JPH041487A - Screw compressor - Google Patents

Screw compressor

Info

Publication number
JPH041487A
JPH041487A JP10202890A JP10202890A JPH041487A JP H041487 A JPH041487 A JP H041487A JP 10202890 A JP10202890 A JP 10202890A JP 10202890 A JP10202890 A JP 10202890A JP H041487 A JPH041487 A JP H041487A
Authority
JP
Japan
Prior art keywords
pressure
discharge
valve
rotor
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10202890A
Other languages
Japanese (ja)
Other versions
JPH0794827B2 (en
Inventor
Akira Matsui
松井 晧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10202890A priority Critical patent/JPH0794827B2/en
Publication of JPH041487A publication Critical patent/JPH041487A/en
Publication of JPH0794827B2 publication Critical patent/JPH0794827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To make automatic control over the regulation of an internal volumetric ratio Vi performable in a simple structure by installing a lifting internal volumetric ratio Vi regula tor valve and a control valve formed for making a passage selectable, respectively, and making them so as to produce a state of the internal volumetric ratio Vi suited to discharge pressure during operation of a compressor and pressure just before discharge without any operation from the outside. CONSTITUTION:Gas of suction pressure Ps is sucked from an inlet port 1 and compressed by a screw rotor 4 in rotation, and then is discharged to a discharge passage 13 of discharge pressure Pd from a discharge port 3 by way of a discharge port 2. In addition, a first chamber 23 of a control valve 21 to be connected to a discharge adjacent space comes to discharge adjacent pressure Po and a second chamber 24 to be interconnected to the discharge passage 13 to the discharge pressure Pd, respectively. When it is set by Po>Pd, a valve stem 28 is moved to the side of a passage 16 together with a diaphragm 22, and a valve element 27 opens this passage 16. On the other hand, since pressure almost equal to the discharge pressure Pd acts on one end 12 of an internal volumetric ratio Vi regulator valve 7 when it is in a moving limit at the rotor side, this Vi regulator valve 7 is shifted to the counter- rotor side. In consequence, the suction side of the discharge port 2 comes to a B position, thus the internal volumetic ratio Vi is minimized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内部容積比(以下、Viという)可変のスク
リュ圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a screw compressor with variable internal volume ratio (hereinafter referred to as Vi).

(従来の技術) 従来、第12図に示すようlこvi調節弁61を備えた
スクリュ圧縮機が公知である。
(Prior Art) Conventionally, a screw compressor equipped with an l/vi control valve 61 as shown in FIG. 12 is known.

このスクリュ圧縮機は、一方に吸込口62を、他方に吐
出口63を有するケーシング64内に互いに噛み合う雌
雄一対のスクリュロータ65を回転可能に収納して形成
しである。また、ケーシング64には内部を仕切り壁6
6によりロータ側の第1室67と反ロータ例の第2室6
8に分け、この第1室67、第2室68に圧油用の流出
入口69X、69Y、および70X、70Yを設はタシ
リンダ71が固定してあり、仕切り壁66は両側のC形
止め輪72により固定しである。
This screw compressor is formed by rotatably housing a pair of male and female screw rotors 65 that engage with each other in a casing 64 that has a suction port 62 on one side and a discharge port 63 on the other side. The casing 64 also has a partition wall 6 inside.
6, the first chamber 67 on the rotor side and the second chamber 6 on the anti-rotor side
The first chamber 67 and the second chamber 68 are provided with inlets 69X, 69Y, and 70X, 70Y for pressurized oil.A cylinder 71 is fixed thereto, and the partition wall 66 is connected to C-shaped retaining rings on both sides. It is fixed by 72.

ロータ側の第1室67内には摺動可能に第1ピストン7
3を、反ロータ側の第2室68内には摺動可能に第2ピ
ストン74を設け、第1ピストン73により第1ピスト
ンロツド75を介して上記VirA節弁61を上記ロー
タ65とケーシング64の内壁との間で進退させる一方
、第2ピストン74により第2ピストンロツド76を介
してスライド弁77を上記ロータ65とケーシング64
の内壁との間で進退させるように形成しである。また、
Vi!II節弁61の後退位置規制はケーシング64の
一部をなすストッパ78により行っている。
A first piston 7 is slidably disposed in the first chamber 67 on the rotor side.
3, a second piston 74 is slidably provided in the second chamber 68 on the side opposite to the rotor, and the first piston 73 connects the VirA control valve 61 to the rotor 65 and the casing 64 via the first piston rod 75. The second piston 74 moves the slide valve 77 between the rotor 65 and the casing 64 via the second piston rod 76.
It is formed so that it can move forward and backward between it and the inner wall. Also,
Vi! The retreat position of the II mode valve 61 is restricted by a stopper 78 that is a part of the casing 64.

さらに、第2ピストンロツド76は第1ピストンロンド
ア5内を相対移動可能に貫通しており、スライド弁77
はVi調節弁61の作動空間、或はその延長空間内を作
動し、スライド弁77の後退位置規制をVi調節弁61
により行うように形成しである。
Further, the second piston rod 76 passes through the first piston rod door 5 so as to be relatively movable, and the slide valve 77
operates in the operating space of the Vi control valve 61 or its extension space, and controls the retreating position of the slide valve 77 via the Vi control valve 61.
This is how it is formed.

ところで、スクリュ圧縮機においては、Vi=v 1/
 v o(v l;閉込み後の理論最大gL Vo:吐
出直前の理論最小容積)であり、比熱比をに。
By the way, in a screw compressor, Vi=v 1/
v o (v l: theoretical maximum gL after confinement Vo: theoretical minimum volume just before discharge), and the specific heat ratio is .

外部圧縮比をPd/Ps(Pd:吐出圧力、 Ps:吸
込圧力)と表わすと、 ViK=Pd/Ps となる場合に、断熱効率が最大となる。
When the external compression ratio is expressed as Pd/Ps (Pd: discharge pressure, Ps: suction pressure), the adiabatic efficiency is maximized when ViK=Pd/Ps.

そこで、この最大効率の状態にするために、圧縮機のV
iを大きくする場合には、第12図においてVi調節弁
61を右進させ、逆にvrを小さくする場合にはVit
PII節弁61を座弁61て■1制御が行われている。
Therefore, in order to achieve this maximum efficiency, the compressor's V
To increase i, move the Vi control valve 61 to the right in FIG.
■1 control is performed by using the PII control valve 61 as the seat valve 61.

またこれとは別に、全負荷運転する場合には第12図に
示すようにスライド弁77を■1調節弁61に当接させ
て、両弁間に隙間を設けない状態にして吸込口62より
吸込んだガスを全量圧縮して吐出口63へ吐出する一方
、部分負荷或は無負荷運転の場合には第12図において
スライド弁77だけを右進させて、これとVi調節弁6
1との間に隙間を生じさせて、吸込口62より吸込んだ
ガスを一部、或は全量圧縮することなく上記隙間より吸
込口62に逃がせるようになっている。
Separately, when operating at full load, the slide valve 77 is brought into contact with the 1 control valve 61 as shown in FIG. While the sucked gas is fully compressed and discharged to the discharge port 63, in the case of partial load or no-load operation, only the slide valve 77 is moved to the right in FIG.
1, so that the gas sucked in through the suction port 62 can escape to the suction port 62 through the gap without being compressed in part or in its entirety.

