JPH041509A - Noncontact three-dimensional coordinate measuring method - Google Patents

Noncontact three-dimensional coordinate measuring method

Info

Publication number
JPH041509A
JPH041509A JP10236790A JP10236790A JPH041509A JP H041509 A JPH041509 A JP H041509A JP 10236790 A JP10236790 A JP 10236790A JP 10236790 A JP10236790 A JP 10236790A JP H041509 A JPH041509 A JP H041509A
Authority
JP
Japan
Prior art keywords
point
measured
spot diameter
dimensional
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10236790A
Other languages
Japanese (ja)
Inventor
Tsunehito Iwaki
岩城 常仁
Hitoshi Kihara
均 木原
Hideki Imai
今井 秀記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10236790A priority Critical patent/JPH041509A/en
Publication of JPH041509A publication Critical patent/JPH041509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To easily attain measurements in a short time by monitoring variation in the diameter of a beam spot on the surface of an object with a measuring instrument and controlling the focus position, and measuring the controlled variables of respective elements of a three-dimensional beam scanner device. CONSTITUTION:A light beam is projected on the object to e measured which is installed in a measurement space and not optically transparent to measure the coordinates of an optional point on the surface of the object without contacting. By this measuring method, the spot diameter of the beam at the projection point 9' is monitored by the measuring instrument 10 such as a photoelectric converting element array and a CCD array and the variation in the spot diameter is fed back to a uniaxial moving mechanism 4''. For the purpose, the spot diameter of the beam at focus 8 is minimized by controlling the uniaxial moving mechanism 4'' in the direction wherein the spot diameter is always reduced to align the projection point 9' on the surface of the object 9 with the focus 8 at all times, and the coordinate values of the optional point on the surface of the object 9 can be measured from the current inclination and focal length of the laser beam 2 in a reference coordinate system.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は測定対象物表面の任意の点の座標位置を非接触
で光学的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for optically measuring the coordinate position of an arbitrary point on the surface of an object to be measured in a non-contact manner.

(ロ)従来の技術 従来の非接触三次元座標測定方法は、特定形状またはパ
ターンを有するレーザ光を測定対象に投射し、測定対象
の表面に投影されたレーザビーム光の像をテレビカメラ
にて撮影し、得られた画像を処理することによって測定
対象表面上の特定点を抽出し、三角測量の原理を用いて
該特定点の三次元座標を測定する方法で、投射するビー
ムの方式によって、レーザ光源式と空間コード化式に大
別される。
(B) Conventional technology In the conventional non-contact three-dimensional coordinate measurement method, a laser beam having a specific shape or pattern is projected onto the measurement target, and an image of the laser beam projected onto the surface of the measurement target is captured using a television camera. A method in which a specific point on the surface of the measurement object is extracted by photographing and processing the obtained image, and the three-dimensional coordinates of the specific point are measured using the principle of triangulation. Broadly divided into laser light source type and spatial coding type.

レーザ光源式は、特公昭50−36374号で開示され
ているように、水平または垂直方向に直線上に伸びるレ
ーザビーム光を測定対象に投射し、該ビーム、光投射部
近傍をカメラにて撮影し、得られた画像を処理すること
によって該測定対象表面に於て測定対象の表面形状に対
応して直線形状から変形した該ビーム光の二次元像を抽
出する。得られたビーム光の二次元像は該直線状ビーム
によってスライスされた該対象物の水平または垂直断面
形状の斜視図に対応する。該斜視図のカメラ視野内にお
ける二次元座標系、ビーム投射装置と撮像カメラ間の距
離である基線長、該基線に対するビーム投射装置および
撮像カメラの傾き角より三角測量法の原理を用いて、該
測定対象物表面におけるビーム投射部上の特定点の三次
元座標を測定する。
The laser light source type, as disclosed in Japanese Patent Publication No. 50-36374, projects a laser beam extending in a straight line in the horizontal or vertical direction onto the measurement target, and photographs the beam and the vicinity of the light projection part with a camera. Then, by processing the obtained image, a two-dimensional image of the beam light deformed from a linear shape corresponding to the surface shape of the measurement object on the surface of the measurement object is extracted. The obtained two-dimensional image of the light beam corresponds to a perspective view of a horizontal or vertical cross-sectional shape of the object sliced by the linear beam. Using the principle of triangulation, the two-dimensional coordinate system within the camera field of view of the perspective view, the baseline length that is the distance between the beam projection device and the imaging camera, and the inclination angle of the beam projection device and the imaging camera with respect to the baseline, Measures the three-dimensional coordinates of a specific point on the beam projection unit on the surface of the object to be measured.

