JPH04149027A - Production of low-loss soft ferrite - Google Patents

Production of low-loss soft ferrite

Info

Publication number
JPH04149027A
JPH04149027A JP2272474A JP27247490A JPH04149027A JP H04149027 A JPH04149027 A JP H04149027A JP 2272474 A JP2272474 A JP 2272474A JP 27247490 A JP27247490 A JP 27247490A JP H04149027 A JPH04149027 A JP H04149027A
Authority
JP
Japan
Prior art keywords
sintering
temperature
temp
atmosphere
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2272474A
Other languages
Japanese (ja)
Inventor
Tadashi Ikemoto
正 池本
Tsuneo Kayama
恒夫 加山
Koji Watanabe
渡邊 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2272474A priority Critical patent/JPH04149027A/en
Publication of JPH04149027A publication Critical patent/JPH04149027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To decrease loss of a magnetic core in a high-frequency range by sintering and cooling the source material of soft ferrite essentially comprising Fe, Mn and Zn by specifying the oxygen concn. during heating and cooling. CONSTITUTION:The source material of the ferrite comprising (i) Fe2O3 by 50-60mol%, (ii) MnO by 20-40mol%, (iii) ZnO by 10-15mol%, (iv) SiO2 by 0.01-0.2mol%, (v) CaO by 0.08-0.4mol%, etc., are mixed, calcined, pulverized, granulated, molded and sintered to obtain the ferrite essentially comprising Fe, Mn and Zn. During raising the temp. to the sintering temp., the oxygen concn. in the atmosphere at >=700 deg.C is specified to <1%, and the temp. is raised at 100-500 deg.C/h rate. Sintering is performed at 1250-1350 deg.C in 2-10% oxygen concn. atmosphere for 1-10 hours, and then the temp. is cooled at 50-250 deg.C/h cooling rate in an oxygen atmosphere satisfying the formulae I and II (wherein P is the oxygen concn. and T is temp.( deg.C) and (a) is constant).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鉄、マンガン、亜鉛を主成分とする低磁心損
失ソフトフェライトの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a low magnetic core loss soft ferrite containing iron, manganese, and zinc as main components.

(従来の技術) マンガン−亜鉛系ソフトフェライトは、エレクトロニク
ス製品の電源部のトランス磁心として広く用いられてい
る。
(Prior Art) Manganese-zinc based soft ferrites are widely used as transformer cores in power supply sections of electronic products.

これらのトランスはkHzオーダーの高周波で駆動する
ので、比較的固有抵抗の低いマンガン−亜鉛系ソフトフ
ェライトをそのまま用いたのでは、高周波になるほど渦
電流損失が増大し、その結果磁心損失が増大して発熱を
引き起こしてしまう。
These transformers are driven at high frequencies on the order of kHz, so if manganese-zinc soft ferrite, which has a relatively low resistivity, is used as is, eddy current loss will increase as the frequency increases, and as a result, magnetic core loss will increase. It causes fever.

そのため、一般に、マンガン−亜鉛系ソフトフェライト
には、結晶粒界に抵抗の高い層を形成する作用のあるS
 iO2とCaOの添加がなされてきた(特公昭3[i
 −2283号公報)。
Therefore, in general, manganese-zinc soft ferrite contains S, which has the effect of forming a layer with high resistance at grain boundaries.
Additions of iO2 and CaO have been made (Special Publications Show 3 [i
-2283 publication).

しかし、近年、エレクトロニクス製品の小型化が進み、
その電源部にも小型化が要求され、トランスの駆動周波
数がより高周波へと移行した結果、S I O2とCa
Oの添加だけでは渦電流損失の抑制が十分ではなく、1
00kHz程度、もしくはそれ以上の周波数では、S 
iO2とCaOだけを添加した系は使用できなかった。
However, in recent years, electronic products have become smaller and smaller.
The power supply unit was also required to be more compact, and the driving frequency of the transformer shifted to a higher frequency, resulting in a reduction in S I O2 and Ca
The addition of O alone is not sufficient to suppress eddy current loss;
At frequencies around 00kHz or higher, S
A system in which only iO2 and CaO were added could not be used.

