JPH04147938A - High corrosion resistant magnesium alloy - Google Patents
High corrosion resistant magnesium alloyInfo
- Publication number
- JPH04147938A JPH04147938A JP27046590A JP27046590A JPH04147938A JP H04147938 A JPH04147938 A JP H04147938A JP 27046590 A JP27046590 A JP 27046590A JP 27046590 A JP27046590 A JP 27046590A JP H04147938 A JPH04147938 A JP H04147938A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- alloys
- target
- corrosion resistance
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 31
- 230000007797 corrosion Effects 0.000 title claims abstract description 31
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 19
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 30
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 28
- 239000011777 magnesium Substances 0.000 claims description 27
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 abstract description 56
- 239000000956 alloy Substances 0.000 abstract description 56
- 238000004544 sputter deposition Methods 0.000 abstract description 15
- 239000000758 substrate Substances 0.000 abstract description 12
- 239000011521 glass Substances 0.000 abstract description 6
- 239000007787 solid Substances 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000003870 refractory metal Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000006104 solid solution Substances 0.000 description 12
- 238000002844 melting Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000008018 melting Effects 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- -1 chlorine ions Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 241000488925 Thesium Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、高耐食性、耐摩耗性など優れた特性と共に靭
性を備え、化学プラントを始め、産業及び民生上の種々
の分野に利用可能な新しいマグネシウム合金に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent characteristics such as high corrosion resistance and wear resistance, as well as toughness, and can be used in various industrial and consumer fields including chemical plants. It concerns a new magnesium alloy.
[従来の技術]
マグネシウムは実用金属としては最も軽く、アルミニウ
ムのl/2、鉄の17’4に当り、軽量化を計るには最
も適した材料である。このような観点から、マグネシウ
ム合金の開発は、主に強度を主眼としたものであり、現
在Mg −A I系、M g −Z n系、Mg−希土
類元素系が実用化されている。しかし、マグネシウム金
属あるいはこれらのマグネシウム合金は耐食性が乏しく
、腐食性の環境で使用されるに至っていない。[Prior Art] Magnesium is the lightest practical metal, 1/2 the weight of aluminum and 17'4 the weight of iron, and is the most suitable material for weight reduction. From this point of view, the development of magnesium alloys has focused mainly on strength, and currently Mg-AI series, Mg-Zn series, and Mg-rare earth element series are in practical use. However, magnesium metal or magnesium alloys have poor corrosion resistance and have not been used in corrosive environments.
方、Ta、Nbは共に高融点金属であって、Mgの沸点
でも溶融しない。したがって、溶融を伴うような通常の
方法ではTa、NbとMgとの合金は得難い。On the other hand, both Ta and Nb are high melting point metals and do not melt even at the boiling point of Mg. Therefore, it is difficult to obtain an alloy of Ta, Nb, and Mg using a normal method that involves melting.
[発明が解決しようとする課題]
Ta、Nbは耐食性が高い金属であって、MgにTaあ
るいはNbを添加して得られる合金には高い耐食性が期
待できる。しかし、Ta。[Problems to be Solved by the Invention] Ta and Nb are metals with high corrosion resistance, and an alloy obtained by adding Ta or Nb to Mg can be expected to have high corrosion resistance. However, Ta.
Nbは共に高融点金属でありMgの沸点でも溶融しない
ため、溶融を伴うような通常の方法ではMgにこれらの
金属を加えた合金を作製することは困難である。このよ
うな合金を、不均一な結晶質合金としてではなく、均一
な単相合金として作製に成功することは、耐食性をはし
め未知の性質を備えた新合金として期待されている。Since Nb is both a high melting point metal and does not melt even at the boiling point of Mg, it is difficult to produce an alloy in which these metals are added to Mg using a normal method that involves melting. Successfully producing such an alloy as a homogeneous single-phase alloy rather than a heterogeneous crystalline alloy is expected to result in a new alloy with improved corrosion resistance and unknown properties.
一方、穏やかな環境では金属材料を保護し得る不動態皮
膜も、酸化力の乏しい塩酸や塩素イオンを含む溶液中で
は容易に破壊される。特に塩酸は腐食性が激しく、安全
に使用し得るマグネシウム合金がなく、現在の実用マグ
ネシウム合金などは当然考慮の対象外である。したがっ
て、通常のマグネシウム合金の使用がきわめて困難なこ
のような腐食性環境において使用に耐える新しいマグネ
シウム合金の出現が期待されてきた。On the other hand, a passive film that can protect metal materials in a mild environment is easily destroyed in a solution containing hydrochloric acid or chlorine ions, which have poor oxidizing power. In particular, hydrochloric acid is highly corrosive, and there are no magnesium alloys that can be used safely, so the current practical magnesium alloys are naturally out of consideration. Therefore, the emergence of a new magnesium alloy that can withstand use in such a corrosive environment where it is extremely difficult to use ordinary magnesium alloys has been expected.
[課題を解決するための手段]
本発明の目的は、通常の溶融法では作製が困難なTaや
Nbを含む合金を複数の相からなる不均一な結晶質合金
としてではなく、高耐食性とともにそれを発揮するに十
分な耐摩耗性、靭性を備えた均一単相合金として提供す
ることにある。[Means for Solving the Problems] The object of the present invention is to produce alloys containing Ta and Nb, which are difficult to produce using normal melting methods, not as heterogeneous crystalline alloys consisting of multiple phases, but as highly corrosion resistant. The objective is to provide a homogeneous single-phase alloy with sufficient wear resistance and toughness to exhibit the following properties.