ビーム投射部を順次移動させてやることにより該測定対
象物表面の全ての点の座標値が得られる。
By sequentially moving the beam projection section, coordinate values of all points on the surface of the object to be measured can be obtained.

一方、空間コード化式では、複数種類のパターンを有す
るレーザビーム光を投射角を変化させずに時系列的に順
次測定対象に投射し、同じく中心角を変化させずにパタ
ーンの各種類毎に測定対象物をカメラにて撮影し、得ら
れた画像を処理することによって測定対象物表面上の微
小領域をパターンの時系列的な現れ方によってli別し
、その結果として測定対象表面上の特定点を柚畠し、パ
ターンビーム投射装置と撮像カメラ間の距離である基線
長、該基線に対する該特定点とパターンビーム投射装置
および撮像カメラの中心を結ぶ線分の傾き角より三角測
量法の原理を用いて、該測定対象物表面における各特定
点の三次元座標を測定する。
On the other hand, in the spatial coding method, a laser beam having multiple types of patterns is sequentially projected onto the measurement target in time series without changing the projection angle, and each type of pattern is By photographing the object to be measured with a camera and processing the resulting image, minute areas on the surface of the object to be measured are classified based on how patterns appear over time, and as a result, specific areas on the surface of the object to be measured are identified. The principle of the triangulation method is based on the base line length, which is the distance between the pattern beam projection device and the imaging camera, and the inclination angle of the line segment connecting the specific point with respect to the baseline and the center of the pattern beam projection device and the imaging camera. is used to measure the three-dimensional coordinates of each specific point on the surface of the object to be measured.

(ハ)発明が解決しようとする課題 ところで、上述した座標測定方法の内、レーザ光源式で
は、三角測量法の原理を応用しているため、ビーム投射
装置と撮像カメラ間の距離である基線長の精密な計測を
必要とし、そのための較正治具などが必要である。さら
に、カメラ視野内における二次元座標系に基づくビーム
光の二次元像の座標値を用いて三次元座標を求めている
ため、二次元像を二次元座標値化するときにカメラの画
素数による分解能によって生じる量子化誤差が大きく影
響する。この分解能を高精度化する為にカメラの画業数
を増加させると画像メモリ容量の増加や画像処理時間の
増大を招き、又、基線長を長くすると装置の規模が大型
化するといった問題点がある。
(c) Problems to be solved by the invention By the way, among the coordinate measuring methods mentioned above, the laser light source method applies the principle of triangulation, so the baseline length, which is the distance between the beam projection device and the imaging camera, is requires precise measurement, and calibration jigs and other equipment are required for this purpose. Furthermore, since the three-dimensional coordinates are determined using the coordinate values of the two-dimensional image of the beam light based on the two-dimensional coordinate system within the field of view of the camera, when converting the two-dimensional image into two-dimensional coordinate values, the number of pixels of the camera Quantization errors caused by resolution have a large effect. Increasing the number of camera scans in order to increase the precision of this resolution leads to an increase in image memory capacity and image processing time, and increasing the baseline length causes problems such as an increase in the size of the equipment. .

また空間コード化式では、三角測量法の原理を応用して
いるため前記レーザ光源式同様の問題点を有することは
もとより、測定対象表面における分解能を向上させるた
めにはパターンの種類を増す必要があり、これにつれて
パターンを形成するマスク等が多数しかも微細な加工で
求められ、さらに撮影された画像数も増加しメモリ容量
や画像処理の回数も増大し、装置の制作費用や測定時の
処理時間が膨大となる問題がある。
Furthermore, since the spatial coding method applies the principle of triangulation, it not only has the same problems as the laser light source method described above, but also requires an increase in the types of patterns in order to improve the resolution on the surface of the object to be measured. As a result, a large number of masks, etc. to form patterns are required, and they are required to be processed in minute detail.Furthermore, the number of images taken increases, memory capacity and the number of image processing operations also increase, which increases equipment production costs and processing time during measurement. The problem is that the amount of data is enormous.

