JPH04150949A - Preparation of metal carrier - Google Patents

Preparation of metal carrier

Info

Publication number
JPH04150949A
JPH04150949A JP2275647A JP27564790A JPH04150949A JP H04150949 A JPH04150949 A JP H04150949A JP 2275647 A JP2275647 A JP 2275647A JP 27564790 A JP27564790 A JP 27564790A JP H04150949 A JPH04150949 A JP H04150949A
Authority
JP
Japan
Prior art keywords
honeycomb body
corrugated
wave height
metal carrier
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2275647A
Other languages
Japanese (ja)
Inventor
Yasushi Ishikawa
泰 石川
Toshikazu Nakagawa
中川 俊和
Masao Yashiro
八代 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2275647A priority Critical patent/JPH04150949A/en
Publication of JPH04150949A publication Critical patent/JPH04150949A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To rationalize the flow of exhaust gas by a method wherein a corrugated foil prepared so as to change the height of the corrugations of the corrugated foil corresponding to the specific layer of a honeycomb body and a flat foil are alternately superposed one upon another and wound in a vortex shape to prepare a honeycomb body wherein the cell density of a specific range of a layer is different from that of other layer. CONSTITUTION:A flat foil 2 and a corrugated foil 1 are alternately superposed one upon another and wound in a vortex shape to prepare a metal carrier having a honeycomb body 2. At this time, the corrugated foil 1 prepared so as to change the height of the corrugations of the corrugated foil 1 corresponding to a specific range of the layer of the honeycomb body 8 and the flat foil 2 are alternately superposed one upon another to be wound in a vortex shape. By this method, the honeycomb body wherein the cell density of the specific range of the layer C is different from that of other layer is formed. As a result, the flow of the exhaust gas passing through the honeycomb body becomes rational and the catalyst supported on the honeycomb body acts uniformly and efficiently.

Description

【発明の詳細な説明】 (産業の利用分野) 本発明は、自動車エンジン等の排ガス系に設置し、該排
ガスを浄化するための断面が円またはレーストラック状
あるいは楕円である触媒用金属担体の製造方法に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a metal carrier for a catalyst having a circular, racetrack or elliptical cross section, which is installed in the exhaust gas system of an automobile engine or the like to purify the exhaust gas. This relates to a manufacturing method.

(従来技術) 従来、自動車エンジン等の排ガス浄化に、コージオライ
ト等のセラミックス製ハニカム上に白金等の貴金属触媒
を担持する構造の担体が使用され、これが現在でも主流
を占めているが、このセラミックス製ハニカム担体は排
気抵抗が相対的に高く、またハニカム体の破壊を防止す
るためにこれを支持する外筒との間にステンレスメツシ
ュを緩衝用に挿入するが、これの耐熱性に制約されるこ
とがあり、これらの欠点がない金属担体が最近注目され
、実用化され始めた。
(Prior art) Conventionally, a support structure in which a precious metal catalyst such as platinum is supported on a honeycomb made of ceramics such as cordiolite has been used to purify exhaust gas from automobile engines, etc., and this is still the mainstream. The honeycomb carrier made of aluminum has relatively high exhaust resistance, and in order to prevent the honeycomb body from breaking, a stainless steel mesh is inserted as a buffer between the outer cylinder supporting the honeycomb body, but this is limited by its heat resistance. Metal supports that do not have these drawbacks have recently attracted attention and have begun to be put into practical use.

この金属担体は、一般に50虜前後の厚さを有する耐熱
性ステンレス製の平板と、波付は加工された波板とを重
ねて巻回あるいは積層し、筒状にハニカム体を形成し、
これを耐熱性のステンレス外筒管に挿入してから、平板
/波板間およびハニカム体/外筒間をロウ付けあるいは
抵抗溶接、レーザ溶接、電子ビーム溶接等で接合して製
造されている。
This metal carrier is generally made by winding or laminating a heat-resistant stainless steel flat plate having a thickness of about 50 mm and a corrugated plate to form a cylindrical honeycomb body.
This is inserted into a heat-resistant stainless steel outer cylinder tube, and then the flat plate/corrugated plate and the honeycomb body/outer cylinder are joined together by brazing, resistance welding, laser welding, electron beam welding, etc.