(発明が解決しようとする課題) 上記従来の装置のVi!Im節弁はスライド弁方式のも
のであり、一定の範囲内においてはViを無段階に調節
することができるという長所を有している。
(Problems to be Solved by the Invention) Vi! of the above conventional device! The Im control valve is of a slide valve type and has the advantage that Vi can be adjusted steplessly within a certain range.

一方、この装置では容量調節用スライド弁77とVi調
節弁61は同一摺動空間内に配置してあり、容量調節時
にはスライド弁77のみを移動させれば良いが、Viを
変化させたい時は、スライド弁77とVi!II節弁6
1とを連動させる必要がある。即ち、この場合には第1
ピストン73.第2ピストン74のおのおのの両側の空
間への油圧流路を開閉して各弁を操作しρければならな
い。
On the other hand, in this device, the capacity adjustment slide valve 77 and the Vi control valve 61 are arranged in the same sliding space, and when adjusting the capacity, it is only necessary to move the slide valve 77, but when you want to change Vi, , slide valve 77 and Vi! II section valve 6
1 needs to be linked. That is, in this case, the first
Piston 73. It is necessary to open and close hydraulic passages to the spaces on both sides of the second piston 74 to operate each valve.

このようにスライド弁方式のVi調節弁61はスライド
弁77とともに設けられることが多く、構造が極めて複
雑になり、作動が不安定である。
In this way, the slide valve type Vi control valve 61 is often provided together with the slide valve 77, resulting in an extremely complicated structure and unstable operation.

また、スクリュロータ65と弁の接触、固着、ピストン
摺動部のトラブル、シリンダ封入油による液圧縮に起因
するケーシング破壊等、装置の故障が生じ易い。
Moreover, equipment failures are likely to occur, such as contact or sticking between the screw rotor 65 and the valve, trouble with piston sliding parts, and casing destruction due to liquid compression caused by oil sealed in the cylinder.

また、vi調節弁61の制御が難しく、マニュアル操作
で運転条件の圧力比に略見合ったViにその都度調節し
ているのが現状である。
Furthermore, it is difficult to control the vi regulating valve 61, and at present, Vi is adjusted each time by manual operation to approximately match the pressure ratio of the operating conditions.

さらに、この装置ではviを大きくした場合、Vi調節
弁61が吐出側に移動しているため、無負荷運転時でも
スクリュロータにより吸込んだガスの圧縮を完全になく
すことはできず、このため動力損失が発生する等、種々
の問題がある。
Furthermore, in this device, when vi is increased, the Vi control valve 61 moves to the discharge side, so even during no-load operation, it is not possible to completely eliminate the compression of the gas sucked in by the screw rotor. There are various problems such as loss.

本発明は、上記従来の問題点を課題としてなされたもの
で、単純な構造で、故障原因も最小限に止め、かつ取扱
いが容易な■i調節弁を備えたスクリュ圧縮機を提供し
ようとするものである。
The present invention has been made to address the above-mentioned conventional problems, and aims to provide a screw compressor equipped with a control valve that has a simple structure, minimizes the causes of failure, and is easy to handle. It is something.

(課題を解決するための手段) 上記課題を解決するために、第1発明は、一方が吸込口
に、他方が吐出口に開口し、互いに噛み合う雌雄一対の
スクリュロータを回転可能に収納したロータ室を有する
ケーシングの吐出側に、端がロータ側移動限にあるとき
にはロータ室の壁面の一部となり、反ロータ側移動限に
あるときには吐出口の壁面の一部となる昇降式の内部容
積比調節弁と、この内部容積比調節弁の反ロータ側の圧
力室内の圧力を、吐出直前圧力が吐出圧力より高い場合
には略吸込圧力に、吐出圧力が吐出直前圧力より高い場
合には略吐出圧力になるように流路切換え可能に形成し
た制御弁とを設けて形成した。
(Means for Solving the Problems) In order to solve the above problems, a first invention provides a rotor that rotatably accommodates a pair of male and female screw rotors, one of which opens at the suction port and the other opens at the discharge port, and mesh with each other. On the discharge side of a casing having a chamber, there is an internal volume ratio of an elevating type, which becomes part of the wall surface of the rotor chamber when the end is at the rotor side movement limit, and becomes a part of the discharge port wall surface when it is at the anti-rotor side movement limit. The pressure in the pressure chamber on the anti-rotor side of the control valve and this internal volume ratio control valve is approximately the suction pressure when the pressure immediately before discharge is higher than the discharge pressure, and approximately the discharge pressure when the discharge pressure is higher than the pressure immediately before discharge. A control valve is provided so that the flow path can be switched to adjust the pressure.

また、第2発明は、上記内部容積比調節弁の弁部が、断
面V字形で、この7字の各辺を上記ロータの歯先線に沿
わせて形成したもので、上記内部容積比調節弁のピスト
ン部が上記弁部より外側に張出した反吐出側の断面輪郭
部を円弧形状に形成した。
Further, in a second aspect of the invention, the valve portion of the internal volume ratio adjustment valve is V-shaped in cross section, and each side of the 7-shape is formed along the tooth tip line of the rotor, and the internal volume ratio adjustment valve is V-shaped in cross section. The piston portion of the valve has an arcuate cross-sectional profile on the anti-discharge side that extends outward from the valve portion.

(作用) 上記第1発明のように構成することにより、Vi!Ii
節弁は外部からの操作なしで装置の運転中の吐出圧力、
吐出直前圧力に適合したvrの状態を作り出すように自
動的に作動し、また昇降式のVi調節弁を用いているた
め、弁座で弁のロータ側への移動限を確実かつ容易に定
めることができ、弁とロータとの接触、摩耗等の不具合
はなくなる。
(Function) By configuring as in the first invention, Vi! Ii
The control valve controls the discharge pressure while the device is operating without any external operation.
It operates automatically to create a VR condition that matches the pressure immediately before discharge, and because it uses an elevating type Vi control valve, the limit of the valve's movement toward the rotor side can be determined reliably and easily using the valve seat. This eliminates problems such as contact between the valve and rotor and wear.

さらに、ロータの歯溝圧力が異常に高くなるとVitA
節弁は自動的かつ速やかに全開となるので、例えばロー
タ室内に液体(例:冷媒液、油等)が入り液圧縮が発生
した場合の異常圧による装置の損傷事故の発生を未然に
回避できるようになる。
Furthermore, if the rotor tooth space pressure becomes abnormally high, VitA
Since the moderation valve is fully opened automatically and quickly, it is possible to avoid damage to the equipment due to abnormal pressure, for example when liquid (e.g. refrigerant liquid, oil, etc.) enters the rotor chamber and liquid compression occurs. It becomes like this.