本発明は上記問題点に鑑み、三角測量法の原理を用いず
、かつ測定対象物の表面をカメラにて撮影した画像を直
接三次元座標算出に用いずに、簡便に且つ短時間で測定
可能な非接触三次元座標測定方法を提供することを目的
とする。
In view of the above-mentioned problems, the present invention enables measurement easily and in a short time without using the principle of triangulation and without directly using an image of the surface of a measurement object taken by a camera to calculate three-dimensional coordinates. The purpose of this invention is to provide a non-contact three-dimensional coordinate measurement method.

(ニ)課題を解決するための手段 本発明では、測定空間内に設置された光学的に透明でな
い測定対象物に対し、光ビームを投射することによって
非接触で該対象物の表面の任意の点の座標を測定する方
法に於て、該光ビームの光源としてレーザ光を用い、さ
らに該レーザ光ビームの投射手段として測定空間内の任
意の点に集光可能な三次元ビームスキャナー装置で測定
対象物表面上への該光ビームの投射点を該光ビームの焦
点になる様に常に制御し、その時点でのレーザビームの
基準座標系内での傾きと焦点距離より測定対象物表面の
任意の点の座標値を得るようにしている。
(d) Means for Solving the Problems In the present invention, by projecting a light beam onto an optically non-transparent measurement object installed in a measurement space, any part of the surface of the object can be detected without contact. In the method of measuring the coordinates of a point, a laser beam is used as the light source of the light beam, and a three-dimensional beam scanner device capable of focusing the laser beam on an arbitrary point in the measurement space is used as a projection means for the laser beam. The projection point of the light beam onto the surface of the object is always controlled so that it becomes the focal point of the light beam, and an arbitrary point on the surface of the object to be measured is determined from the inclination and focal length of the laser beam within the reference coordinate system at that point. I am trying to get the coordinate values of the point.

(ホ)作用 本発明は上記手段を用いるため、対象物表面上のビーム
スポット径の変化を光電変換素子アレイやCCDアレイ
等の計測器でモニターすることによって焦点位置の制御
を行い、三次元ビームスキャナー装置の各蚕業の制御量
を計測するだけで、三角測量法を用いず、しかも画像処
理も行わずに簡便かつ短時間に測定対象物の三次元座標
測定することが可能である。
(E) Effect Since the present invention uses the above means, the focal position is controlled by monitoring changes in the beam spot diameter on the object surface with a measuring instrument such as a photoelectric conversion element array or a CCD array, and the three-dimensional beam is It is possible to easily and quickly measure the three-dimensional coordinates of the object to be measured without using triangulation or image processing by simply measuring the control amount of each silkworm with the scanner device.

(へ)実施例 以下、本発明の実施例について図面を用いて説明する。(f) Example Embodiments of the present invention will be described below with reference to the drawings.