本金属担体は(1)排気ガスを効率的に浄化するため、
担持されている触媒が極力均一に作用しなければならず
、そのため排気ガスの流れは金属担体に均一に流入する
ことか必要である。また(2)自動車への搭載上、その
使用箇所に応じてその断面は円またはレーストラック状
あるいはオーバルと様々の形状のものが必要である。本
発明は上記(1)、 (2)に対応した金属担体の製造
方法に関するものである。先ず(1)の金属担体に流入
する排気ガスの流入については、排気ガスが管壁との流
体抵抗により半径方向に速度分布を有している。すなわ
ち担体中心近傍では速度が早く、外周層近傍では速度か
遅い傾向がある。
This metal carrier (1) efficiently purifies exhaust gas;
The supported catalyst must act as homogeneously as possible, so that the flow of exhaust gas must flow uniformly into the metal support. In addition, (2) in order to mount it on an automobile, it is necessary to have a cross section of various shapes, such as a circle, a racetrack shape, or an oval shape, depending on the place of use. The present invention relates to a method for manufacturing a metal carrier corresponding to the above (1) and (2). First, regarding the inflow of exhaust gas into the metal carrier (1), the exhaust gas has a velocity distribution in the radial direction due to fluid resistance with the pipe wall. That is, the speed tends to be high near the center of the carrier, and slow near the outer peripheral layer.

その結果、中心近傍の触媒はより多くの浄化作用をし、
外層近傍の触媒の浄化作用は少ないと言う不合理が生じ
る。特に被毒により触媒が劣化する場合、外層近傍の触
媒は良好であるのに、中心部近傍の触媒作用がなくなり
金属担体を交換しなければならず不経済である。
As a result, the catalyst near the center performs more purifying action,
It is unreasonable to say that the purification effect of the catalyst near the outer layer is small. In particular, when the catalyst deteriorates due to poisoning, although the catalyst near the outer layer is good, the catalytic action near the center loses and the metal carrier must be replaced, which is uneconomical.

この不合理を無くすためには排気ガスを金属担体に均一
に流入せしめることか必要であるが、従来の金属担体に
おいては、一定の高さの波板を平板と渦巻状に巻回して
いるため、断面各部位のセル密度が同じであるため、排
気ガスの速度分布は改善されることなく金属担体に流入
するため、上記問題が発生している。
In order to eliminate this unreasonableness, it is necessary to make the exhaust gas flow uniformly into the metal carrier, but in conventional metal carriers, a corrugated plate of a certain height is wound spirally around a flat plate. Since the cell density at each section of the cross section is the same, the velocity distribution of the exhaust gas flows into the metal carrier without being improved, resulting in the above problem.

この問題を解決するため、金属担体入側に整流用のガイ
ド板を取付けることがあるが、新たに圧損を増加させる
ことになり合理的でなく、またその形状寸法、取付は方
法、耐久性に問題があり実用的でない面がある。
In order to solve this problem, a guide plate for rectification is sometimes installed on the inlet side of the metal carrier, but this increases pressure loss, which is unreasonable, and its shape, dimensions, installation method, and durability may be affected. There are problems and impractical aspects.

次に(2)の金属担体断面については、円の場合は軸心
の回りに平板と波板を重ねて巻回すれば良いが、オーバ
ルの場合は巻回する波板の高さは短径部と長径部および
その過渡部で連続的に変わらねばならない。またオーバ
ルの場合は排気ガスの流れは、その形状から長径部近傍
には流れ難く、短径部近傍は流れ易く、前述のような触
媒の浄化作用が均一でない問題かある。すなわちオーバ
ル型担体の場合、形状を形成するための問題と排気ガス
流を均一にする問題が共存し、両者を同時に解決するこ
とが必要である。
Next, regarding the cross section of the metal carrier (2), if it is a circle, it is sufficient to wrap a flat plate and a corrugated plate around the axis, but if it is an oval, the height of the corrugated plate to be wound is the short axis. It must change continuously in the major axis and its transition areas. In addition, in the case of an oval, the flow of exhaust gas is difficult in the vicinity of the long diameter part due to its shape, and it is easy to flow in the vicinity of the short diameter part, which causes the problem that the purification effect of the catalyst is not uniform as described above. That is, in the case of an oval type carrier, the problem of forming the shape and the problem of making the exhaust gas flow uniform coexist, and it is necessary to solve both problems at the same time.

このような問題のない断面がオーバルである金属担体を
得るために、平板と波板を重ねて巻回するだけでなく、
例えば特公昭57−55888号公報や実開昭62−1
80821号公報に開示されているような方法が知られ
ている。
In order to obtain a metal carrier with an oval cross section that does not have such problems, we not only overlap and wind a flat plate and a corrugated plate, but also
For example, Japanese Patent Publication No. 57-55888 and Utility Model Application Publication No. 62-1
A method as disclosed in Japanese Patent No. 80821 is known.

