JPH0415001B2 - - Google Patents

Info

Publication number
JPH0415001B2
JPH0415001B2 JP58041852A JP4185283A JPH0415001B2 JP H0415001 B2 JPH0415001 B2 JP H0415001B2 JP 58041852 A JP58041852 A JP 58041852A JP 4185283 A JP4185283 A JP 4185283A JP H0415001 B2 JPH0415001 B2 JP H0415001B2
Authority
JP
Japan
Prior art keywords
container
condensate
liquid
steam cooler
evaporation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58041852A
Other languages
Japanese (ja)
Other versions
JPS59169503A (en
Inventor
Hirohisa Miura
Toshio Natsume
Hiroshi Sato
Shusuke Katagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58041852A priority Critical patent/JPS59169503A/en
Publication of JPS59169503A publication Critical patent/JPS59169503A/en
Publication of JPH0415001B2 publication Critical patent/JPH0415001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は蒸留装置に関し、特に比重の大きい
物質例えば亜鉛やマグネシウム等の液体金属を蒸
留する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distillation apparatus, and more particularly to an apparatus for distilling substances with high specific gravity, such as liquid metals such as zinc and magnesium.

非鉄金属例えば亜鉛を精製する方法として、ニ
ユージヤージー(New Jersey)法等の乾式精錬
法が知られており、その方法はPbやCoを含む粗
ZnからZnを蒸発させるとともに凝縮させてZnを
分留する方法である。ニユージヤージー法で精製
する粗ZnはZn純度が95〜99%と比較的高いが、
Zn純度が数10%と比較的低い金属混合物の精製
を実施する場合、高純度金属を得るためには、蒸
発および凝縮を繰り返し行なわせる所謂多段蒸留
を必要とし、したがつてこのような場合には、金
属混合物は比重が大きく、また金属の蒸気圧が低
いたために、石油精製等の化学の分野で従来から
用いられている多段蒸留装置をそのまま転用する
ことは不可能である。そのためZn等の高純度金
属を蒸留によてつて得る場合、一日蒸発させた後
凝縮させた液体金属を再度蒸留装置の送り込む所
謂単段蒸留を繰り返し行なうことが考えられる
が、このような方法では効率が悪く、必要十分な
量の高純度金属を得るためには大型の蒸留装置が
必要になる問題があり、また純度が充分高まつて
いない金属蒸気を装置の外部で冷却・凝縮させる
ことになるから、凝縮熱を無駄に消費することに
なり、熱効率が悪い問題がある。
Pyrometallurgical methods such as the New Jersey method are known as methods for refining non-ferrous metals, such as zinc.
This is a method of fractionating Zn by evaporating and condensing Zn from Zn. The crude Zn refined by the New Jersey method has a relatively high Zn purity of 95-99%, but
When refining a metal mixture with a relatively low Zn purity of several tens of percent, it is necessary to perform so-called multi-stage distillation in which evaporation and condensation are repeated in order to obtain high-purity metals. Because the metal mixture has a high specific gravity and the vapor pressure of the metal is low, it is impossible to use the multi-stage distillation apparatus conventionally used in chemical fields such as petroleum refining. Therefore, when obtaining high-purity metals such as Zn by distillation, it is conceivable to repeatedly perform so-called single-stage distillation in which the condensed liquid metal is fed into the distillation apparatus again after being evaporated for one day. This method is inefficient and requires a large distillation device to obtain the necessary amount of high-purity metal, and metal vapor that has not reached a sufficient level of purity must be cooled and condensed outside the device. Therefore, condensation heat is wasted and there is a problem of poor thermal efficiency.

この発明は上記の事情に鑑みてなされたもの
で、液体金属等比重の大きい液相混合物を高能率
かつ熱効率良く多段蒸留することができ、しかも
コンパクトな蒸留装置を提供することを目的とす
るものである。そしてこの発明の特徴とするとこ
ろは、上下方向に間隔をおいて設けた複数の中間
棚と下端部が中間棚上の凝縮液中に浸漬させた複
数の仕切板とによつて、加熱装置を有しかつ内部
が減圧される容器内を複数の蒸発室に区画し、外
部から導入した原液と容器内の蒸気とで熱授受さ
せる蒸気冷却器を、その表面で液化した凝縮液を
中間棚に導くように各仕切板の下側に配置し、さ
らに前記蒸気冷却器内で昇温した原液を容器の底
部に導く導管を設けた点にある。
This invention was made in view of the above circumstances, and an object of the present invention is to provide a compact distillation apparatus that can perform multistage distillation of a liquid phase mixture having a high specific gravity such as a liquid metal with high efficiency and thermal efficiency. It is. A feature of the present invention is that the heating device is operated by a plurality of intermediate shelves provided at intervals in the vertical direction and a plurality of partition plates whose lower ends are immersed in the condensate on the intermediate shelves. The inside of the container is divided into a plurality of evaporation chambers, and the inside of the container is depressurized. A steam cooler is installed in which heat is exchanged between the raw liquid introduced from the outside and the steam inside the container, and the condensed liquid liquefied on the surface of the container is transferred to an intermediate shelf. The main feature is that a conduit is disposed below each partition plate so as to guide the liquid solution heated in the steam cooler to the bottom of the container.