そこで、渦電流損失をさらに抑制する目的で、結晶格子
中に固溶して結晶粒子自体の固有抵抗を高める成分や、
ヒステリシス損失を低下する目的で緻密化を促進する成
分が、S i O2とCaOに加えてさらに添加されて
きた(例えば、特開昭58−15037号公報)。
Therefore, in order to further suppress eddy current loss, components that are dissolved in the crystal lattice and increase the specific resistance of the crystal grains themselves,
In addition to SiO2 and CaO, components that promote densification have been added for the purpose of reducing hysteresis loss (for example, Japanese Patent Application Laid-Open No. 15037/1983).

(発明が解決しようとする課題) 上記従来技術は、S 1.02とCaOに加えて、さら
に別の成分を添加することによってマンガン−亜鉛系ソ
フトフェライトの高周波における磁心損失を低減するも
のであり、−船釣なS 102とCaO添加だけの場合
にくらべて別の添加物を加える分、コストが大きくなる
不利があった。
(Problems to be Solved by the Invention) The above conventional technology reduces the magnetic core loss at high frequencies of manganese-zinc soft ferrite by adding another component in addition to S1.02 and CaO. , - Compared to the case of only adding S 102 and CaO, there was a disadvantage that the cost was higher due to the addition of another additive.

本発明は、安価なS i 02とCaOだけを添加した
マンガン−亜鉛系ソフトフェライトの高周波における磁
心損失が、さらに別の添加物を加えた系と同等に低下で
きる製造条件を提供することを目的とする。
The purpose of the present invention is to provide manufacturing conditions that can reduce the core loss at high frequencies of an inexpensive manganese-zinc based soft ferrite containing only SiO2 and CaO to the same level as a system containing other additives. shall be.

(課題を解決するための手段) 本発明は鉄、マンガン、亜鉛を主成分とするソフトフェ
ライトを焼結する方法において、焼結温度に昇温する過
程の700℃以上の温度の雰囲気中の酸素濃度を1%以
下とし、焼結後下記式で規定される範囲内の酸素雰囲気
で冷却することを特徴とする低損失ソフトフェライトの
製造法に関するものである。
(Means for Solving the Problems) The present invention provides a method for sintering soft ferrite containing iron, manganese, and zinc as main components. The present invention relates to a method for producing low-loss soft ferrite, which is characterized by having a concentration of 1% or less and cooling in an oxygen atmosphere within the range defined by the following formula after sintering.

log P −a −20000/ (T +273)
]、3.6< a < 14.3、P≦10P:酸素濃
度(%)、T・温度(’C)a:定数 (作  用) 以下、本発明について詳細に説明する。
log P -a -20000/ (T +273)
], 3.6<a<14.3, P≦10P: oxygen concentration (%), T/temperature ('C) a: constant (effect) The present invention will be described in detail below.

本発明に使用するソフトフェライトの主成分の鉄、マン
ガン、亜鉛および添加物であるS I O2とCaOは
軟質磁性を有し、高透磁率材料として用いられる材料の
組成範囲と同様でよ(、例えば、Fe20350〜60
モル%、Mn020〜40モル%、ZnO1(1〜15
モル%、S l 020.01〜0.2モル%、Ca 
00.08〜0.4モル%の範囲から選ばれる。
The main components of the soft ferrite used in the present invention, iron, manganese, and zinc, and the additives, SIO2 and CaO, have soft magnetism, and the composition range is similar to that of materials used as high magnetic permeability materials. For example, Fe20350~60
mol%, Mn020-40 mol%, ZnO1(1-15
Mol%, S l 020.01-0.2 mol%, Ca
selected from the range of 0.08 to 0.4 mol%.

鉄、マンガン、亜鉛の組成がこの範囲以外では透磁率が
低く、軟質磁性材料として実用的ではなく、また、S 
I O2とCaOの添加量がこの範囲以外では固有抵抗
を高める作用が小さいからである。
If the composition of iron, manganese, and zinc is outside this range, the magnetic permeability is low and it is not practical as a soft magnetic material, and S
This is because the effect of increasing the specific resistance is small when the amounts of I 2 O 2 and CaO added are outside this range.