また、第2発明のように構成することにより、必要とす
る弁座面積の確保が容易となり、かつvi調節弁および
その摺動空間の高精度の加工が容易になる。
Moreover, by configuring as in the second invention, it becomes easy to secure the required valve seat area, and it becomes easy to process the vi control valve and its sliding space with high precision.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図は第1発明の第1実施例に係るスクリュ圧縮機を
示し、一方が吸込口lに、他方が吐出ボート2を介して
吐出口3に開口し、互いに噛み合う雌雄一対のスクリュ
ロータ4を回転可能に収納したロータ室5を有するケー
シング6の吐出側に昇降式のVitl1節弁7が設けで
ある。このVi8節弁7は、弁部8とピストン部9とか
らなり、ばね10により常時ロータ側に付勢され、ロー
タ側への移動時にはピストン部9がケーンング側の弁座
11に当接するようになっている。そして、Vi調節弁
7の一端12はロータ側移動限にあるときにはロータ室
5の壁面の一部となり、反ロータ側移動限にあるときに
は吐出口3の壁面の一部となる。吐出口3に続く吐出流
路13には、例えば図示しない油分離回収器が設けてあ
り、ここで吐出ガスは油分を除かれて送り出され、除か
れた油は油分離回収蓋下部の油溜め部に一旦溜められる
ようになっている。さらに、二〇油溜ぬ部には図示しな
い油クーラ、油フィルタ等を経てロータ室5゜軸受軸封
部等の給油箇所に至る油流路が接続しである。
FIG. 1 shows a screw compressor according to a first embodiment of the first invention, in which a pair of male and female screw rotors 4 are meshed with each other, one opening into a suction port 1 and the other opening into a discharge port 3 via a discharge boat 2. An elevating type Vitl1 control valve 7 is provided on the discharge side of a casing 6 having a rotor chamber 5 which rotatably accommodates the rotor chamber 5. This Vi8 valve 7 consists of a valve part 8 and a piston part 9, and is always urged toward the rotor by a spring 10, so that the piston part 9 comes into contact with the valve seat 11 on the caning side when moving toward the rotor. It has become. One end 12 of the Vi control valve 7 becomes a part of the wall surface of the rotor chamber 5 when it is at the rotor side movement limit, and becomes a part of the wall surface of the discharge port 3 when it is at the anti-rotor side movement limit. The discharge passage 13 following the discharge port 3 is provided with, for example, an oil separation and recovery device (not shown), in which oil is removed from the discharged gas before being sent out, and the removed oil is stored in an oil sump at the bottom of the oil separation and recovery lid. It is designed to be temporarily stored in the section. Furthermore, an oil flow path is connected to the oil reservoir section 20 through an oil cooler, an oil filter, etc. (not shown), and to a lubrication point such as the rotor chamber 5 DEG bearing shaft sealing section.

Vi!F1節弁7の反ロータ側の圧力室14には流路1
5.流路16が連通させてあり、流路15は内部が吐出
圧力Pdに略等しい上記油分離回収器の油溜ぬ部に連通
ずるとともに、中間部に急激な油の流動による■i調節
弁7のハンチングを防止するための絞り弁17を備えて
おり、流路16は制御弁2Iを介して吸込口1に連通し
ている。
Vi! A flow path 1 is provided in the pressure chamber 14 on the anti-rotor side of the F1 control valve 7.
5. A flow path 16 is connected to the flow path 15, and the flow path 15 communicates with the oil trap section of the oil separation and recovery device whose inside is approximately equal to the discharge pressure Pd, and the control valve 7 due to rapid oil flow in the intermediate portion. A throttle valve 17 is provided to prevent hunting, and the flow path 16 communicates with the suction port 1 via a control valve 2I.

この制御弁21はダイヤフラム22により仕切られた第
1室23と第2室24とを備え、第1室23は流路25
によりX点にてロータ室5内の吐出直前空間に連通し、
第2室24は流路26により吐出流路13に連通してい
る。また、ダイヤフラム22には流路16を開閉する弁
体27を作動させる弁棒28を第2室24と流路16と
の間の仕切り壁を貫いて取付けるとともに、第2室24
内に設けたばね29によりダイヤフラム22.弁棒28
を介して弁体27を流路16が閉じる側へ常時付勢する
ように形成しである。
This control valve 21 includes a first chamber 23 and a second chamber 24 separated by a diaphragm 22, and the first chamber 23 has a flow path 25.
communicates with the space just before discharge in the rotor chamber 5 at point X,
The second chamber 24 communicates with the discharge flow path 13 through a flow path 26 . Further, a valve rod 28 that operates a valve body 27 that opens and closes the flow path 16 is attached to the diaphragm 22 through the partition wall between the second chamber 24 and the flow path 16, and
A spring 29 provided within the diaphragm 22. Valve stem 28
The valve body 27 is always biased toward the side where the flow path 16 is closed.

次に、上記装置の作動について説明する。Next, the operation of the above device will be explained.

吸込圧力Psのガスが回転中のスクリュロータ4により
吸込口1から吸込まれ、圧縮されて、吐出ポート2を経
て、吐出口3より吐出圧力Pdの吐出流路13に吐出さ
れる。また、吐出直前空間に連通ずる第1室23は吐出
直前圧力P。、吐出流路13に連通ずる第2室24は吐
出圧力Pdとなる。
Gas at a suction pressure Ps is sucked in from the suction port 1 by the rotating screw rotor 4, is compressed, passes through the discharge port 2, and is discharged from the discharge port 3 into the discharge flow path 13 at the discharge pressure Pd. Further, the first chamber 23 communicating with the space immediately before discharge has a pressure P immediately before discharge. , the second chamber 24 communicating with the discharge flow path 13 has a discharge pressure Pd.

そして、Po>Pd(厳密には、ばね29による圧力を
αとするとPa>Pd+α)の場合には、ダイヤフラム
22とともに弁棒28が流路16側に移動させられて、
弁体27が流路16を開く。このため、流路15により
圧力室14に導かれた吐出圧力Pdに略等しい圧力の油
は吸込圧力Psに略等しい流路16の方へ抜けて、圧力
室14内の圧力は吸込圧力Psに近づく。
Then, in the case of Po>Pd (strictly speaking, Pa>Pd+α when the pressure by the spring 29 is α), the valve rod 28 is moved to the flow path 16 side together with the diaphragm 22,
Valve body 27 opens flow path 16 . Therefore, the oil guided into the pressure chamber 14 by the flow path 15 and having a pressure approximately equal to the discharge pressure Pd escapes toward the flow path 16 that is approximately equal to the suction pressure Ps, and the pressure inside the pressure chamber 14 becomes equal to the suction pressure Ps. Get closer.

一方、V+m節弁7の一端12には、ロータ側移動限に
ある時には吐出圧力Pdに略等しい圧力が作用している
から、■i調節弁7は反ロータ側へ移動させられる。こ
の結果、吐出ボート2の吸込側は、第1図に示すように
Vi調節弁7のロータ側移動限にある時にはAの位置で
あったのがBの位置となり、ViはAの位置でvi最大
(以下、vi■aKという)であったのが、Vi最小(
以下、Vi禦inという)となる。
On the other hand, since a pressure approximately equal to the discharge pressure Pd acts on one end 12 of the V+m control valve 7 when it is at the rotor side movement limit, the i control valve 7 is moved toward the side opposite to the rotor. As a result, as shown in FIG. 1, the suction side of the discharge boat 2 is at position A when the Vi control valve 7 is at the rotor side travel limit, but becomes position B, and Vi is at position A. The maximum (hereinafter referred to as vi■aK) was the minimum Vi (
Hereinafter, it will be referred to as Viein).

これに対して、上記以外の場合には、vi調節弁7は流
路16を閉じ、圧力室14内の圧力は吐出圧力Pdに略
等しく、Vi調節弁7はロータ側移動限の位置に保たれ
、上述したように吐出ボート2の吸込側の位置はAとな
り、V imaxの状態(第1図に示す状態)となる。
On the other hand, in cases other than the above, the vi control valve 7 closes the flow path 16, the pressure in the pressure chamber 14 is approximately equal to the discharge pressure Pd, and the vi control valve 7 is maintained at the rotor side movement limit position. Then, as described above, the position on the suction side of the discharge boat 2 becomes A, and the state becomes Vimax (the state shown in FIG. 1).