すなわち、前者は、オーバル形状になる外殻を半割にし
た半殻体(外筒)を上下に配し、この中に、中心部に円
筒状空間を有する円筒状の巻回ハニカム体を挿入し、上
下より押圧して、半殻体を突き合わせ、接合させること
によってオーバル形のハニカム担体を作ることを提示し
ている。しかし、この方法によれば、元の円形ハニカム
体が軸心方向に縮小(短径側)と拡大(長径側)される
が、縮小部の各部位での波板の押潰し量は一定でなく波
高さが変わりセル密度が乱れること、さらに拡大部すな
わち長径側では波板の高さを高くすることはできないた
め、セル密度を小さくし排気ガスを流れ易くすることが
できない不合理がある。
In other words, in the former method, the oval-shaped outer shell is divided into halves, and half-shell bodies (outer cylinders) are placed above and below, and a cylindrical wound honeycomb body with a cylindrical space in the center is inserted into these half-shell bodies (outer cylinders). However, it is proposed that an oval-shaped honeycomb carrier is made by pressing the half-shells together and joining them from above and below. However, according to this method, the original circular honeycomb body is reduced (shorter diameter side) and expanded (longer diameter side) in the axial direction, but the amount of squeezing of the corrugated plate at each part of the reduced part is not constant. The height of the corrugations changes without any change and the cell density is disturbed, and furthermore, the height of the corrugated plate cannot be increased at the enlarged portion, that is, on the long diameter side, so it is unreasonable to be unable to reduce the cell density and make the exhaust gas flow easily.

後者(実開昭62−180Et21)は、オーバル断面
のハニカム体を、平板と波板を積層して形成し、この際
シェル(外筒)の短径方向をほぼ2分する位置に、シェ
ルと同じ膨張係数を有する変形防止板を配置して2分割
したシェルと溶接した担体構造であるが、積層構造のハ
ニカム体を分割シェル体に収納したり、変形防止板を設
けているため、構造が複雑となり、生産性が良くない問
題がある。
The latter (Sho 62-180Et21) is formed by laminating a flat plate and a corrugated plate to form a honeycomb body with an oval cross section. At this time, the shell and outer cylinder are placed at a position that roughly bisects the short diameter direction of the shell. The carrier structure is made by arranging deformation prevention plates with the same expansion coefficient and welding them to a shell divided into two parts, but because the honeycomb body of the laminated structure is housed in the divided shell body and the deformation prevention plates are provided, the structure is different. There is a problem that it becomes complicated and productivity is not good.

(発明が解決しようとする課題) 上述したように従来技術の何れの方法においても、排気
ガスの流れを合理化し、さらに断面が円またはレースト
ラック状あるいはオーバルである金属担体の製造方法は
見当たらない。
(Problems to be Solved by the Invention) As mentioned above, none of the prior art methods has been found to streamline the flow of exhaust gas and produce a metal carrier having a circular, racetrack, or oval cross section. .

本発明は、このような現状に鑑み、巻回前の波板の高さ
を意図的に変更することにより、排気ガスの流れが合理
的で、m1面が円またはレーストラック状あるいはオー
バルである金属担体の製造方法を提供することを目的と
する。
In view of the current situation, the present invention intentionally changes the height of the corrugated plate before winding, so that the flow of exhaust gas is rational and the m1 plane is circular, racetrack-shaped, or oval. It is an object of the present invention to provide a method for manufacturing a metal carrier.

(課題を解決するための手段) 上記目的を達成するために本発明は、 (1)  平箔と波箔とを交互に重ねて渦巻状に巻回し
てハニカム体を有するメタル担体を製造するに際し、該
ハニカム体の特定の範囲の層に対応する波箔の波高さを
変えて製造した波箔と、平箔とを交互に重ねて渦巻状に
巻回することにより、特定の範囲の層のセル密度が他と
異なるハニカム体を形成することを特徴とするメタル担
体の製造方法。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides the following features: (1) When manufacturing a metal carrier having a honeycomb body by alternately stacking flat foils and corrugated foils and winding them in a spiral shape, By alternately stacking corrugated foil produced by changing the wave height of the corrugated foil and flat foil corresponding to the layers in a specific range of the honeycomb body and winding them in a spiral, the layers in a specific range can be formed. A method for producing a metal carrier characterized by forming a honeycomb body having a different cell density.

(2)  周方向に短径側から長径側に向かうに従って
波箔の波高さを連続的に高くし、長径側から短径側に向
かうに従って波高さを連続的に低く変更してハニカム体
の断面形状をオーバル型とすることを特徴とする前項記
載のメタル担体の製造方法。
(2) The cross-section of the honeycomb body is created by making the wave height of the corrugated foil continuously higher in the circumferential direction from the shorter diameter side to the longer diameter side, and changing the wave height continuously lower from the longer diameter side to the shorter diameter side. The method for producing a metal carrier as described in the preceding item, characterized in that the metal carrier has an oval shape.

(3)一定の波高さに加工された波箔を、ざらに圧下加
工することにより特定の範囲の層に対応する波箔の波高
さを連続的に変更して製造した波箔と平箔を重ねて巻回
することにより、特定の範囲の層のセル密度が他と異な
るハニカム体を形成することを特徴とする前(1)項記
載のメタル担体の製造方法。
(3) Corrugated foil and flat foil manufactured by continuously changing the wave height of the corrugated foil that corresponds to a specific range of layers by rough rolling the corrugated foil that has been processed to a certain wave height. The method for manufacturing a metal carrier according to item (1) above, wherein a honeycomb body is formed by overlapping and winding the layers in a specific range with different cell densities.