lI1図は本発明測定方法を実施するための装置の光学
系模式配置の一例を示している。同図において、レーザ
発振機lから出射されたレーザビーム2は、それぞれビ
ーム光軸3上に配置されている焦点孔Hr +の凹面レ
ンズ4.焦点距離f、の凸面レンズ5.ベンダーミラー
6.7を経由してビーム光軸3上のビーム焦点8で集光
しスポット径を最小にし、次に漸次スポット径を拡大し
つつ測定対象物9表面上のビーム投射点9°に至る。こ
こで、凹面レンズ4は1軸移動機$4”により光軸3と
平行に前後に移動可能であり、ベンダーミラー6.7は
それぞれ回転駆動機構1112により互いに直交し且つ
いずれも光軸3と直交する軸 に関して回転可能である
。本来は、第2図に示すが如く該ミラー6.7によって
光軸3は折り曲げられているがビーム焦点位置に関して
は不干渉である為、第1図においては直線上に簡略化し
て配置した。一方、凸面レンズ5は固定されている。1
軸移動機構4”によって凹面レンズ4が光軸3上を移動
すると凹面レンズ4と凸面レンズ5の間隔a−f+は変
化するが、ここで、f、は凹面レンズの焦点距離である
ため不変であり、従って、凹面レンズ4の焦点4゛ と
凸面レンズ5の距離aも変化する。凸レンズ5の焦点距
離はf、であるため、焦点4゛に対する凸面レンズ5の
結像位置である焦点8と凸面レンズ5との距離すは b=a  f 、/(a−f 、) で示される。投射点9°におけるビームのスポット径は
光電変素子アレイやCCDアレイ等の計測器10でモニ
ターされ、そのスポット径の変化は1軸移動機構4”に
フィードバックされる。従って、スポット径を常に縮小
する方向に1軸移動機構4”を制御して焦点8における
ビームのスポット径を最小にすることより、測定対象物
9表面上の投射点9゛ を常に焦点8と一致させること
が可能である。
FIG. 1I1 shows an example of a schematic arrangement of an optical system of an apparatus for carrying out the measuring method of the present invention. In the figure, a laser beam 2 emitted from a laser oscillator 1 is transmitted through a concave lens 4. Convex lens with focal length f, 5. The beam is focused at a beam focal point 8 on the beam optical axis 3 via a bender mirror 6.7 to minimize the spot diameter, and then the spot diameter is gradually expanded to a beam projection point 9° on the surface of the object 9 to be measured. reach. Here, the concave lens 4 can be moved back and forth parallel to the optical axis 3 by a single-axis moving machine $4'', and the bender mirrors 6 and 7 are perpendicular to each other and are both aligned with the optical axis 3 by a rotation drive mechanism 1112. It is rotatable about orthogonal axes.Originally, the optical axis 3 is bent by the mirrors 6 and 7 as shown in Fig. 2, but since there is no interference with the beam focal position, in Fig. 1 They are arranged in a simplified manner on a straight line.On the other hand, the convex lens 5 is fixed.1
When the concave lens 4 is moved on the optical axis 3 by the axis movement mechanism 4'', the distance a−f+ between the concave lens 4 and the convex lens 5 changes, but since f is the focal length of the concave lens, it remains unchanged. Therefore, the distance a between the focal point 4' of the concave lens 4 and the convex lens 5 also changes.Since the focal length of the convex lens 5 is f, the focal point 8, which is the imaging position of the convex lens 5 with respect to the focal point 4', changes. The distance to the convex lens 5 is expressed as b=a f ,/(a-f , ).The beam spot diameter at the projection point 9° is monitored by a measuring instrument 10 such as a photoelectric element array or a CCD array. The change in spot diameter is fed back to the uniaxial movement mechanism 4''. Therefore, by controlling the uniaxial movement mechanism 4'' in the direction of always reducing the spot diameter to minimize the beam spot diameter at the focal point 8, the projection point 9' on the surface of the object to be measured 9 is always kept at the focal point 8. It is possible to match.

第2図は本発明測定方法を実施するための三次元ビーム
スキャナー装置によるビームスキャニングの1例を示す
斜視図である。凸面レンズ5を経由したビームはベンダ
ーミラー6にてその先軸3を折り曲げられ、次に、ベン
ダーミラー7にてさらにその先軸を折り曲げられて測定
対象物9表面上の焦点8(投射点9°)に投射される。
FIG. 2 is a perspective view showing an example of beam scanning by a three-dimensional beam scanner device for carrying out the measurement method of the present invention. The beam passing through the convex lens 5 has its tip axis 3 bent by a bender mirror 6, and then its tip axis is further bent by a bender mirror 7 to form a focal point 8 (projection point 9) on the surface of the measurement object 9. °).