以下この発明の実施例を添付の図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図はこの発明の一実施例を示す略解断面図
であつて、容器1は、断熱材2を充填した蓋3に
よつて密閉するよう構成され、その容器1の外周
部と蓋3とに、容器1の内部を加熱する電熱ヒー
タ等からなる加熱装置4が設けられている。前記
容器1の内面に、凝縮液5を溜めるための複数
(図では2つ)の中間棚6a,6bが、上下方向
に所定の間隔をあけて取付けられており、またこ
れらの中間棚6a,6bに対応して複数(図では
2枚)の仕切板7a,7bが容器1の内面に取付
けられている。これらの仕切板7a,7bは第1
図に示すように、対応する中間棚6a,6bに向
けて下向傾斜し、かつ下端部が中間棚6a,6b
上の凝縮液5中に浸漬されており、したがつて容
器1の内部は、中間棚6a,6bおよび凝縮液5
ならびに仕切板7a,7bによつて、相互に液封
された複数(図では3室)の蒸発室8a,8b,
8cに区画されている。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention, in which a container 1 is configured to be sealed with a lid 3 filled with a heat insulating material 2, and the outer periphery of the container 1 and the lid 3 are connected to each other. A heating device 4 consisting of an electric heater or the like for heating the inside of the container 1 is provided. A plurality (two in the figure) of intermediate shelves 6a, 6b for storing the condensate 5 are attached to the inner surface of the container 1 at a predetermined interval in the vertical direction, and these intermediate shelves 6a, A plurality of (two in the figure) partition plates 7a and 7b are attached to the inner surface of the container 1 in correspondence with the partition plates 6b. These partition plates 7a, 7b are the first
As shown in the figure, it is tilted downward toward the corresponding intermediate shelves 6a, 6b, and the lower end portion is located on the intermediate shelves 6a, 6b.
The interior of the vessel 1 is therefore immersed in the upper condensate 5 and the interior of the vessel 1 is immersed in the intermediate shelves 6a, 6b and the condensate 5.
Also, a plurality of (three in the figure) evaporation chambers 8a, 8b, which are liquid-sealed to each other by partition plates 7a, 7b,
It is divided into 8c.

上段の蒸発室8aの上部に蒸気通路9を介して
凝縮器10が接続されており、その凝縮器10に
は、上段の蒸発室8aを減圧するための真空ポン
プ11がバルブ12を介して接続されている。ま
た凝縮器10の下部には、凝縮液化した高純度液
相物質(例えば高純度液体金属)を取出すための
留分出口13が設けられ、さらに還流液を上段の
蒸発室8aに戻すための還流液用配管14が凝縮
器10と中間棚6aとの間に設けられている。
A condenser 10 is connected to the upper part of the upper evaporation chamber 8a via a steam passage 9, and a vacuum pump 11 for reducing the pressure in the upper evaporation chamber 8a is connected to the condenser 10 via a valve 12. has been done. Further, at the lower part of the condenser 10, a distillate outlet 13 is provided for taking out the condensed and liquefied high-purity liquid phase substance (for example, high-purity liquid metal), and further for returning the reflux liquid to the upper evaporation chamber 8a. A liquid pipe 14 is provided between the condenser 10 and the intermediate shelf 6a.