(4)一定の波高さに加工された波箔を、さらに圧下加
工することにより特定範囲の層に対応する波箔の波高さ
を連続的かつ周期的に変更して形成された波箔と平箔を
重ねて巻回することによりオーバル型の担体を製造する
ことを特徴とする前項(2)記載のメタル担体の製造方
法。
(4) Corrugated foil processed to a constant wave height is further rolled down to continuously and periodically change the wave height of the corrugated foil corresponding to a specific range of layers. The method for manufacturing a metal carrier according to item (2) above, characterized in that an oval-shaped carrier is produced by overlapping and winding the foils.

を要旨とするものである。The main points are as follows.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明を構成する金属担体は、Cr −ANを主成分と
するステンレス鋼であり、必要に応じてNi、Cu等を
添加しても良いが、耐食性、耐熱性に優れた成分構成と
している。すなわち、ハニカム体を形成する平板および
波板はほぼ同成分の上記鋼から製造する厚さ30〜11
00t好ましくは5゜−前後の箔である。
The metal carrier constituting the present invention is stainless steel whose main component is Cr-AN, and Ni, Cu, etc. may be added as necessary, but the composition has excellent corrosion resistance and heat resistance. That is, the flat plates and corrugated plates forming the honeycomb body are manufactured from the above-mentioned steel having approximately the same composition and have a thickness of 30 to 11 mm.
00t is preferably a foil of around 5°.

本発明は、このような箔板(帯)を用い、一方はフラッ
トのままの平板と他方は平板を波付は加工した波板を重
ね合わせて渦巻状に巻回し、断面が第1図に示すような
円、第5図示すようなオーバルあるいはレーストラック
状のハニカム体担体を構成する。
The present invention uses such foil plates (bands), one of which is a flat plate, and the other is a flat plate with corrugated edges, which are superimposed and wound in a spiral shape, so that the cross section is as shown in Figure 1. The honeycomb carrier is formed into a circular shape as shown, an oval shape as shown in FIG. 5, or a racetrack shape.

ハニカム体を製造するに当たり、先ず平板を第2図に示
すように互いに噛み合い回転している波付はロール3お
よび4の間に送り込み波付は加工する。この波付はロー
ル3および4の噛み合い量は、図示されていない圧下j
l調整装置により、例えば波付はロール3を上下に移動
しロール4との相対位値を変えることにより調整するこ
とができる。すなわち加工された波板1の波高さhは、
波付はロール3および4の噛み合い量を多くすると高く
なり、噛み合い量を少なくすると低くなる。
In manufacturing a honeycomb body, first, as shown in FIG. 2, a flat plate is fed between rolls 3 and 4, which rotate and mesh with each other, and the corrugations are processed. The amount of engagement between the rolls 3 and 4 is determined by the rolling reduction (not shown).
For example, corrugation can be adjusted by moving the roll 3 up and down and changing the relative position with respect to the roll 4 using the adjusting device. In other words, the wave height h of the processed corrugated sheet 1 is
The corrugation increases as the amount of engagement between the rolls 3 and 4 increases, and decreases as the amount of engagement decreases.

セル密度は、波板1の波高さhが低くなると単位面積当
りのセル数が増えるので高くなり、逆に波高さhが高く
なるとセル密度が低くなるのは当然である。
It is natural that the cell density increases as the wave height h of the corrugated plate 1 decreases because the number of cells per unit area increases, and conversely, as the wave height h increases, the cell density decreases.

このような波板1を用いて、先ず断面が円形である金属
担体の製造方法について説明する。
First, a method for manufacturing a metal carrier having a circular cross section using such a corrugated plate 1 will be described.

第3図に示すように、排気ガスは矢印Aの方向より金属
担体5に流入して来るが、その時の速度分布は曲線Bで
示すように、中心部近傍Cは速度が高く、外層近傍りは
速度が遅くなっている。このため第1図に示すように中
心近傍Cのセル密度を高くし、排気ガスを流れ難くし、
逆に外層近傍りのセル密度を低くし排気ガスを流れ易く
し、排気ガスが担体全面に流入できるようにするもので
ある。
As shown in FIG. 3, exhaust gas flows into the metal carrier 5 from the direction of arrow A, and the velocity distribution at this time is as shown by curve B, where the velocity is high near the center C and near the outer layer. is slower. For this reason, as shown in Figure 1, the cell density near the center C is increased to make it difficult for the exhaust gas to flow.
On the contrary, the cell density near the outer layer is lowered to make it easier for exhaust gas to flow, thereby allowing the exhaust gas to flow over the entire surface of the carrier.