それぞ光軸3を直交方向に変向(13)、(14)させ
、しかもベンダーミラー6の回転軸15と光軸3はベン
ダーミラー6における光軸3の入射点17にて直交し、
ベンダーミラー7の回転軸16は光軸3,13にて定ま
る平面上にあって光軸13のベンダーミラー7への入射
点18において光軸13と直交するように配置されてい
る。従って、回転駆動機構11によりベンダーミラー6
を回転軸15の回りにθ1回転させると光軸3は直交方
向13より2θ□傾き(13”)、ペ ンダ −ミラ−
7に入射する。一方、ベンダーミラー6が初期位置のま
まで、回転駆動機tIlf12によりベンダーミラー7
を回転軸16の回りにθ77回転せると光軸13は直交
方向14より2θア傾き(14’ )、sl に投射さ
れる。従って、ベンダーミラー6.7がともに08.θ
アずつ回転すれば光軸3は13°  14″の経路をた
どって焦点8に投射される。そこで、光軸13,14の
交点即ちベンダーミラー7の初期入射点18を基準座標
系の原点としベンダーミラー7の回転軸16をX軸、ベ
ンダーミラー6の初期入射点17とベンダーミラー7の
初期入射点18を結ぶ線分及びその延長をY軸、原点1
8 を通りベンダーミラー6の回転軸15と並行な軸を
Z紬とする。該基準座標系における焦点8の座標を(x
+ y+ z)とする。焦点8を含みZ軸と直交する平
面を考え、該平面とZ軸との交点を8”、光軸14’ 
との交点を8゛とすると、8”、8°の基準座標系にお
ける座標はそれぞれ(0,O,z)、(0,y、z)と
なる。ここで、光軸3.  13.14にそった経路に
おける距離の関係は第1図の関係と等価であり、凸面レ
ンズ 5の中心と入射点17との距離はg、入射点17
と18の距離はeとなる。
The optical axis 3 is turned in orthogonal directions (13) and (14), respectively, and the rotation axis 15 of the bender mirror 6 and the optical axis 3 are orthogonal to each other at the incident point 17 of the optical axis 3 on the bender mirror 6,
The rotation axis 16 of the bender mirror 7 is on a plane defined by the optical axes 3 and 13 and is arranged to be perpendicular to the optical axis 13 at an incident point 18 of the optical axis 13 onto the bender mirror 7. Therefore, the bender mirror 6 is rotated by the rotary drive mechanism 11.
When rotated by θ1 around the rotation axis 15, the optical axis 3 is tilted 2θ□ (13”) from the orthogonal direction 13, and the pender mirror
7. On the other hand, while the bender mirror 6 remains in its initial position, the bender mirror 7 is rotated by the rotary drive machine tIlf12.
When rotated by θ77 around the rotation axis 16, the optical axis 13 is projected at an angle of 2θa (14') sl from the orthogonal direction 14. Therefore, both vendor mirrors 6.7 and 08. θ
If the optical axis 3 is rotated by a, the optical axis 3 follows a path of 13° 14'' and is projected onto the focal point 8. Therefore, the intersection of the optical axes 13 and 14, that is, the initial incident point 18 of the bender mirror 7, is set as the origin of the reference coordinate system. The rotation axis 16 of the bender mirror 7 is the X axis, the line segment connecting the initial incident point 17 of the bender mirror 6 and the initial incident point 18 of the bender mirror 7 and its extension is the Y axis, and the origin 1
The axis passing through 8 and parallel to the rotating axis 15 of the bender mirror 6 is defined as Z pongee. The coordinates of the focal point 8 in the reference coordinate system are (x
+ y + z). Consider a plane that includes the focal point 8 and is orthogonal to the Z-axis, the intersection of this plane and the Z-axis is 8'', and the optical axis is 14'.
If the intersection with The distance relationship along the path along the path is equivalent to the relationship shown in FIG. 1, and the distance between the center of the convex lens 5 and the point of incidence 17 is g,
The distance between and 18 is e.

第3図は本発明測定方法を実施するための三次元ビーム
スキャナー装置における焦点 の座標とスキャナー各要
素の制御量との関係を示す原理図である。第3図中の点
17. 18.8’ 、  8. 18゛で表される図
形は本来ベンダーミラー7によって折り曲げられている
が、X軸に関して点1718.18°で表される図形を
回転させ、光軸13.13’ が光軸14’  14”
の延長と一致するようにしても差し支えなく、その結果
鎖点1718.8°、8.18’ で表される図形は点
17.8’ 、8で表される三角形に展開される。Z1
8.17.18’ はベンダーミラー6による偏向角で
あるから2θ、  1,4:8’ 、18.8”はベン
ダーミラー6による偏向角であるから2θ。
FIG. 3 is a principle diagram showing the relationship between the coordinates of the focal point and the control amount of each scanner element in a three-dimensional beam scanner device for carrying out the measurement method of the present invention. Point 17 in Figure 3. 18.8', 8. The figure represented by 18° is originally bent by the bender mirror 7, but by rotating the figure represented by the point 1718.18° with respect to the X axis, the optical axis 13.13' becomes the optical axis 14'14''
As a result, the figure represented by chain points 1718.8° and 8.18' is expanded into a triangle represented by points 17.8' and 8. Z1
8.17.18' is the deflection angle by the bender mirror 6, so it is 2θ, and 1,4:8', 18.8'' is the deflection angle by the bender mirror 6, so it is 2θ.