また中段の蒸発室8bおよび下段の蒸発室8c
の内部で各仕切板7a,7bの下側には、各仕切
板7a,7bと平行に、すなわち中間棚6a,6
bに向けて下向傾斜するよう蒸気冷却器15a,
15bが配置されている。その蒸気冷却器15
a,15bは、外部から導入した蒸留すべき原液
と蒸発室8b,8c内の蒸気との間で熱受授させ
ることにより、原液を加熱昇温するとともに蒸気
を冷却凝縮させるためのものであつて、各蒸気冷
却器15a,15bの内部は第2図に示すよう
に、原液を蛇行させる構造となつており、その原
液流入口16a,16bは前記容器1の周壁を貫
通して外部に突出し、また原液流出口17a,1
7bには原液を容器1の底部すなわち下段の蒸発
室8cの底部に導くための導管18a,18bが
接続して設けられている。
Also, the middle evaporation chamber 8b and the lower evaporation chamber 8c
Inside each partition plate 7a, 7b, parallel to each partition plate 7a, 7b, that is, intermediate shelves 6a, 6
The steam cooler 15a is tilted downward toward b.
15b is arranged. The steam cooler 15
a and 15b are for heating and raising the temperature of the stock solution and cooling and condensing the vapor by transferring heat between the stock solution to be distilled introduced from the outside and the steam in the evaporation chambers 8b and 8c. As shown in FIG. 2, the interior of each steam cooler 15a, 15b has a structure in which the undiluted solution flows in a meandering manner, and the undiluted solution inlets 16a, 16b penetrate the peripheral wall of the container 1 and protrude to the outside. , and the stock solution outlet 17a, 1
7b is connected with conduits 18a and 18b for guiding the stock solution to the bottom of the container 1, that is, to the bottom of the lower evaporation chamber 8c.

さらに、各蒸気冷却器15a,15bの下側
に、蒸気冷却器15a,15bの表面で凝縮液化
しかつ滴下する凝縮液を中間棚6a,6bに導く
凝縮液受け19a,19bが設けられている。
Furthermore, condensate receivers 19a, 19b are provided below each steam cooler 15a, 15b to guide the condensate that is condensed and liquefied on the surface of the steam cooler 15a, 15b and drips to the intermediate shelves 6a, 6b. .

そして、中段および下段の蒸発室8b,8cに
は、その内部を減圧するための真空ポンプ20が
バルブ21,22を介して接続されている。また
下段の蒸発室8cの下部に残液流出口23が形成
されている。
A vacuum pump 20 for reducing the pressure inside the middle and lower evaporation chambers 8b and 8c is connected via valves 21 and 22. Further, a residual liquid outlet 23 is formed in the lower part of the lower evaporation chamber 8c.

つぎに上記のように構成した蒸留装置の作用
を、液体金属混合物から高純度金属を得る場合を
例に採つて説明する。
Next, the operation of the distillation apparatus configured as described above will be explained using an example in which a high purity metal is obtained from a liquid metal mixture.

まず容器1の内部すなわち各蒸発室8a,8
b,8cを真空ポンプ11,20によつて減圧
し、またその内部を加熱装置4によつて対象とす
る金属の蒸発温度以上に加熱し、さらに蒸発温度
以下に予熱した原液を蒸気冷却器15a,15b
内に流しておく。したがつて、各蒸発室8a,8
b,8c内では原液もしくは凝縮液5中の対象と
する金属が蒸発し、これらのうち下段の蒸発室8
cにおいては、金属蒸気が蒸気冷却器15bに接
触することによりその内部の原液に熱を奪われて
凝縮液化し、その凝縮液5は蒸気冷却器15bを
つたつて、もしくは凝縮液受け19bに滴下した
後その凝縮液受け19bによつて、下側の中間棚
6bに溜まる。他方、蒸気冷却器15b内の原液
は、蒸気から顕熱および潜熱を奪つて温度上昇
し、しかる後導管18bを経て下段の蒸発室8c
に流下する。
First, the inside of the container 1, that is, each evaporation chamber 8a, 8
b, 8c are depressurized by the vacuum pumps 11, 20, and the inside thereof is heated to a temperature higher than the evaporation temperature of the target metal by the heating device 4, and the stock solution preheated to a temperature lower than the evaporation temperature is transferred to the steam cooler 15a. , 15b
Let it flow inside. Therefore, each evaporation chamber 8a, 8
In the chambers b and 8c, the target metal in the raw solution or condensate 5 evaporates, and among these, the lower evaporation chamber 8
In c, when the metal vapor comes into contact with the steam cooler 15b, heat is taken away by the raw liquid inside the metal vapor and is condensed and liquefied, and the condensate 5 flows through the steam cooler 15b or drops into the condensate receiver 19b. After that, the condensate is collected on the lower intermediate shelf 6b by the condensate receiver 19b. On the other hand, the raw liquid in the steam cooler 15b increases in temperature by removing sensible heat and latent heat from the steam, and then passes through the conduit 18b to the lower evaporation chamber 8c.
flows down to.