そのための波板1は、第4図のように中心近傍Cの波板
1を加工する時は、波付は加工ロール3および4の噛み
込み量は浅く、外層近傍りに相当する波板1を加工する
時は、波付は加工ロール3および4の噛み込み量を深く
する。
For this purpose, when processing the corrugated sheet 1 in the vicinity of the center C as shown in FIG. When machining, corrugation increases the amount of biting of the machining rolls 3 and 4.

なお波付は高さhを変更する位置は、図示していない検
出器でロール3または4の回転量を検出し、第4図のよ
うに波板1の波高さを変更する。
In addition, at the position where the height h of the corrugation is changed, a detector (not shown) detects the amount of rotation of the roll 3 or 4, and the corrugation height of the corrugated plate 1 is changed as shown in FIG.

また噛み込み量は事前に中心近傍Cと外層近傍りで与え
るべきセル密度から算出し決定する。
Further, the amount of biting is calculated and determined in advance from the cell density to be provided near the center C and near the outer layer.

このように加工された波板1を平板2と重ねて中心軸の
回りに巻回することにより、第1図のように中心近傍C
のセル密度は高く、外層近傍りのセル密度は低い断面が
円であるハニカム体8が形成される。
By overlapping the corrugated plate 1 processed in this way with the flat plate 2 and winding it around the central axis, the C
A honeycomb body 8 having a high cell density near the outer layer and a low cell density near the outer layer and having a circular cross section is formed.

次に第5図に示すような断面が楕円の場合のハニカム体
6の製造方法に付いて述べる。
Next, a method of manufacturing a honeycomb body 6 having an elliptical cross section as shown in FIG. 5 will be described.

楕円形の場合、波高さhは周方向に短径側から長径側に
向かうに従って、連続的に高くなっている。このための
波板1の製造方法は、短径側の波板1の場合は噛み込み
量を浅く、長径側に向かうに従って連続的に噛み込み量
を深くして行く。このように波付は加工された波板1を
平板2と重ねて第6図のように、1軸の回りに巻回した
り、直線軸の回りに巻回することにより任意の楕円断面
のハニカム体6を製造できる。
In the case of an elliptical shape, the wave height h increases continuously in the circumferential direction from the shorter diameter side to the longer diameter side. In the method for manufacturing the corrugated sheet 1 for this purpose, in the case of the corrugated sheet 1 on the shorter diameter side, the biting amount is shallower, and the biting amount is continuously increased toward the longer diameter side. In this way, corrugation can be made by stacking the processed corrugated plate 1 on the flat plate 2 and winding it around one axis or around a straight axis, as shown in Figure 6, to create a honeycomb with an arbitrary elliptical cross section. body 6 can be manufactured.

次に一定の波高さの波板1を圧下加工して上記のように
セル密度を調整したハニカム体の製造方法を示す。
Next, a method for manufacturing a honeycomb body in which the cell density is adjusted as described above by rolling down the corrugated plate 1 having a constant wave height will be described.

第7図および第8図に示すように、ハニカム体6製造ラ
インにおいて、別々に供給される波板1と平板2とを、
重ね合わせて巻回しハニカム体を形成する前に、波板1
を圧下ロール7.8間に通すが、両ロール7および8の
ギャップを調整して波板1に圧下を加え、波高りをコン
トロールする。
As shown in FIGS. 7 and 8, in the honeycomb body 6 manufacturing line, the corrugated sheet 1 and the flat sheet 2, which are supplied separately, are
Before overlapping and winding to form a honeycomb body, corrugated sheet 1
is passed between rolling rolls 7 and 8, and the gap between both rolls 7 and 8 is adjusted to apply pressure to the corrugated sheet 1 and control the wave height.

すなわち、第8図に示すようにロールでの波板1への圧
下は、ロール7あるいは8の一方または両方を上下に移
動させ両ロール7.8間のロールギャップを調整するに
際し、ハニカム体6′の短軸方向x−x’の短径端9.
9′部に相当する部位の圧下(すなわちこの短径端9.
9′は、平板2の巻回毎に上下方向に存在することにな
る)が大きく、すなわち波高りが圧下され、小さな波高
h2になるように、長径軸方向Y−Y’の経端10゜1
0’ 部に相当する部位に近付くに従って圧下を小さく
シ、圧下以前の元の波高h1以上のロールギャップにな
るよう自動制御する。
That is, as shown in FIG. 8, when the corrugated sheet 1 is rolled down by the rolls, one or both of the rolls 7 and 8 is moved up and down to adjust the roll gap between the two rolls 7 and 8. ' Short axis end 9 in the short axis direction x-x'.
Reduction of the portion corresponding to the 9' portion (that is, this short diameter end 9.
9' exists in the vertical direction for each winding of the flat plate 2) is large, that is, the wave height is rolled down and the wave height h2 is small. 1
As the part corresponding to the 0' part is approached, the rolling reduction is reduced, and the roll gap is automatically controlled to be equal to or higher than the original wave height h1 before rolling.