そして、このように吐出圧力Pdが変化する場合、無駄
な動力を消費しないように吐出圧力Pdに合わせて自動
的1こV】の調節が行なわれる。
When the discharge pressure Pd changes in this way, an adjustment of 1 V] is automatically performed in accordance with the discharge pressure Pd so as not to waste power.

なお、吸込圧力PGが一定の場合は吐出圧力Pdの変化
は、そのまま外部圧縮比の変化を意味している。第2図
は、この外部圧縮比と断軌効率との関係を示し、実線に
よる曲線Iが本装置の場合、二点鎖線による曲線■、■
が、Vi固定の装置で、V imax、V 1m1nの
場合で、本装置では断熱効率の高い状態が維持されるこ
とを示している。
Note that when the suction pressure PG is constant, a change in the discharge pressure Pd directly means a change in the external compression ratio. Figure 2 shows the relationship between this external compression ratio and track breaking efficiency, where the solid line curve I is for this device, and the two-dot chain curves ■ and ■
However, in the case of a device where Vi is fixed, V imax and V 1m1n, this device shows that a state of high heat insulation efficiency is maintained.

また、このように昇降式の■i調節弁7を用いて、弁座
IIによりロータ側への移動限を確実に定めることによ
り、vi調節弁7とスクリュロータ4との接触、摩耗等
の不具合も生じないようになっている。
In addition, by using the elevating type i control valve 7 and reliably setting the limit of movement toward the rotor side with the valve seat II, problems such as contact between the vi control valve 7 and the screw rotor 4, and wear can be avoided. It is also designed not to occur.

さらに、万一ロータ室5内に液体(例:冷媒液。Furthermore, in the unlikely event that liquid (e.g. refrigerant liquid) is present in the rotor chamber 5.

油等)が入って、液圧縮が発生し、歯溝空間の圧力が異
常に高くなっても、制御弁21が自動的に作動して、吐
出ボート2をB点まで拡げて歯溝空間を速やかに吐出口
3側に開口させて、液圧縮によるスクリュロータの破損
事故を防ぐようになっている。
Even if fluid (oil, etc.) enters the tooth space and the pressure in the tooth space becomes abnormally high due to liquid compression, the control valve 21 will automatically operate to expand the discharge boat 2 to point B and clear the tooth space. It is designed to quickly open to the discharge port 3 side to prevent damage to the screw rotor due to liquid compression.

ここで、Vi調節弁7の大きさはV jmar、 V 
1ainの値により定まる。また、流路25のロータ例
の位置Xは、第1図に示すように最も吐出側の歯先gA
(本明細書では、スクリュロータの歯の頂部に沿った螺
線を意味する)が点Bに達した場合において、スクリュ
ロータ4の歯先部の一歯分の軸方向の間隔をLとすると
、B点より距離(L−β)(βの意味については後述す
る)だけ吸込側の位置が望ましい。吐出直前空間が吐出
ボート2に開口した瞬間に吐出圧力Pdに等しくなろう
とする現象が表われる理想的な条件下では上記βは雰と
なる。
Here, the size of the Vi control valve 7 is V jmar, V
It is determined by the value of 1ain. Further, the position X of the rotor example of the flow path 25 is the tooth tip gA on the most discharge side as shown in FIG.
(In this specification, it means a spiral line along the top of the teeth of the screw rotor) reaches point B, and if L is the axial distance of one tooth at the tip of the screw rotor 4, , a position on the suction side from point B by a distance (L-β) (the meaning of β will be described later) is desirable. Under ideal conditions in which a phenomenon occurs in which the space just before the discharge opens to the discharge boat 2, the pressure tends to become equal to the discharge pressure Pd.

しかしながら、現実には流動抵抗があり、吐出直前空間
が吐出ボート2に開口した後、さらに吐出側へ少し進ん
だ時点で上記現象が表われ始める。
However, in reality, there is flow resistance, and the above phenomenon begins to appear when the space just before the discharge opens into the discharge boat 2 and then advances a little further toward the discharge side.

上記βはこの少し進んだ距離を意味している。The above β means this slightly advanced distance.

さらに、ばね10を設けであるのは現実にはVimax
の状態において吐出直前圧力P0は吐出圧力Pdより若
干高くなるので、この高くなる圧力を打消すためである
Furthermore, the spring 10 is actually provided in Vimax.
In this state, the pressure P0 immediately before discharge is slightly higher than the discharge pressure Pd, so this is to cancel out this increased pressure.

第3図〜第5図は第1発明の第2実施例に係るスクリュ
圧縮機を示し、第1図に示す装置とは、制御弁21に代
えて制御弁21gを設けた点およびこれに接続した流路
構成を除き、他は実質的?二同−であり、互いに対応す
る部分には同一番号を付して説明を省略する。
3 to 5 show a screw compressor according to a second embodiment of the first invention, which differs from the device shown in FIG. 1 in that a control valve 21g is provided in place of the control valve 21, and a Except for the flow path configuration, is the rest substantial? The two parts are the same, and corresponding parts are given the same numbers and their explanation will be omitted.

本実施例における制御弁21aは対向する2面にa、b
、Cボート、およびこの2面に直交する2面に第1駆動
流体流出入口y、第2駆動流体流出入口2を有するケー
シング31内に摺動可能にスプール32を嵌挿して形成
しである。このスプール32には常時Cボート1こ連通
する長溝33およびこの長溝33を介して、aポート或
はbボートをCボートに連通させる貫通孔34が形成し
てあり、aポートは流路35により吸込口1に、bボー
トは流路36により上記油分離回収器に、Cボートは流
路37により圧力室14に連通ずるとともに、第1駆動
流体流出入口yは流路38により吐出流路13に、第2
駆動流体流出入口Zは流路39により吐出直前空間に連
通している。
The control valve 21a in this embodiment has two opposing faces a and b.
, a C boat, and a spool 32 slidably inserted into a casing 31 having a first driving fluid inlet y and a second driving fluid inlet 2 on two faces perpendicular to these two faces. This spool 32 is formed with a long groove 33 that communicates with the C boat 1 at all times, and a through hole 34 that communicates the a port or the b boat with the C boat via the long groove 33. The suction port 1 is connected to the oil separation and recovery device by the B boat through a flow path 36, the C boat is connected to the pressure chamber 14 through a flow path 37, and the first driving fluid inlet/outlet y is connected to the discharge flow path 13 through a flow path 38. To, the second
The driving fluid inlet/outlet Z communicates with the space just before discharge through a flow path 39 .

そして、P、>Pd(厳密には、P o > P d+
α)の場合には、第4図に示すように、スプール32は
同図中左側に移動させられて、8ボートとCポートとが
連通状態となり、圧力室14内の圧力は略吸込圧力Ps
に略等しくなる。このため、第1実施例の場合と同様に
■i調節弁7が反ロータ側に移動して、装置はV 1m
1nの状態となる。
Then, P, > Pd (strictly speaking, P o > P d+
In the case α), as shown in FIG. 4, the spool 32 is moved to the left side in the figure, and the 8 boats and the C port are brought into communication, and the pressure in the pressure chamber 14 is approximately the suction pressure Ps.
is approximately equal to . Therefore, as in the case of the first embodiment, ■i control valve 7 moves to the side opposite to the rotor, and the device has a voltage of V 1m.
The state becomes 1n.