したがつて、中段の蒸発室8bにおける凝縮液
5中の対象とする金属濃度は、ある程度高まつて
いるが、この液体金属は加熱されることにより再
度蒸発し、その蒸気は、下段の蒸発室8cにおけ
ると同様に、蒸気冷却器15a内の原液に顕熱お
よび潜熱を与えて凝縮液化するとともに、その凝
縮液5は蒸気冷却器15aおよび凝縮液受け19
aを経て上側の中間棚6aに溜る。また蒸気冷却
器15a内に導入された原液は、蒸気から顕熱お
よび潜熱を奪つて温度上昇した後、導管18aを
経て下段の蒸発室8cに流下する。
Therefore, although the target metal concentration in the condensate 5 in the middle evaporation chamber 8b has increased to some extent, this liquid metal is heated and evaporated again, and the vapor is transferred to the lower evaporation chamber. 8c, the raw liquid in the steam cooler 15a is given sensible heat and latent heat to be condensed and liquefied, and the condensate 5 is transferred to the steam cooler 15a and the condensate receiver 19.
a and accumulates on the upper intermediate shelf 6a. Further, the raw liquid introduced into the steam cooler 15a increases in temperature by removing sensible heat and latent heat from the steam, and then flows down to the lower evaporation chamber 8c via the conduit 18a.

上段の蒸発室8aにおける凝縮液5は、上述の
ようにして2回蒸発・凝縮させて得たものである
から、対象とする金属の濃度が更に高くなつてい
る。その液体金属は、再度蒸発するとともに、そ
の蒸気が蒸気通路9を経て凝縮器10に到り、こ
こで冷却されて目的とする高純度液体金属とな
る。そして最終的に得られた留分は留分出口13
から取出され、また還流液は還流液用配管14を
経て上段の蒸発室8aに戻される。
Since the condensate 5 in the upper evaporation chamber 8a is obtained by evaporating and condensing twice as described above, the concentration of the target metal is even higher. The liquid metal evaporates again, and the vapor reaches the condenser 10 through the vapor passage 9, where it is cooled and becomes the desired high-purity liquid metal. The finally obtained fraction is the fraction outlet 13
The reflux liquid is returned to the upper evaporation chamber 8a via the reflux liquid piping 14.

したがつて上記の装置では、各蒸発室8a,8
b,8cおよび凝縮器10において蒸発・凝縮を
行なわせるから、所謂多段蒸留を行なうことにな
り、その結果能率良く高純度の液体金属を得るこ
とができる。また上記の装置では、蒸気の有する
顕熱および潜熱を蒸留すべき原液に与えて熱回収
するから、熱効率を極めて高くすることができ、
しかもそのような熱受授を容器1内で行なう構成
であるから、コンパントな装置とすることができ
る。
Therefore, in the above device, each evaporation chamber 8a, 8
Since evaporation and condensation are carried out in b, 8c and the condenser 10, so-called multi-stage distillation is carried out, and as a result, highly pure liquid metal can be obtained efficiently. In addition, in the above-mentioned apparatus, the sensible heat and latent heat of the steam are given to the stock solution to be distilled to recover the heat, so the thermal efficiency can be extremely high.
Moreover, since such heat transfer is performed within the container 1, a compact device can be achieved.

なお、各中間棚6a,6b上の液量は、蒸留を
継続して行なうことにより次第に増え、ついには
その凝縮液5は中間棚6a,6bからオーバーフ
ローして容器1の底部に到る。また容器1の底部
における液体中の不純物濃度が次第に高まるが、
その液体は残液出口23から適宜に抜き取られ
る。
The amount of liquid on each intermediate shelf 6a, 6b gradually increases as the distillation continues, and finally the condensate 5 overflows from the intermediate shelves 6a, 6b and reaches the bottom of the container 1. Also, the concentration of impurities in the liquid at the bottom of the container 1 gradually increases,
The liquid is appropriately extracted from the residual liquid outlet 23.

ここで本発明者等が上述した装置を用いて行な
つた実験結果を示す。
Here, the results of experiments conducted by the inventors using the above-mentioned apparatus will be shown.