このように、本発明においては、巻回前の波板1に圧下
を加え、波高をコントロールしているため、オーバル型
ハニカム体になるように連続して波板−平板を重ねて巻
回した時、巻回毎の短径端9.9′部分における波板1
の波高h2が小さく、この部分より長径端10.10’
部分に向かって順次大きな元の波高h1に復帰するよう
に波板を加工しているため、短径端9.9′部の波板−
平板の。
In this way, in the present invention, since the wave height is controlled by applying pressure to the corrugated sheet 1 before winding, the corrugated sheet and the flat sheet are successively overlapped and wound to form an oval honeycomb body. At the time, the corrugated plate 1 at the short diameter end 9.9' of each winding
The wave height h2 is small, and the major diameter end 10.10' is smaller than this part.
Since the corrugated sheet is processed so that it returns to the original wave height h1 which gradually increases toward the part, the corrugated sheet at the short diameter end 9.9' -
of a flat plate.

積層厚さが最も薄く、それから離れるに従って厚くなる
ので、オーバル型ハニカム体となる。
The lamination thickness is the thinnest and becomes thicker as the distance from it increases, resulting in an oval honeycomb body.

短径側め波板1の波高h2は、(長径−短径)/2/巻
回総数−平板の厚さで表すことができる。それぞれの長
径側から短径側までの間およびその逆方向についてロー
ルギャップを順次大−小、小−大に、そして短径部分は
波高り以上となるように、連続的に調整する。長径端か
ら短径端のそれぞれの距離は、予め目標形状を設計し、
計算で求めて置く。例えばコア長径150mm、コア短
径90關のオーバル型のハニカム体を厚さ50t!n(
0,05mm)の平板と、波高(h 1) 1.2ta
mの波板を120回巻回して製作するには、短径側の波
高h2を70011n(0,7mm)とする必要があり
、この時の圧下率は(1,2−0,7)/1.2xlo
o−41,7(%)となる。
The wave height h2 of the short diameter side corrugated plate 1 can be expressed as (major axis - short axis)/2/total number of turns - thickness of the flat plate. The roll gap is successively adjusted from large to small, small to large, from the long diameter side to the short diameter side and in the opposite direction, and the short diameter portion is continuously adjusted to be equal to or higher than the wave height. Each distance from the major axis end to the minor axis end is determined by designing the target shape in advance.
Find it by calculation. For example, an oval honeycomb body with a core length of 150 mm and a core width of 90 mm has a thickness of 50 tons! n(
0.05mm) flat plate and wave height (h 1) 1.2ta
In order to manufacture a corrugated sheet of m in diameter by winding it 120 times, the wave height h2 on the shorter diameter side needs to be 70011n (0.7mm), and the rolling reduction ratio at this time is (1,2-0,7)/ 1.2xlo
It becomes o-41.7 (%).

このようにして平板−波板を巻回して構成したハニカム
体6′は、第9図に示すようにオーバル型外筒11に挿
入する。この際ハニカム体6′の外径は外筒11の内径
より僅かに大きくして置き、挿入によってハニカム体が
圧縮力を受けるように圧入することによってハニカム体
のオーバル形状が整形されて、平板−波板の接合精度を
向上させることが可能となる。ハニカム体6′の外筒1
1への挿入はこれに限定するものでなく、挿入後外筒を
外力によって圧縮、整形する方法を取っても支障はない
。外筒にハニカム体を挿入した後、ロウ付は等の接合処
理を行って担体は製品となる。
The honeycomb body 6' constructed by winding flat plates and corrugated plates in this manner is inserted into an oval outer cylinder 11 as shown in FIG. At this time, the outer diameter of the honeycomb body 6' is set slightly larger than the inner diameter of the outer cylinder 11, and the oval shape of the honeycomb body is shaped by inserting the honeycomb body so that it receives compressive force. It becomes possible to improve the joining accuracy of corrugated plates. Outer cylinder 1 of honeycomb body 6'
The insertion into the outer tube 1 is not limited to this, and there is no problem in compressing and shaping the outer cylinder by external force after insertion. After inserting the honeycomb body into the outer cylinder, a joining process such as brazing is performed, and the carrier becomes a product.

なおセル密度の関係上、上記のように波板の圧下量が増
すことができない場合は、平芯の回りに許容量圧下され
た波板と平板を巻回すると良い。
If it is not possible to increase the amount of reduction of the corrugated sheet as described above due to cell density, it is preferable to wind the corrugated sheet and flat sheet that have been rolled down by an allowable amount around a flat core.