となる。又、基準座標系原点18と8″との距離は z
   17と18の距離はベンダーミラー67の距離で
あるからe、焦点8と17の距離は凸面レンズ5の中心
と焦点8との距離すから該凸面レンズ5の中心とベンダ
ーミラー6との距離gを減じたb−gとなる。以上の角
度、距離関係より焦点8の座標値X+  Y+  Zと
スキャナー各要素の制御量θ、、011  a  との
関係はz w((b −a )cos2 lx −e 
)cos2 #yxm(b−a)sinZ#x y =z tan21y で一意的に示される。
becomes. Also, the distance between the origins 18 and 8'' of the reference coordinate system is z
The distance between 17 and 18 is the distance between the bender mirror 67, e, and the distance between the focal points 8 and 17 is the distance between the center of the convex lens 5 and the focal point 8, so the distance between the center of the convex lens 5 and the bender mirror 6 is g. It becomes b-g, which is obtained by subtracting . From the above angle and distance relationship, the relationship between the coordinate value X+Y+Z of the focal point 8 and the control amount θ, 011 a of each scanner element is z w ((b − a ) cos2 lx − e
) cos2 #yxm(b-a) sinZ#x y =z tan21y.

(ト)発明の効果 以上述べた如く、本発明の非接触三次元座標測定方法に
よれば、対象物表面上のビームスポット径の変化を光電
変換素子アレイやCCDアレイ等の計測器でモニターす
ることによって焦点位置の制御を行い、三次元ビームス
キャナー装置の各要素の制御量を計測するだけで、三角
測量法の原理を用いず、しかも画像処理も行わずに、簡
便かつ短時間に測定対象物の三次元座標位置を測定する
ことができる。
(G) Effects of the Invention As described above, according to the non-contact three-dimensional coordinate measuring method of the present invention, changes in the beam spot diameter on the surface of an object are monitored using a measuring instrument such as a photoelectric conversion element array or a CCD array. By simply controlling the focal position and measuring the control amount of each element of the 3D beam scanner device, you can easily and quickly determine the measurement target without using the principles of triangulation or image processing. It is possible to measure the three-dimensional coordinate position of an object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる非接触三次元座標測定方法を実
施するための光学系模式配置 を示す概略構成図、第2図は本発明に係わる非接触三次
元座標測定方法の1実施例におけるビームのスキャニン
グ法を示す概略構成図、第3図は本発明に係わる非接触
三次元座標測定方法の1実施例における焦点の座標とス
キャナー各要素の制御量との関係を示す原理図である。 1・・・レーザ発振機、 2 ・ ・ 3 ・ − 4φ φ 5 ・ ・ 6.7 8 ・ ・ 11゜ レーザビーム、 ビーム光軸、 凹レンズ、 凸レンズ、 ・・ベンダーミラー ビーム焦点、 測定対象物、 2・・・回転駆動機構。
FIG. 1 is a schematic configuration diagram showing the schematic arrangement of an optical system for implementing the non-contact three-dimensional coordinate measuring method according to the present invention, and FIG. FIG. 3 is a schematic configuration diagram showing a beam scanning method. FIG. 3 is a principle diagram showing the relationship between the coordinates of a focal point and the control amount of each scanner element in an embodiment of the non-contact three-dimensional coordinate measuring method according to the present invention. 1... Laser oscillator, 2 ・ ・ 3 ・ − 4φ φ 5 ・ ・ 6.7 8 ・ ・ 11° laser beam, beam optical axis, concave lens, convex lens, ... bender mirror beam focus, measurement object, 2 ...Rotary drive mechanism.