蒸発室内温度900℃、凝縮器温度700%、原液温
度650℃、還流率15%の条件下で、10wt%Mg−
90wt%Pb溶液を真空蒸留したところ、純度99.5
%以上の高純度Mgを得るこができた。
10wt%Mg− under the conditions of evaporation chamber temperature 900℃, condenser temperature 700%, stock solution temperature 650℃, and reflux rate 15%.
When 90wt% Pb solution was vacuum distilled, the purity was 99.5.
We were able to obtain high purity Mg with a purity of more than %.

なお、上述した実施例では、金属を精製する場
合を例に採つて説明したが、この発明の蒸留装置
は金属以外に、石油等の化学物質を精製する場合
にも用いることができる。またこの発明の蒸留装
置は、上述した実施例で示した3段蒸留を行なう
構成に限らず、中間棚および仕切板の数をふやし
て3段以上の蒸留を行なうよう構成してもよいこ
とは勿論である。
In addition, although the above-mentioned embodiment was explained by taking the case of refining metal as an example, the distillation apparatus of the present invention can be used not only for metal but also for refining chemical substances such as petroleum. Furthermore, the distillation apparatus of the present invention is not limited to the configuration for performing three-stage distillation as shown in the above-mentioned embodiments, but may be configured to perform three or more stages of distillation by increasing the number of intermediate shelves and partition plates. Of course.

以上の説明から明らかなようにこの発明の蒸留
装置によれば、加熱装置を有しかつ内部を減圧さ
れる容器内を、上下に間隔をあけて設けた複数の
中間棚と、下端部を中間棚上の凝縮液に浸漬した
複数の仕切板とによつて、相互に液封された複数
の蒸発室に区画し、下側の蒸発室で蒸発させた後
凝縮させて得た凝縮液を上側の蒸発室に導き、そ
の凝縮液を再度上側の蒸発室で蒸発・凝縮させる
よう構成したから、気体金属等の比重が大きくか
つ蒸気圧の低い物質でも能率良く多段蒸留するこ
とができ、さらには高純度の精製を行なうことが
できる。また各蒸発室内に、蒸留すべき原液と蒸
気との間で熱授受させる蒸気冷却器を設け、蒸気
の有する熱を原液に与えるよう構成したから、蒸
気が凝縮する際の顕熱および潜熱を回収すること
ができ、したがつて熱効率を向上させることがで
き、しかもそのような熱交換を前記容器内で行な
う構成であることと相まつて、全体としてコンパ
クトな装置とすることができる。
As is clear from the above description, according to the distillation apparatus of the present invention, the interior of the container, which has a heating device and whose interior is depressurized, has a plurality of intermediate shelves vertically spaced apart from each other, The condensate obtained by evaporating in the lower evaporation chamber and then condensing is divided into a plurality of evaporation chambers that are mutually sealed by a plurality of partition plates immersed in the condensate on the shelf. Since the condensate is introduced into the evaporation chamber and then evaporated and condensed again in the upper evaporation chamber, even substances with high specific gravity and low vapor pressure such as gaseous metals can be efficiently subjected to multi-stage distillation. High purity purification can be achieved. In addition, each evaporation chamber is equipped with a steam cooler that transfers heat between the raw liquid to be distilled and the steam, and is configured to give the heat of the steam to the raw liquid, thereby recovering sensible heat and latent heat when the steam condenses. Therefore, thermal efficiency can be improved, and in combination with the structure in which such heat exchange is performed within the container, the apparatus can be made compact as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す略解断面
図、第2図はその蒸気冷却器を示す横断平面図で
ある。 1……容器、4……加熱装置、5……凝縮液、
6a,6b……中間棚、7a,7b……仕切板、
8a,8b,8c……蒸発室、10……凝縮器、
11,20……真空ポンプ、15a,15b……
蒸気冷却器。18a,18b……導管、19a,
19b……凝縮液受け。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional plan view showing a steam cooler thereof. 1... Container, 4... Heating device, 5... Condensate,
6a, 6b...middle shelf, 7a, 7b...partition plate,
8a, 8b, 8c...evaporation chamber, 10...condenser,
11, 20... Vacuum pump, 15a, 15b...
steam cooler. 18a, 18b... conduit, 19a,
19b... Condensate receiver.