すなわち上記実施例での最小波板高さh2が1m■であ
る場合は、巻回総数は約43回となり、長径側巻回厚さ
は1.25X2X43−107.5鴎となり、150−
107.5= 42.5mra不足する。このため幅4
2.5IIIの平芯を入れ、その回りに波高さを調整し
た波板と平板を巻回すれば所望の長径150 +nm 
s短径90m諺のオーバル型担体を製作することができ
る。
That is, if the minimum height h2 of the corrugated plate in the above embodiment is 1 m, the total number of windings will be approximately 43 times, and the winding thickness on the major diameter side will be 1.25X2X43-107.5, which is 150-
107.5 = 42.5mra shortfall. Therefore width 4
By inserting a 2.5III flat core and winding a corrugated plate and a flat plate with adjusted wave height around it, the desired major diameter is 150 + nm.
It is possible to manufacture an oval carrier with a short diameter of 90 m.

(発明の効果) 以上説明したように、本発明によれば、ハニカム体に担
持された触媒か均一に作用し、同様に触媒が効率的に作
用できるオーバル型担体を製造できる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to manufacture an oval type carrier in which the catalyst supported on the honeycomb body acts uniformly and also allows the catalyst to act efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合理的なセル密度を有する断面が円の担体の端
面正面図、第2図は波付はロールによる波板の製造状況
を示す概念図、第3図は従来の断面が円である担体への
排気ガスの流入状況を示す図、第4図は第1図の担体に
使用する波板の外観図、第5図はオーバル型担体の端面
図、第6図はオーバル型担体の製造状況図、第7図は波
板の波高さをコントロールしながらオーバル型担体を製
造する状況説明図、第8図は波板の波高さを圧下してい
る状況説明図および第9図は担体の外観図である。 1・・・波 板 h・・・波高さ 5・・・金属担体 7.8・・・圧下ロール 10、10’・・・長径端 2・・・平 板 3.4・・・波付はロール 6・・・ハニカム体 9.9′・・・短径端 11・・・外 筒
Figure 1 is an end front view of a carrier with a circular cross section and a reasonable cell density. Figure 2 is a conceptual diagram showing how corrugated sheets are produced by rolls. Figure 3 is a conventional cross-sectional view of a carrier with a circular cross section. A diagram showing the inflow of exhaust gas into a certain carrier. Figure 4 is an external view of the corrugated plate used in the carrier in Figure 1. Figure 5 is an end view of an oval type carrier. Figure 6 is an illustration of an oval type carrier. Manufacturing situation diagram, Figure 7 is an explanatory diagram of the situation in which an oval type carrier is manufactured while controlling the wave height of the corrugated plate, Figure 8 is an explanatory diagram of the situation in which the wave height of the corrugated plate is reduced, and Figure 9 is a diagram of the carrier. FIG. 1... Corrugated plate h... Wave height 5... Metal carrier 7.8... Rolling down rolls 10, 10'... Long diameter end 2... Flat plate 3.4... Corrugated Roll 6...honeycomb body 9.9'...minor diameter end 11...outer cylinder

Claims (4)

【特許請求の範囲】[Claims] (1)平箔と波箔とを交互に重ねて渦巻状に巻回してハ
ニカム体を有するメタル担体を製造するに際し、該ハニ
カム体の特定の範囲の層に対応する波箔の波高さを変え
て製造した波箔と、平箔とを交互に重ねて渦巻状に巻回
することにより、特定の範囲の層のセル密度が他と異な
るハニカム体を形成することを特徴とするメタル担体の
製造方法。
(1) When manufacturing a metal carrier having a honeycomb body by stacking flat foil and corrugated foil alternately and winding them in a spiral, the wave height of the corrugated foil corresponding to a specific range of layers of the honeycomb body is changed. Production of a metal carrier characterized by forming a honeycomb body in which the cell density of the layers in a specific range differs from others by alternately stacking corrugated foil and flat foil and winding them in a spiral shape. Method.
(2)周方向に短径側から長径側に向かうに従って波箔
の波高さを連続的に高くし、長径側から短径側に向かう
に従って波高さを連続的に低く変更してハニカム体の断
面形状をオーバル型とすることを特徴とする請求項1記
載のメタル担体の製造方法。
(2) The wave height of the corrugated foil is continuously increased in the circumferential direction from the short axis side to the long axis side, and the wave height is continuously changed from the long axis side to the short axis side to create a cross section of the honeycomb body. 2. The method of manufacturing a metal carrier according to claim 1, wherein the metal carrier has an oval shape.
(3)一定の波高さに加工された波箔を、さらに圧下加
工することにより特定の範囲の層に対応する波箔の波高
さを連続的に変更して製造した波箔と平箔を重ねて巻回
することにより、特定の範囲の層のセル密度が他と異な
るハニカム体を形成することを特徴とする請求項1記載
のメタル担体の製造方法。
(3) Corrugated foil processed to a constant wave height is further rolled down to continuously change the wave height of the corrugated foil corresponding to a specific range of layers, and the corrugated foil and flat foil are stacked. 2. The method for manufacturing a metal carrier according to claim 1, wherein a honeycomb body is formed by winding the metal carrier in such a manner that a specific range of layers has a different cell density.
(4)一定の波高さに加工された波箔を、さらに圧下加
工することにより特定範囲の層に対応する波箔の波高さ
を連続的かつ周期的に変更して形成された波箔と平箔を
重ねて巻回することによりオーバル型の担体を製造する
ことを特徴とする請求項2記載のメタル担体の製造方法
(4) Corrugated foil processed to a constant wave height is further rolled down to continuously and periodically change the wave height of the corrugated foil corresponding to a specific range of layers. 3. The method for producing a metal carrier according to claim 2, wherein the oval carrier is produced by overlapping and winding the foils.
JP2275647A 1990-10-15 1990-10-15 Preparation of metal carrier Pending JPH04150949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275647A JPH04150949A (en) 1990-10-15 1990-10-15 Preparation of metal carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275647A JPH04150949A (en) 1990-10-15 1990-10-15 Preparation of metal carrier