次に本発明の方法について説明する。Next, the method of the present invention will be explained.

昇温速度、焼結温度、焼結時間、焼結中の酸素雰囲気お
よび冷却速度は通常のマンガン−亜鉛系ソフトフェライ
トの焼結条件でよく、たとえば、昇温速度100〜50
0℃/h、焼結温度1250〜1350℃、焼結時間1
〜10h、焼結中の雰囲気酸素濃度2〜10%、冷却速
度50〜250℃/hの範囲から選ばれる。焼結温度、
焼結中の雰囲気酸素濃度が上記以外の範囲では緻密化が
不十分か、もしくは過度に粒成長を起こして低磁心損失
という観点から望ましくないためであり、昇温速度、焼
結時間、冷却速度が上記以外の範囲は実操業上極めて困
難で一般的でないからである。
The heating rate, sintering temperature, sintering time, oxygen atmosphere during sintering, and cooling rate may be the usual sintering conditions for manganese-zinc soft ferrite, for example, a heating rate of 100 to 50
0℃/h, sintering temperature 1250-1350℃, sintering time 1
~10 hours, atmospheric oxygen concentration during sintering from 2 to 10%, and cooling rate from 50 to 250°C/h. sintering temperature,
This is because if the atmospheric oxygen concentration during sintering is in a range other than the above, densification will be insufficient or excessive grain growth will occur, which is undesirable from the perspective of low core loss. However, ranges other than the above are extremely difficult and uncommon in actual operation.

本発明は、上記の製造条件のなかで、700℃以上の昇
温過程における雰囲気中の酸素濃度を1%以下とする。
In the present invention, under the above manufacturing conditions, the oxygen concentration in the atmosphere in the process of raising the temperature to 700° C. or higher is 1% or less.

昇温過程の雰囲気酸素濃度を1%以下にすることにより
、過渡の粒成長を起こさずに高密度にすることが可能で
ある。
By controlling the atmospheric oxygen concentration during the temperature raising process to 1% or less, it is possible to achieve high density without causing transient grain growth.

通常、焼結温度を高めることによって高密度にできるが
、焼結温度を高めると粒成長も同時に起こる。磁心損失
中の渦電流損失は結晶粒子径の2乗に比例して増大する
ため、焼結温度が高すぎるのは結晶粒子径の増大を招き
、好ましくない。
High densities can usually be achieved by increasing the sintering temperature, but increasing the sintering temperature also causes grain growth. Since eddy current loss during magnetic core loss increases in proportion to the square of the crystal grain size, it is undesirable for the sintering temperature to be too high because this will lead to an increase in the crystal grain size.

方、低温焼結を行えば結晶粒子が微細になるため、渦電
流損失は抑制できる。しかし、ヒステリシス損失は密度
が高いほうが小さいため、逆に低温焼結ではヒステリシ
ス損失が増大してしまう。
On the other hand, if low-temperature sintering is performed, the crystal grains become finer, so eddy current loss can be suppressed. However, since the higher the density, the smaller the hysteresis loss, conversely, the hysteresis loss increases in low-temperature sintering.

本発明の製造条件では、粒成長が盛んになる以前の段階
である、昇温過程での雰囲気中の酸素濃度を低下し、そ
れによって結晶粒子中に酸素イオン空孔を積極的に導入
し、緻密化の律速拡散種である酸素イオンの移動度を増
加させることで緻密化を促進する。
In the manufacturing conditions of the present invention, the oxygen concentration in the atmosphere is lowered during the temperature rising process, which is a stage before grain growth becomes active, thereby actively introducing oxygen ion vacancies into the crystal grains. Densification is promoted by increasing the mobility of oxygen ions, which are the rate-limiting diffusion species for densification.

