD video projector
JPS63267089A (en) Liquid crystal projector
KR100499473B1 (en) Two Plate Type Display Device Using P-Wave
KR200371900Y1 (en) Improved polarizing device applied on a projector