これに対して、p、<Pdの場合には第5図に示すよう
に、スプール32は同図中右側に移動させられて、bポ
ートとCボートとが連通状態となり、圧力室14内の圧
力は吐出圧力Pdに略等しくなる。
On the other hand, if p, < Pd, as shown in FIG. 5, the spool 32 is moved to the right in the figure, and the b port and C boat are brought into communication, and the pressure inside the pressure chamber 14 is The pressure becomes approximately equal to the discharge pressure Pd.

このため、第1実施例の場合と同様にVj調節弁7がロ
ータ側に移動して装置はV imaxの状!!(第3図
に示す状態)となる。
Therefore, as in the case of the first embodiment, the Vj control valve 7 moves to the rotor side, and the device is in the state of Vimax! ! (the state shown in FIG. 3).

なお、本実施例においてはP。=Pdの場合はスプール
32は移動しない故に、装置は直前の状態をそのまま維
持することになる。
Note that in this example, P. If =Pd, the spool 32 does not move, so the device maintains its previous state.

第6図、第7図は第1発明の第3実施例に係るスクリュ
圧縮機を示し、第1図に示す装置とは新たに第1容量制
御弁41.第2容量制御弁42を設けた点およびそれら
に接続した流路構成を除き、他は実質的に同一であり、
互いに対応する部分には同一番号を付して説明を省略す
る。
6 and 7 show a screw compressor according to a third embodiment of the first invention, which differs from the device shown in FIG. 1 in that it has a first capacity control valve 41. Except for the provision of the second capacity control valve 42 and the flow path configuration connected thereto, the others are substantially the same.
The same numbers are given to mutually corresponding parts, and the explanation is omitted.

なお、第6図に示すように、スペース上互いに干渉する
ことがないようにvi調節弁7.第1容量制御弁41.
第2容量制御弁42をそれぞれ適宜位置をずらして設け
であるため、正確には第6図中の■−■線断面において
各弁のロータ側の面は、それぞれ異なった高さで表われ
るが、図面が複雑になる故、第7図では便宜上上記各面
の高さを同一とし、簡単化して表わしである。
As shown in FIG. 6, the vi control valves 7. First capacity control valve 41.
Since the second capacity control valves 42 are provided at appropriate positions, the rotor side surfaces of each valve appear at different heights in the cross section taken along the line ■-■ in FIG. , since the drawing would be complicated, in FIG. 7, the heights of the above-mentioned surfaces are made the same for convenience, and the representation is simplified.

本実施例は一例として、3段階に容量制御可能としたも
ので、第1容量制御弁41.第2容量制御弁42はそれ
ぞれ一端がロータ室5に開口した貫通孔内に摺動可能に
設けてあり、その反ロータ側の圧力室43.44は流路
45,46を介して第1三方切換47のCボート第2三
方切換弁48のhボートに連通している。また、第1三
方切換弁47のdポート、第2三方切換弁48のgポー
トは流路49を介して吐出圧力Pdに略等しい上記油回
収分離の油溜め部に連通し、第1三方切換弁47のfポ
ート第2三方切換弁48のiボートは流路50を介して
吸込口1に連通している。
In this embodiment, as an example, the capacity can be controlled in three stages, and the first capacity control valve 41. Each of the second capacity control valves 42 is slidably provided in a through hole whose one end opens into the rotor chamber 5, and the pressure chambers 43, 44 on the anti-rotor side are connected to the first three-way through passages 45, 46. The C boat of the switching valve 47 communicates with the H boat of the second three-way switching valve 48 . In addition, the d port of the first three-way switching valve 47 and the g port of the second three-way switching valve 48 communicate with the oil reservoir section of the oil recovery and separation, which is approximately equal to the discharge pressure Pd, via the flow path 49, and the first three-way switching valve The f-port of the valve 47 and the i-boat of the second three-way switching valve 48 communicate with the suction port 1 via the flow path 50 .

また、上記各貫通孔の下方側部に開口したバイパス流路
51を設けて各貫通孔同志を連通させるとともに、第2
容量制御弁42の貫通孔を吸込口lに連通させである。
Further, a bypass flow path 51 opened at the lower side of each of the through holes is provided to communicate with each other, and a second
The through hole of the capacity control valve 42 is communicated with the suction port l.

そして、例えば吐出流路13に圧力スイッチ或は温度ス
イッチ等の検出器を設けて、これによる検出信号に基づ
いて第1三方切換弁47.第2三方切換弁48を制御す
るようになっている。
For example, a detector such as a pressure switch or a temperature switch is provided in the discharge flow path 13, and the first three-way switching valve 47. The second three-way switching valve 48 is controlled.

さらに具体的に、全負荷状1!(100%)に対して例
えば65%、30%負荷の状態で運転させるようになっ
ている場合について説明する。
More specifically, full load state 1! A case will be explained in which the load is 65% or 30% of (100%), for example.

全負荷運転状態のときは、第1三方切換弁47のd、C
ボート、第2三方切換弁48のg、hボートが連通して
、圧力室43.44内の圧力は吐出圧力Pdに略等しく
、対応するロータ室内の歯溝空間の圧力より高く、第1
容量制御弁41.第2容量制御弁42はロータ側移動端
まで押しやられた状態にあって、ロータ室5とバイパス
流路51とは遮断されている。
During full load operation, d and C of the first three-way switching valve 47
The boat, the g and h boats of the second three-way switching valve 48 communicate with each other, and the pressure in the pressure chambers 43 and 44 is approximately equal to the discharge pressure Pd and higher than the pressure in the tooth space in the corresponding rotor chamber.
Capacity control valve 41. The second capacity control valve 42 is pushed to the rotor side moving end, and the rotor chamber 5 and the bypass passage 51 are cut off.

このため、スクリュロータ4により吸込口lから吸込ま
れたガスはバイパスさせられることなく全量圧縮される
Therefore, the gas sucked in from the suction port 1 by the screw rotor 4 is compressed in its entirety without being bypassed.

そこで、本実施例ではこの場合にはX点での歯溝空間の
圧力が吐出圧力Pdより若干高くなるようにスクリュロ
ータ4の寸法等を定めて、ViEQ1節弁7が反ロータ
側に移動してV 1m1nの状態になるように形成しで
ある。第8図は、この全負荷運転状態における指圧線図
で、過圧縮を殆ど行っていないことを示している。
Therefore, in this embodiment, in this case, the dimensions of the screw rotor 4 are determined so that the pressure in the tooth space at point X is slightly higher than the discharge pressure Pd, and the ViEQ1 control valve 7 is moved to the side opposite to the rotor. It is formed so that V1m1n is reached. FIG. 8 is an acupressure diagram in this full-load operating state, showing that almost no overcompression is performed.