その結果、低温焼結による結晶粒子の微細化を保持した
まま、同時に高密度な組織となり、渦電流損失とヒステ
リシス損失の両方を同時に低下することかできるため、
大幅に磁心損失か低下するのである。1%以上の雰囲気
酸素濃度では緻密化を促進する効果は小さい。また、7
00℃以下ではバインダーを酸化除去する必要かあるた
め、酸素濃度を低下させる開始温度は、700℃以上と
なる。
As a result, while maintaining the fineness of crystal grains caused by low-temperature sintering, a high-density structure is created at the same time, and both eddy current loss and hysteresis loss can be reduced at the same time.
This significantly reduces the magnetic core loss. At an atmospheric oxygen concentration of 1% or more, the effect of promoting densification is small. Also, 7
Since it is necessary to oxidize and remove the binder at temperatures below 00°C, the starting temperature for reducing the oxygen concentration is 700°C or higher.

さらに、焼結終了後、下記式で規定される範囲内の酸素
雰囲気で冷却する。
Furthermore, after the sintering is completed, it is cooled in an oxygen atmosphere within the range defined by the following formula.

log P −a −20000/ (T+273)1
6< a < 14.3、P≦10 P:酸素濃度(%)、T:温度(℃) a:定数 ここで、aは13.6< a < 14.3の範囲から
選ばれる定数で、冷却時の雰囲気酸素濃度は上式にaお
よび温度Tを代入して求まるP、即ち16−20000
/ (T +273) < logP < 14.3−
20000/ (T−1−273)で規定される。
log P -a -20000/ (T+273)1
6<a<14.3, P≦10 P: oxygen concentration (%), T: temperature (℃) a: constant Here, a is a constant selected from the range of 13.6<a<14.3, The atmospheric oxygen concentration during cooling is P, which is found by substituting a and temperature T into the above equation, that is, 16-20000.
/ (T +273) < logP < 14.3-
20000/ (T-1-273).

aが13.6< a < 14.3とする理由、即ち1
3.6−20000/  (T −1−273)  <
 logP < 1.4.3−20000/(T +2
73)とする理由は、log P  ≦13.6−20
000/(T+273)では雰囲気中の酸素濃度が低す
ぎるため結晶中のFe3+が還元され、その結果、Fe
2−が増加するので固有抵抗が減少し、渦電流損失が増
大して磁心損失が増大するからであり、また、og P
≧14.3−20000 / (T+273)では雰囲
気中の酸素濃度が高くなりすぎて過度に酸化され、非磁
性のα−Fe203が析出して磁気特性を損ね、磁心損
失が増大するからである。
The reason why a is 13.6 < a < 14.3, that is, 1
3.6-20000/ (T-1-273) <
logP < 1.4.3-20000/(T +2
73) The reason for this is that log P ≦13.6-20
At 000/(T+273), the oxygen concentration in the atmosphere is too low, so Fe3+ in the crystal is reduced, and as a result, Fe
This is because as og P increases, the specific resistance decreases, eddy current loss increases, and magnetic core loss increases.
This is because when ≧14.3-20000/(T+273), the oxygen concentration in the atmosphere becomes too high and is excessively oxidized, non-magnetic α-Fe203 is precipitated, impairing magnetic properties and increasing core loss.

この場合、aおよび温度Tを代入して求まるPかP≦1
0とする理由は、冷却過程での雰囲気酸素濃度が10%
を超えると過度の変化が起こり、非磁性のα−Fe20
3か析出して磁心損失が増大するからである。
In this case, P, which is found by substituting a and temperature T, is P≦1
The reason for setting it to 0 is that the atmospheric oxygen concentration during the cooling process is 10%.
Excessive changes occur when the
This is because the magnetic core loss increases due to the precipitation of C.3.

(実 施 例) 先ず、F e20352.1モル%、Mn035.0モ
ル%、およびZ n O12,9モル%に添加物として
S iO20,02モル%、Ca 00.2モル%を加
え、混合、仮焼、粉砕、造粒後リング成形し、焼結温度
1300〜1310℃、雰囲気酸素濃度4〜5%で4時
間焼結した。第1表に、焼成した各試料の昇温過程およ
び冷却過程の酸素濃度条件を示す。
(Example) First, 20.02 mol% of SiO and 0.2 mol% of Ca were added as additives to 2.1 mol% of Fe2, 35.0 mol% of Mn, and 12.9 mol% of ZnO, and the mixture was mixed. After calcination, pulverization, and granulation, the product was ring-shaped and sintered for 4 hours at a sintering temperature of 1300 to 1310°C and an atmospheric oxygen concentration of 4 to 5%. Table 1 shows the oxygen concentration conditions during the heating process and cooling process of each fired sample.