Claims (1)

【特許請求の範囲】 1 加熱装置を有しかつ内部を減圧される容器の
内面に、液溜め用の複数の中間棚が上下方向に相
互に間隔をあけて取付けられるとともに、下端部
が中間棚上の凝縮液中に浸漬された複数の仕切板
が、前記容器の内面に取付けられ、これら中間棚
上の凝縮液と仕切板とによつて液封された複数の
蒸発室が容器内に区間形成され、最上段の蒸発室
が凝縮器に連通されるとともに、他の蒸発室に
は、外部から導入した蒸留すべき原液を流通させ
かつ蒸発室内の蒸気を冷却凝縮させる蒸気冷却器
が、凝縮液を前記中間棚に流下させるよう各仕切
板の下側に配置され、さらに蒸気冷却器内で昇温
された原液を前記容器の底部に導く導管が前記蒸
気冷却器に接続して設けられていることを特徴と
する蒸留装置。 2 前記蒸気冷却器から滴下する凝縮液を前記各
中間棚上に導く凝縮液受けが各蒸気冷却器の下側
に配置されていることを特徴する特許請求の範囲
第1項記載の蒸留装置。
[Scope of Claims] 1. A plurality of intermediate shelves for liquid storage are attached to the inner surface of a container having a heating device and whose interior is depressurized at intervals from each other in the vertical direction, and the lower end is attached to the intermediate shelf. A plurality of partition plates immersed in the condensate above are attached to the inner surface of the container, and a plurality of evaporation chambers sealed by the condensate on the intermediate shelf and the partition plates are defined within the container. The uppermost evaporation chamber is connected to the condenser, and the other evaporation chambers are equipped with vapor coolers that flow the stock solution to be distilled introduced from the outside and cool and condense the vapor in the evaporation chamber. A conduit is disposed below each partition plate to allow the liquid to flow down to the intermediate shelf, and is further provided with a conduit connected to the steam cooler to guide the stock liquid heated in the steam cooler to the bottom of the container. A distillation device characterized by: 2. The distillation apparatus according to claim 1, wherein a condensate receiver for guiding the condensate dripping from the steam cooler onto each of the intermediate shelves is disposed below each steam cooler.
JP58041852A 1983-03-14 1983-03-14 Distillation apparatus Granted JPS59169503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041852A JPS59169503A (en) 1983-03-14 1983-03-14 Distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041852A JPS59169503A (en) 1983-03-14 1983-03-14 Distillation apparatus

Publications (2)

Publication Number Publication Date
JPS59169503A JPS59169503A (en) 1984-09-25
JPH0415001B2 true JPH0415001B2 (en) 1992-03-16

Family

ID=12619779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041852A Granted JPS59169503A (en) 1983-03-14 1983-03-14 Distillation apparatus

Country Status (1)

Country Link
JP (1) JPS59169503A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133331A (en) * 1984-11-30 1986-06-20 Toyota Motor Corp Method and device for distilling metal

Also Published As

Publication number Publication date
JPS59169503A (en) 1984-09-25

Similar Documents

Publication Publication Date Title
US3236747A (en) Process for separating volatile material from a liquid mixture by a series of vaporization stages
TWI834895B (en) Process for distilling a crude composition in a rectification plant including an indirect heat pump and a rectification plant
US2185595A (en) Distillation method and apparatus
US6805833B2 (en) Apparatus for enhanced purification of high-purity metals
US3393133A (en) Short path, molecular fractional distillation apparatus and method therefor
JP4581618B2 (en) Method for recovering hydrofluoric acid
US2308008A (en) High vacuum distillation apparatus
US1969793A (en) Concentrator apparatus
JPH0415001B2 (en)
US2290209A (en) Distillation apparatus
US2446880A (en) Distillation and heat exchange apparatus
US2239371A (en) Separation of metals by distillation
US4483746A (en) Process for phosphorus purification
JP4635527B2 (en) Method for recovering hydrofluoric acid
FI60036C (en) FOERFARANDE OCH ANORDNING FOER RAFFINERING AV RAOKADMIUM
US3457143A (en) Method for multiple effect flash evaporation and contact condensation
US4131538A (en) Method of separating a predetermined fraction from petroleum oil using multistage evaporators
US1994349A (en) Purifying zinc metal
NO179398B (en) Procedure for fractionation of oil and gas in drains from petroleum deposits
US3031296A (en) Separation of lead and zinc
US3080227A (en) Removal of cadmium from zinc
US2587260A (en) Apparatus for molecular distillation
US1967718A (en) Apparatus for purifying liquefied gases
US2416992A (en) Method and apparatus for condensing metallic vapors
GB2084885A (en) Process for the concentration of aqueous glycol solutions