ついで、65%負荷の運転状態のときは、第1三方切換
弁47のd、Cボート、第2三方切換弁48のり、iボ
ートが連通して、圧力室43内の圧力は吐出圧力Pdに
略等しく、第1容量制御弁41はロータ側に移動し、圧
力室44内の圧力は吸込圧力Psに略等しく、対応する
ロータ室内歯溝空間内の圧力より低く、反ロータ側に移
動した状態となる。この結果、第2容量制御弁42の位
置にて吸込ガスはバイパス流路51から吸込口lに戻さ
れ、65%の部分負荷運転が行われる。
Then, in the operating state of 65% load, the d and C boats of the first three-way switching valve 47 and the glue and i boats of the second three-way switching valve 48 communicate with each other, and the pressure in the pressure chamber 43 reaches the discharge pressure Pd. substantially equal, the first capacity control valve 41 has moved toward the rotor side, the pressure within the pressure chamber 44 is approximately equal to the suction pressure Ps, and is lower than the pressure within the corresponding tooth space within the rotor chamber, and has moved toward the anti-rotor side. becomes. As a result, the suction gas is returned to the suction port l from the bypass flow path 51 at the position of the second capacity control valve 42, and a 65% partial load operation is performed.

また、この場合にはX点での歯溝空間の圧力は吐出圧力
Pdより低く、■i調節弁7はロータ側に移動してV 
imaxの状態にあって吸込ガスは吐出圧力Pdを若干
超えた圧力まで圧縮されて吐出される。
In addition, in this case, the pressure in the tooth space at point X is lower than the discharge pressure Pd, and the control valve 7 moves toward the rotor and
In the imax state, the suction gas is compressed to a pressure that slightly exceeds the discharge pressure Pd and is discharged.

第9図は、この65%負荷の運転状態における指圧線図
で、殆ど過圧縮は行われないことを示している。
FIG. 9 is an acupressure diagram in this 65% load operating state, showing that almost no overcompression occurs.

さらに、35%負荷の状態のときは、第1三方切換弁4
7のeJボート、第2三方切換弁48のり。
Furthermore, when the load is 35%, the first three-way switching valve 4
7 eJ boat, second three-way switching valve 48 glue.

iボートが連通して、圧力室43.44内の圧力は吸込
圧力Psに略等しくなり、第1容量制御弁41、第2容
量制御弁42とも反ロータ側に移動して、それぞれの位
置から吸込ガスはバイパス流路5Iを介して吸込口1に
戻され、35%負荷の運転が行われる。
The i-boat communicates, the pressure in the pressure chambers 43 and 44 becomes approximately equal to the suction pressure Ps, and both the first capacity control valve 41 and the second capacity control valve 42 move toward the side opposite to the rotor, and from their respective positions. The suction gas is returned to the suction port 1 via the bypass flow path 5I, and operation at 35% load is performed.

また、この場合にはViU@節弁7はロータ側に移動し
てVimaxの状態にあって、吸込ガスは吐出圧力Pd
の近くまで圧縮された後、吐出される。
In addition, in this case, the ViU @ control valve 7 moves to the rotor side and is in the state of Vimax, and the suction gas is at the discharge pressure Pd.
After being compressed to near , it is discharged.

第10図は、この35%負荷の運転状態における指圧線
図で、圧縮ガスが吐出圧力Pdより低い圧力で吐出され
る破線で示す場合に比べて本装置の方がハツチングを付
した■部だけ動力低減になることを示している。
Figure 10 is a finger pressure diagram in this 35% load operating state, and compared to the case where the compressed gas is discharged at a pressure lower than the discharge pressure Pd, which is shown by the broken line, this device is better only in the hatched area. This indicates that the power will be reduced.

即ち、この種の装置では100%負荷の運転状態を基準
にして形成されるのが一般的であるため、Vi調節弁7
を備えていない装置では、第7図を基にして説明すると
、第1容量制御弁41.第2容量制御弁42がロータ側
Jこ移動した100%負荷の運転状態で、吐出ボート2
の吸込側端部のB点より若干吸込側に寄った位置での吐
出直前圧力Poが吐出圧力Pdに略等しくなるようIこ
なる。このたぬ、例えば第18量制御弁41.第2容量
制御弁42が反ロータ側Jこ移動した65%負荷の運転
状態では、第10図中破線で示すように吸込ガスは殆ど
圧縮されず、この吐出直前圧力P。がかなり低い状態で
吐出されることになり、動力消費が増大する。
That is, since this type of device is generally formed based on the operating state of 100% load, the Vi control valve 7
In a device not equipped with the first capacity control valve 41., referring to FIG. In a 100% load operating state in which the second capacity control valve 42 has moved to the rotor side, the discharge boat 2
The pressure Po immediately before discharge at a position slightly closer to the suction side than point B at the suction side end of the pump is adjusted so that the pressure Po immediately before discharge is approximately equal to the discharge pressure Pd. For example, the 18th quantity control valve 41. In an operating state of 65% load in which the second capacity control valve 42 is moved to the side opposite to the rotor, the suction gas is hardly compressed, as shown by the broken line in FIG. 10, and the pressure P immediately before discharge is maintained. is discharged at a considerably low level, increasing power consumption.

これに対して、本実施例では第1容量制御弁4I、第2
容量制御弁42とともにvi8節弁7を併用しているた
め、部分負荷運転時にはV imaxの状態となり、吸
込ガスを吐出圧力Pdに略等しい圧力まで圧縮後、吐出
するようになり、部分負荷運転時の高効率運転が可能と
なる。
In contrast, in this embodiment, the first capacity control valve 4I, the second
Since the VI8 node valve 7 is used in conjunction with the capacity control valve 42, the state is V imax during partial load operation, and the suction gas is compressed to a pressure approximately equal to the discharge pressure Pd before being discharged. Highly efficient operation is possible.

また、第1容量制御弁41はVi調節弁7がなければ運
転圧力条件によってはこの第1容量制御弁41に対応す
る位置の歯溝空間の圧力が吐出圧力Pdを上まわり、第
1容量制御弁41のハンチング現象が発生する可能性が
あるが、本実施例の場合はviH節弁子弁7用している
ため、斯る現象の発生は防止される。
In addition, if the first capacity control valve 41 does not have the Vi control valve 7, the pressure in the tooth space at the position corresponding to the first capacity control valve 41 may exceed the discharge pressure Pd depending on the operating pressure conditions, and the first capacity control valve 41 may Although there is a possibility that a hunting phenomenon of the valve 41 may occur, in the case of this embodiment, since the viH valve valve 7 is used, such a phenomenon is prevented from occurring.

これに対して、Vi調節弁7を備えていない装置を上記
の場合とは異なり、部分負荷運転時の状態を基準にして
形成すると、全負荷運転時に過圧縮となり、無駄な動力
消費が生じることになる。
On the other hand, if a device without the Vi control valve 7 is configured based on the state during partial load operation, unlike the above case, overcompression will occur during full load operation, resulting in unnecessary power consumption. become.

なお、上記実施例ではVi調節弁7を制御するため制御
弁21を用いたものを示したが、これに代えて第3図に
示す流路構成のもとで制御弁21aを用いてもよい。
Note that in the above embodiment, the control valve 21 is used to control the Vi regulating valve 7, but instead of this, the control valve 21a may be used in the flow path configuration shown in FIG. .

また、上記各実施例において吐出圧力Pdに略等しい弁
作動用の流路は油分離回収器に代えて吐出口3或は吐出
流路13に連通させてもよく、吸込圧力Psに略等しい
弁作動用流路は吸込口1に代えて、ガス閉込み直後即ち
圧縮を開始した直後の歯溝部に連通させてもよい。
Further, in each of the above embodiments, the flow path for operating the valve that is approximately equal to the discharge pressure Pd may be communicated with the discharge port 3 or the discharge flow path 13 instead of the oil separation and recovery device, and the flow path for operating the valve that is approximately equal to the suction pressure Ps Instead of the suction port 1, the operating flow path may be communicated with the tooth groove immediately after the gas is trapped, that is, immediately after the compression is started.