第   1   表 昇温過程の  冷却過程の酸素 酸素濃度(%) 濃度式の定数a 従来法 試料121(空気)     13.3試料2
  0.0L      L3.3試料3  0.01
     14.8試料4   4.       1
4.0本発明 試料5  1       1.4.0
の方法 試料6  0.01     14.0試料5
は700℃から、その他は900℃から焼成炉内に窒素
ガスを導入して、表示の酸素雰囲気で焼成した。
Table 1 Oxygen concentration (%) in the cooling process of the heating process Constant a of the concentration formula Conventional method Sample 121 (air) 13.3 Sample 2
0.0L L3.3 sample 3 0.01
14.8 Sample 4 4. 1
4.0 Invention Sample 5 1 1.4.0
Method Sample 6 0.01 14.0 Sample 5
Nitrogen gas was introduced into the firing furnace from 700° C. for the samples, and from 900° C. for the others, and the samples were fired in the indicated oxygen atmosphere.

第1図は冷却過程の温度と雰囲気酸素濃度の関係式、l
ogP −a −20000/ (T + 273)を
図に示したものである。第1表中に示した各々のaの場
合が実線で、本発明の条件が破線で囲まれた斜線部(1
3,6< a、 < 14.3.  P≦10)である
Figure 1 shows the relationship between the temperature during the cooling process and the atmospheric oxygen concentration, l
ogP −a −20000/(T + 273) is shown in the figure. In each case of a shown in Table 1, the solid line indicates the conditions of the present invention (1).
3,6<a,<14.3. P≦10).

得られた各試料について、磁束密度2000Gauss
、周波数100kHz、温度80および100℃での磁
心損失を測定した。第2表に結果を示す。
For each sample obtained, the magnetic flux density was 2000 Gauss.
, the core loss was measured at a frequency of 100 kHz and a temperature of 80 and 100°C. Table 2 shows the results.

第   2   表 100k)Iz、 200mTの 磁心損失(mW/cJ) 80℃  100℃ 従来法 本発明 の方法 比較例 試料1 試料2 試料3 試料4 試料5 試料6 第2表には比較のため、S l 02とCaOに加えて
さらにTiO2,V2O5を添加し、通常の条件で焼結
した試料の測定結果もあわせて示す。
Table 2 100k) Iz, 200mT core loss (mW/cJ) 80°C 100°C Conventional method Comparative example of the method of the present invention Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Table 2 shows S for comparison. Measurement results of a sample to which TiO2 and V2O5 were added in addition to L02 and CaO and sintered under normal conditions are also shown.

第2表かられかるように、昇温過程の雰囲気酸素濃度が
1%以下で、さらに冷却過程の雰囲気酸素濃度がlog
P −a −20000/ (T +273)において
、13.6< a < i4.3の条件を満たす試料5
と試料6たけが著しく磁心損失が低下しており、T I
 02 、V 205を添加した系と同等以上になって
いる。一方、試料2. 3.4のように昇温過程、ある
いは冷却過程の片方だけが条件を満足しても、従来法(
試料1)と比較して大きな磁心損失の改善はみられない
As shown in Table 2, the atmospheric oxygen concentration during the heating process is 1% or less, and the atmospheric oxygen concentration during the cooling process is log
At P -a -20000/ (T +273), sample 5 that satisfies the condition of 13.6 < a < i4.3
The core loss of Sample 6 was significantly reduced, and T I
It is equivalent to or higher than the system containing 02 and V205. On the other hand, sample 2. Even if only one of the heating process or cooling process satisfies the conditions as in 3.4, the conventional method (
No significant improvement in magnetic core loss was observed compared to sample 1).

(発明の効果) 本発明の製造方法によれば、安価なS i O2。(Effect of the invention) According to the manufacturing method of the present invention, S i O2 is inexpensive.