Publications (1)

Publication Number Publication Date
JPH04150949A true JPH04150949A (en) 1992-05-25

Family

ID=17558378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275647A Pending JPH04150949A (en) 1990-10-15 1990-10-15 Preparation of metal carrier

Country Status (1)

Country Link
JP (1) JPH04150949A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049091A (en) * 2000-12-19 2002-06-26 이계안 Spiral catalyst converter substrate structure
US8545763B2 (en) 2010-01-29 2013-10-01 Honda Motor Co., Ltd. Catalytic converter substrate structure
WO2018033527A1 (en) * 2016-08-16 2018-02-22 Continental Automotive Gmbh Honeycomb body for exhaust gas aftertreatment
WO2018050597A1 (en) * 2016-09-16 2018-03-22 Continental Automotive Gmbh Method for producing a honeycomb body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049091A (en) * 2000-12-19 2002-06-26 이계안 Spiral catalyst converter substrate structure
US8545763B2 (en) 2010-01-29 2013-10-01 Honda Motor Co., Ltd. Catalytic converter substrate structure
WO2018033527A1 (en) * 2016-08-16 2018-02-22 Continental Automotive Gmbh Honeycomb body for exhaust gas aftertreatment
KR20190034675A (en) * 2016-08-16 2019-04-02 콘티넨탈 오토모티브 게엠베하 A honeycomb body for exhaust gas post-treatment
CN109563755A (en) * 2016-08-16 2019-04-02 大陆汽车有限公司 Honeycomb ceramics for exhaust aftertreatment
US10605140B2 (en) 2016-08-16 2020-03-31 Continental Automotive Gmbh Honeycomb body for exhaust gas aftertreatment
WO2018050597A1 (en) * 2016-09-16 2018-03-22 Continental Automotive Gmbh Method for producing a honeycomb body
CN109642484A (en) * 2016-09-16 2019-04-16 大陆汽车有限公司 Method for producing honeycomb ceramics
KR20190041528A (en) * 2016-09-16 2019-04-22 콘티넨탈 오토모티브 게엠베하 How to make a honeycomb body

Similar Documents

Publication Publication Date Title
JPH0733875Y2 (en) Exhaust gas purification device
US7197822B2 (en) Metallic honeycomb structure and process for producing the same
CN101318149A (en) Microstructure relieved of notching
US5336472A (en) Honeycomb structure for purifying exhaust gas and method of manufacturing same
JP2002516174A (en) Monolithic metal honeycomb body with variable number of ducts
JPH04103818A (en) Exhaust gas purification device
JPH04150949A (en) Preparation of metal carrier
JP2862298B2 (en) Exhaust gas purification device
RU2429356C2 (en) Production of honeycomb elements, first of all, large honeycomb elements used for treatment of exit gases formed during operation of non-stationary internal combustion engines
US5173471A (en) Exhaust gas cleaning device
US20150086804A1 (en) Conical honeycomb body having channels extending radially outward at an angle and honeycomb body assembly
TW364038B (en) Catalytic converter for a small engine and method for manufacturing the same
US6467169B1 (en) Process for producing a honeycomb body using a hard metal sheet and semi-manufactured honeycomb body
EP1922148A1 (en) Method for producing an annular honeycomb body, and annular honeycomb body
JPS63134061A (en) Metal honeycomb carrier and its production
EP0389645A1 (en) Metal carrier having thermal fatigue resistance for automobile exhaust gas cleaning catalysts
JP6733051B2 (en) Method for manufacturing honeycomb body
JPH03196844A (en) Noncircular metal carrier and its production
JP3084162B2 (en) Metal carrier for catalytic device
JP2746193B2 (en) Catalyst support bracket, seal / support bracket using the same, and method of manufacturing catalyst support bracket
CN101007288A (en) Metal carrier and manufacturing method of metal carrier
CN2438541Y (en) Honeycomb heat resistant body for improved solder installation
JPS6233948Y2 (en)
JP3065641B2 (en) Heat-resistant structure and manufacturing method thereof
JP2005028320A (en) Metallic catalyst carrier and production method of metallic catalyst carrier