さらに、上記各実施例では油入りスクリュ圧縮機の場合
について説明したが、本発明はこれに限ることなくオイ
ルフリー式スクリュ圧縮機にも適用できるものである。
Further, in each of the above embodiments, the case of an oil-filled screw compressor has been described, but the present invention is not limited thereto and can also be applied to an oil-free type screw compressor.

但し、この場合には吐出圧力Pdに略等しい弁作動用の
流路は吐出口3或は吐出流路13に連通させることにな
る。
However, in this case, the flow path for valve operation, which is approximately equal to the discharge pressure Pd, will be communicated with the discharge port 3 or the discharge flow path 13.

次に、第2発明について説明する。Next, the second invention will be explained.

上記第1発明の説明は第2発明についてもそのまま当て
はまる。したがって、第1図〜第10図も第2発明を示
すものとして流用する。
The above description of the first invention also applies to the second invention. Therefore, FIGS. 1 to 10 will also be used to show the second invention.

さらに、第11図に示すように第2発明に係るスクリュ
圧縮機では、vi調節弁7の弁部8は断面V字形で、こ
のV字形の各辺52g、52bをスクリュロータ4の歯
先線に沿わせて形成してあり、ピストン部9は弁部8よ
り外側に張出した吸込側の断面輪郭部53を円弧形状に
形成しである。
Furthermore, as shown in FIG. 11, in the screw compressor according to the second invention, the valve part 8 of the vi control valve 7 has a V-shaped cross section, and each side 52g, 52b of this V-shape is connected to the tooth tip line of the screw rotor 4. The piston portion 9 has a cross-sectional contour portion 53 on the suction side that extends outward from the valve portion 8 and is formed in an arc shape.

ここで、ピストン部9は圧油または圧縮ガスによる圧力
が作用する受圧部であるので、高い寸法精度が要求され
る。したがって、円筒状のピストンが考えられるが、構
造上、スペース上、作用上好ましい形状のものとは言え
ない。これに対して、本発明ではピストン部9を輪郭円
弧状にしであるので、高精度の加工が可能になるととも
に、Vi調節弁7が下降した状態でV 1m1n時の吐
出ボート2まで完全に塞ぎ、かつ弁座11の面積も十分
に確保でき、ピストンの機能を問題なく果たせるように
なっている。
Here, since the piston portion 9 is a pressure receiving portion on which pressure from pressure oil or compressed gas acts, high dimensional accuracy is required. Therefore, a cylindrical piston can be considered, but it cannot be said to be a preferable shape in terms of structure, space, and function. In contrast, in the present invention, since the piston part 9 has an arcuate outline, high-precision machining is possible, and when the Vi control valve 7 is lowered, the discharge boat 2 at V 1m1n is completely blocked. In addition, a sufficient area of the valve seat 11 can be secured so that the piston function can be performed without any problem.

なお、本実施例では上記βとして、上記境界線上におけ
るロータ軸方向の■i調節弁7の厚みをM(第1L図参
照)とした場合、(1/2)Mにしである。
In this embodiment, the above β is set to (1/2) M when the thickness of the i control valve 7 in the rotor axial direction on the boundary line is M (see Fig. 1L).

(発明の効果) 以上の説明より明らかなように、第1発明によれば、一
方が吸込口に、他方が吐出口に開口し、互いに噛み合う
雌雄一対のスクリュロータを回転可能に収納したロータ
室を有するケーシングの吐出側に、一端がロータ側移動
限にあるときにはロータ室の壁面の一部となり、反ロー
タ側移動限にあるときには吐出口の壁面の一部となる昇
降式の内部容積比調節弁と、この内部容積比調節弁の反
ロータ側の圧力室内の圧力を、吐出直前圧力が吐出圧力
より高い場合には略吸込圧力に、吐出圧力が吐出直前圧
力より高い場合には略吐出圧力になるように流路切換え
可能に形成した制御弁とを設けて形成しである。
(Effects of the Invention) As is clear from the above description, according to the first invention, a rotor chamber rotatably accommodates a pair of male and female screw rotors, one of which opens at the suction port and the other opens at the discharge port, and mesh with each other. On the discharge side of the casing, one end becomes part of the wall of the rotor chamber when it is at the limit of movement on the rotor side, and becomes part of the wall of the discharge port when it is at the limit of movement on the anti-rotor side. The pressure in the pressure chamber on the anti-rotor side of the valve and this internal volume ratio adjustment valve is approximately the suction pressure when the pressure immediately before discharge is higher than the discharge pressure, and approximately the discharge pressure when the discharge pressure is higher than the pressure immediately before discharge. It is formed by providing a control valve which is formed to be able to switch the flow path so that the flow path can be changed.

このため、vi調節弁は外部からの操作なしで装置の運
転中の吐出圧力、吐出直前圧力に適合したViの状態を
作り出すようになり、簡単な構成でvi調節の自動制御
が可能となり、また昇降式のVi調節弁を用いているた
め、弁座で弁のロータ側への移動限を確実かつ容易に定
めることができ、弁とロータとの接触、摩耗等の不具合
も解消できる。
Therefore, the vi control valve can now create a Vi condition that matches the discharge pressure during operation of the device and the pressure immediately before discharge without any external operation, and it has become possible to automatically control vi adjustment with a simple configuration. Since an elevating type Vi control valve is used, the limit of movement of the valve toward the rotor side can be determined reliably and easily using the valve seat, and problems such as contact between the valve and rotor and wear can be eliminated.

さらに、ロータの歯溝圧が異常に高くなると■i調節弁
は自動的かつ速やかに全開となるので、例えばロータ室
内に液体油が入り液圧縮が発生した場合の異常圧による
装置の損傷事故もなくせる。
Furthermore, if the tooth space pressure of the rotor becomes abnormally high, the control valve will automatically and quickly fully open, so there is no risk of damage to equipment due to abnormal pressure, for example if liquid oil enters the rotor chamber and fluid compression occurs. It can be eliminated.

なお、現状の圧縮機の損傷の80〜90%は液圧縮が原
因になっている。
Note that 80 to 90% of damage to current compressors is caused by liquid compression.

また、第2発明によれば、上記内部容積比調節弁の弁部
が、断面V字形で、この7字の各辺を上記ロータの歯先
線に沿わせて形成したもので、上記内部容積比調節弁の
ピストン部が上記弁部より外側に張出した反吐出側の断
面輪郭部を円弧形状に形成しである。
According to the second aspect of the invention, the valve portion of the internal volume ratio regulating valve has a V-shaped cross section, and each side of the 7-shape is formed along the tooth tip line of the rotor, so that the internal volume The piston portion of the ratio control valve has a cross-sectional contour portion on the anti-discharge side that extends outward from the valve portion and is formed into an arc shape.