CaOだけを添加した系でも、十分に高周波における磁
心損失の低減か可能であることは明らかである。
It is clear that even in a system in which only CaO is added, it is possible to sufficiently reduce core loss at high frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は雰囲気酸素濃度と冷却温度の関係を示すグラフ
である。 代 理 人  弁理士  茶野木 立 失策 図 温度 (Oc) 手続補正書(自発) 平成2年12月4日
FIG. 1 is a graph showing the relationship between atmospheric oxygen concentration and cooling temperature. Agent Patent Attorney Tate Chanogi Mistakes (Oc) Procedural Amendment (Voluntary) December 4, 1990

Claims (1)

【特許請求の範囲】  鉄、マンガン、亜鉛を主成分とするソフトフェライト
を焼結する方法において、焼結温度に昇温する過程の7
00℃以上の温度の雰囲気中の酸素濃度を1%以下とし
、焼結後下記式で規定される範囲内の酸素雰囲気で冷却
することを特徴とする低損失ソフトフェライトの製造法
。 logP=a−20000/(T+273)13.6<
a<14.3、P≦10 P:酸素濃度(%)、T:温度(℃) a:定数
[Claims] In a method for sintering soft ferrite whose main components are iron, manganese, and zinc, step 7 of raising the temperature to the sintering temperature
1. A method for producing low-loss soft ferrite, characterized in that the oxygen concentration in the atmosphere at a temperature of 00° C. or higher is 1% or less, and after sintering, cooling is performed in an oxygen atmosphere within the range defined by the following formula. logP=a-20000/(T+273)13.6<
a<14.3, P≦10 P: oxygen concentration (%), T: temperature (°C) a: constant
JP2272474A 1990-10-12 1990-10-12 Production of low-loss soft ferrite Pending JPH04149027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2272474A JPH04149027A (en) 1990-10-12 1990-10-12 Production of low-loss soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2272474A JPH04149027A (en) 1990-10-12 1990-10-12 Production of low-loss soft ferrite

Publications (1)

Publication Number Publication Date
JPH04149027A true JPH04149027A (en) 1992-05-22

Family

ID=17514427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2272474A Pending JPH04149027A (en) 1990-10-12 1990-10-12 Production of low-loss soft ferrite

Country Status (1)

Country Link
JP (1) JPH04149027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063117A1 (en) * 2003-01-10 2004-07-29 Tdk Corporation Method for producing ferrite material and ferrite material
CN100334035C (en) * 2003-01-10 2007-08-29 Tdk株式会社 Ferrite material and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063117A1 (en) * 2003-01-10 2004-07-29 Tdk Corporation Method for producing ferrite material and ferrite material
CN100334035C (en) * 2003-01-10 2007-08-29 Tdk株式会社 Ferrite material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US10919809B2 (en) MnZn ferrite and its production method
JP2000286119A (en) Ferrite
JP2004217452A (en) Ferrite material and method of manufacturing the same
JP2001151565A (en) Mn-Zn FERRITE AND METHOD OF PRODUCING THE SAME
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP3597673B2 (en) Ferrite material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2004247370A (en) MnZn FERRITE
JPH04149027A (en) Production of low-loss soft ferrite
JP2008169072A (en) Mn-Zn FERRITE
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP3790606B2 (en) Mn-Co ferrite material
JPH0797217A (en) Production of raw material for ferrite magnet
JP2007031210A (en) Mn-Zn FERRITE
JP2963650B2 (en) Oxide magnetic material and oxide magnetic material
JP2019199378A (en) MnZnNiCo-based ferrite and method for producing the same
JPH0544806B2 (en)
JP2556917B2 (en) Manufacturing method of high frequency and low loss ferrite for power supply
JPH10270229A (en) Mn-ni ferrite material
JP3248936B2 (en) Method for producing low loss manganese zinc ferrite
JP2865784B2 (en) Low loss Mn-Zn ferrite for high frequency power supply and method for producing low loss Mn-Zn ferrite
JP3554983B2 (en) Low-loss oxide magnetic material
JPH06267726A (en) Low loss manganese-zinc ferrite and manufacture thereof
JPH06267725A (en) Low loss manganese-zinc ferrite and manufacture thereof
JP2929347B2 (en) Low loss ferrite