Claims (1)

【特許請求の範囲】[Claims] (1)測定空間内に設置された光学的に透明でない測定
対象物に対し、光ビームを投射することによって非接触
で該対象物の表面の任意の点の座標位置を測定する方法
に於て、レーザ光源と、このレーザ光源から発せられる
レーザビーム光を測定空間内の任意の点に集光可能な三
次元ビームスキャナー装置と、を用い、測定対象物表面
上への該ビーム光の投射点を該ビーム光の焦点になる様
に常に三次元ビームスキャナー装置を制御し、その時点
でのレーザビーム光の基準座標系内での傾きと焦点距離
より測定対象物表面の任意の点の座標位置を得ることを
特徴とした非接触三次元座標測定方法。
(1) A method of measuring the coordinate position of an arbitrary point on the surface of an optically non-transparent measurement object installed in a measurement space by projecting a light beam onto the object without contacting the object. , using a laser light source and a three-dimensional beam scanner device that can focus the laser beam emitted from the laser light source on any point in the measurement space, to project the beam onto the surface of the object to be measured. The three-dimensional beam scanner device is always controlled so that the beam becomes the focal point, and the coordinate position of any point on the surface of the object to be measured is determined from the inclination and focal length of the laser beam within the reference coordinate system at that point. A non-contact three-dimensional coordinate measuring method characterized by the following:
JP10236790A 1990-04-18 1990-04-18 Noncontact three-dimensional coordinate measuring method Pending JPH041509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236790A JPH041509A (en) 1990-04-18 1990-04-18 Noncontact three-dimensional coordinate measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236790A JPH041509A (en) 1990-04-18 1990-04-18 Noncontact three-dimensional coordinate measuring method

Publications (1)

Publication Number Publication Date
JPH041509A true JPH041509A (en) 1992-01-07

Family

ID=14325491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236790A Pending JPH041509A (en) 1990-04-18 1990-04-18 Noncontact three-dimensional coordinate measuring method

Country Status (1)

Country Link
JP (1) JPH041509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448360A (en) * 1992-12-18 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Three-dimensional image measuring device
US6119942A (en) * 1997-06-23 2000-09-19 Sick Ag Method and apparatus for determining the position of the focus of an opto-electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448360A (en) * 1992-12-18 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Three-dimensional image measuring device
US5559603A (en) * 1992-12-18 1996-09-24 Kabushiki Kaisha Komatsu Seisakusho three-dimensional image measuring device
US5568261A (en) * 1992-12-18 1996-10-22 Kabushiki Kaisha Komatsu Seisakusho Three-dimensional image measuring device
US5629773A (en) * 1992-12-18 1997-05-13 Kabushiki Kaisha Komatsu Seisakusho Three-dimensional image measuring device
US6119942A (en) * 1997-06-23 2000-09-19 Sick Ag Method and apparatus for determining the position of the focus of an opto-electronic apparatus

Similar Documents

Publication Publication Date Title
US11022692B2 (en) Triangulation scanner having flat geometry and projecting uncoded spots
US6480287B2 (en) Three dimensional scanning system
JP2006514739A5 (en)
CN109115126A (en) The calibration of triangular measuring transducer
JP2006514739A (en) Dental laser digitizer system
JP6415281B2 (en) Probe apparatus and probe method
JP3923945B2 (en) Non-contact surface shape measurement method
JP2006516719A (en) 3D shape measuring device
JP2003527582A (en) Phase profile measurement system with telecentric projector
JP2004504586A (en) A method for contactless measurement of object geometry.
US7375827B2 (en) Digitization of undercut surfaces using non-contact sensors
JP2008241643A (en) Three-dimensional shape measuring device
JP5798823B2 (en) Abscissa calibration jig and abscissa calibration method for laser interference measuring apparatus
US7777874B2 (en) Noncontact surface form measuring apparatus
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP4532556B2 (en) Interferometer with mirror device for measuring objects
JP2018066767A (en) Shape measuring device, structure manufacturing system, and shape measuring method
JPH05306915A (en) Method and instrument for measuring shape
KR100499697B1 (en) Three-dimensional image measuring apparatus and method thereof
JPH041509A (en) Noncontact three-dimensional coordinate measuring method
JP2015081894A (en) Surface shape measurement device and surface shape measurement method
JPS60117102A (en) Welding-seam profile-detecting apparatus
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JP3938341B2 (en) Shape measuring device
JPH02268207A (en) Shape recognizing apparatus