このため、必要とする弁座面積の確保が容易となり、か
つ■i調節弁およびその摺動空間の加工精度の向上も可
能となり、装置の性能を改善することができる等の効果
を奏する。
Therefore, it is easy to secure the required valve seat area, and it is also possible to improve the machining accuracy of the control valve and its sliding space, resulting in improvements in the performance of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明の第1実施例、第2発明に係るスクリ
ュ圧縮機の断面図、第2図は外部圧縮比と断熱効率との
関係を示す図、第3図は第1発明の第2実施例、第2発
明に係るスクリュ圧縮機の断面図、第4図、第5図は第
3図に示す装置の制御弁の断面図、第6図は第1発明の
第3実施例。 第2発明に係るスクリュ圧縮機の断面図、第7図は第6
図の■−■線断面図、第8図〜第10図は、第6図、第
7図に示す装置における歯溝部のガス吸込容態と圧力と
の関係を示す指圧線図、第11図は第2発明に係る装置
の断面図、第12図は従来のスクリュ圧縮機の断面図で
ある。 1・・・吸込口、3・・吐出口、4・・・スクリュロー
タ、5・・ロータ室、6・・・ケーシング、7・・・V
itl1節弁、8・・・弁部、9・・ピストン部、21
.21a・・・制御弁。 特 許 出 願 人 株式会社神戸製鋼所代 理 人 
弁理士 前出 葆 ほか1名第1図 第2図 第6図 第7図 第3図 第4図 第5 図 第8図 第9図 第10図
FIG. 1 is a sectional view of a screw compressor according to a first embodiment of the first invention and a second invention, FIG. 2 is a diagram showing the relationship between external compression ratio and adiabatic efficiency, and FIG. 3 is a diagram showing the relationship between external compression ratio and adiabatic efficiency. 2nd embodiment, a cross-sectional view of a screw compressor according to the second invention, FIGS. 4 and 5 are cross-sectional views of the control valve of the device shown in FIG. 3, and FIG. 6 is a third embodiment of the first invention. . A sectional view of the screw compressor according to the second invention, FIG.
8 to 10 are acupressure diagrams showing the relationship between the gas suction state and pressure of the tooth groove in the device shown in FIGS. 6 and 7, and FIG. 11 is a sectional view taken along the line ■-■ A sectional view of the apparatus according to the second invention, and FIG. 12 is a sectional view of a conventional screw compressor. 1...Suction port, 3...Discharge port, 4...Screw rotor, 5...Rotor chamber, 6...Casing, 7...V
itl1 valve, 8... valve part, 9... piston part, 21
.. 21a... Control valve. Patent applicant: Agent of Kobe Steel, Ltd.
Patent attorney Maeda Ao and 1 other personFigure 1Figure 2Figure 6Figure 7Figure 3Figure 4Figure 5Figure 8Figure 9Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)一方が吸込口に、他方が吐出口に開口し、互いに
噛み合う雌雄一対のスクリュロータを回転可能に収納し
たロータ室を有するケーシングの吐出側に、一端がロー
タ側移動限にあるときにはロータ室の壁面の一部となり
、反ロータ側移動限にあるときには吐出口の壁面の一部
となる昇降式の内部容積比調節弁と、この内部容積比調
節弁の反ロータ側の圧力室内の圧力を、吐出直前圧力が
吐出圧力より高い場合には略吸込圧力に、吐出圧力が吐
出直前圧力より高い場合には略吐出圧力になるように流
路切換え可能に形成した制御弁とを設けたことを特徴と
するスクリュ圧縮機。
(1) On the discharge side of a casing, which has a rotor chamber that rotatably accommodates a pair of male and female screw rotors that are open to the suction port and the other to the discharge port and that engage with each other, when one end is at the rotor side movement limit, the rotor An elevating internal volume ratio control valve that becomes part of the wall of the chamber and becomes part of the wall of the discharge port when at the limit of movement on the anti-rotor side, and the pressure inside the pressure chamber on the anti-rotor side of this internal volume ratio control valve. and a control valve configured to be able to switch the flow path so that when the pressure immediately before discharge is higher than the discharge pressure, the pressure is set to approximately suction pressure, and when the pressure immediately before discharge is higher than the pressure immediately before discharge, it is set to approximately discharge pressure. A screw compressor featuring:
(2)上記内部容積比調節弁の弁部が、断面V字形で、
このV字の各辺を上記ロータの歯先線に沿わせて形成し
たもので、上記内部容積比調節弁のピストン部が上記弁
部より外側に張出した反吐出側の断面輪郭部を円弧形状
に形成したものであることを特徴とする特許請求の範囲
第1項に記載のスクリュ圧縮機。
(2) the valve portion of the internal volume ratio control valve has a V-shaped cross section;
Each side of this V-shape is formed along the tip line of the rotor, and the piston part of the internal volume ratio adjusting valve has an arc-shaped cross-sectional contour on the anti-discharge side that protrudes outward from the valve part. The screw compressor according to claim 1, characterized in that the screw compressor is formed as follows.
JP10202890A 1990-04-18 1990-04-18 Screw compressor Expired - Lifetime JPH0794827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10202890A JPH0794827B2 (en) 1990-04-18 1990-04-18 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10202890A JPH0794827B2 (en) 1990-04-18 1990-04-18 Screw compressor

Publications (2)

Publication Number Publication Date
JPH041487A true JPH041487A (en) 1992-01-06
JPH0794827B2 JPH0794827B2 (en) 1995-10-11

Family

ID=14316303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10202890A Expired - Lifetime JPH0794827B2 (en) 1990-04-18 1990-04-18 Screw compressor

Country Status (1)

Country Link
JP (1) JPH0794827B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569388U (en) * 1992-02-24 1993-09-21 本田技研工業株式会社 Screw type pump
US5860801A (en) * 1994-11-30 1999-01-19 Svenska Rotor Maskiner Ab Rotary screw compressor with unloading means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569388U (en) * 1992-02-24 1993-09-21 本田技研工業株式会社 Screw type pump
US5860801A (en) * 1994-11-30 1999-01-19 Svenska Rotor Maskiner Ab Rotary screw compressor with unloading means

Also Published As

Publication number Publication date
JPH0794827B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US4388048A (en) Stepping type unloading system for helical screw rotary compressor
US6231316B1 (en) Scroll-type variable-capacity compressor
US5722815A (en) Three stage self regulating gerotor pump
US5135374A (en) Oil flooded screw compressor with thrust compensation control
US7891955B2 (en) Compressor having a dual slide valve assembly
US4261691A (en) Rotary screw machine with two intermeshing gate rotors and two independently controlled gate regulating valves
KR900003099B1 (en) Variable displacement vane compressor
JPH0249994A (en) Rotary compressor
US4222716A (en) Combined pressure matching and capacity control slide valve assembly for helical screw rotary machine
JPH039318B2 (en)
JP5706827B2 (en) Screw compressor
EP0630445A1 (en) Compressor slide valve control
EP0630441A1 (en) Screw compressor providing thrust bearing force compensation
WO2023040643A1 (en) Compressor
US4234296A (en) Screw compressor
JPH041487A (en) Screw compressor
USRE31379E (en) Combined pressure matching and capacity control slide valve assembly for helical screw rotary machine
US5505592A (en) Variable capacity vane compressor
JP2843630B2 (en) Lift valve for rotary screw machine
JP5543746B2 (en) Overcompression prevention device for screw compressor
EP1438509B1 (en) Screw compressor assembly and method
JPH0551077B2 (en)
JPH07233787A (en) Variable displacement oil pump
JPH025917B2 (en)
JPH11510871A (en) Discharge pressure control of internal gear pump