通常、合金は固体状態では結晶化しているが、合金組成
を限定して溶融状態から超急冷凝固させるなど、固体形
成の過程で原子配列に長周期的規則性を形成させない方
法を適用すると、結晶構造を持たず、液体に類似したア
モルファス構造が得られ、このような合金をアモルファ
ス合金という。また、同様の手法を用いることにより、
アモルファス構造とはならないまでも、添加元素が過飽
和に固溶した非平衡合金を得ることができる。このよう
なアモルファス合金および非平衡合金は、多くは過飽和
固溶体の均一な単相合金であって、従来の実用金属に比
べて著しく高い強度を保有し、かつ組成に応じて異常に
高い耐食性はじめ種々の特性を示す。Normally, alloys are crystallized in the solid state, but if we apply a method that prevents the formation of long-period regularity in the atomic arrangement during the solid formation process, such as by limiting the alloy composition and solidifying it from the molten state by ultra-rapid cooling, it is possible to crystallize it. An amorphous structure similar to that of a liquid is obtained, and such an alloy is called an amorphous alloy. Also, by using a similar method,
Although it does not have an amorphous structure, it is possible to obtain a non-equilibrium alloy in which the additive elements are supersaturated in solid solution. These amorphous alloys and non-equilibrium alloys are mostly homogeneous single-phase alloys of supersaturated solid solutions, and have significantly higher strength than conventional practical metals, and depending on their composition, have various properties such as unusually high corrosion resistance. shows the characteristics of
本発明者らは、未知のアモルファス合金および非平衡合
金についてその特性に関する研究を広く行った結果、通
常の方法では作製が困難なA1とNb5TaST i、
Z r、Mo、Wなどの高融点金属との合金を、合金の
形成のために溶融による混合を必要としないスパッタ法
を活用することによってアモルファス合金として作製し
得ることを見出し、さきに特願昭63−51568号、
特願昭83−51567号及び特願昭63−26002
0号として特許出願した。As a result of extensive research on the properties of unknown amorphous alloys and non-equilibrium alloys, the present inventors found that A1 and Nb5TaSTi, which are difficult to produce using conventional methods,
It was discovered that an alloy with high-melting point metals such as Zr, Mo, and W could be produced as an amorphous alloy by utilizing a sputtering method that does not require mixing by melting to form the alloy, and the patent application was previously filed. No. 63-51568,
Patent Application No. 83-51567 and Patent Application No. 63-26002
A patent application was filed as No. 0.
本発明者らはさらに研究を継続した結果、スパッター法
を用いることによって、MgはTaおよびNbと共に均
一な単相合金を作製することができること、さらにこれ
らの合金はいずれも塩酸や塩素イオンを含む溶液のよう
な過酷な腐食性環境中でも安定な保護皮膜を形成して自
己不働態化する高耐食性を備えた合金であることを見出
し、本発明を達成した。As a result of further research, the present inventors found that by using a sputtering method, it was possible to create a uniform single-phase alloy of Mg together with Ta and Nb, and furthermore, that these alloys both contain hydrochloric acid and chloride ions. The present invention was achieved by discovering that the alloy has high corrosion resistance, forming a stable protective film and self-passivating even in harsh corrosive environments such as solutions.
本発明は、(1)TaあるいはNbのいずれか1種を3
1〜80原子%含み、残部が実質的にMgからなる高耐
食マグネシウム合金又は、(2)TaあるいはNbのい
ずれか1種を5原子%以上含み、TaおよびNbの合計
が20〜80原子%であり、残部が実質的にMgからな
る高耐食マグネシウム合金である。The present invention provides (1) three types of Ta or Nb.
Highly corrosion resistant magnesium alloy containing 1 to 80 atomic % and the remainder substantially consisting of Mg, or (2) containing 5 atomic % or more of either Ta or Nb, with a total of 20 to 80 atomic % of Ta and Nb. It is a highly corrosion-resistant magnesium alloy with the remainder essentially consisting of Mg.
本発明合金を作製するにはスパッター法が用いられる。A sputtering method is used to produce the alloy of the present invention.
スパッター法は、作製しようとする合金と平均組成が等
しいが単相ではない複数の結晶相からなるターゲットを
焼結や溶融によって作製して用いたり、作製しようとす
る合金の主成分からなる金属板に合金化しようとする元
素を載せたり埋め込んだりしたターゲットを用いて実施
される。The sputtering method uses sintering or melting to create a target consisting of multiple crystal phases that have the same average composition as the alloy to be manufactured but is not a single phase, or a metal plate made of the main component of the alloy to be manufactured. It is carried out using a target on which the element to be alloyed is mounted or embedded.
本発明におけるMg−TaXMg−Nb合金を溶融法に
よりターゲットとすることは困難であるか、Mg板にT
aおよびNbのいずれかあるいはこの両者を載せたり埋
め込んだりすることは可能であるから、かかるターゲッ
トを用いるスパッター法によって本発明の単相合金を得
ることができる。この場合、生成する合金に、場所によ
る不均一性が発生することを避けるために、例えば第1
図に示すように、スパッター装置チャンバー 6内で複
数のサブストレイト 2(図では便宜上1つ示しである
)をチャンバー6に取り付けた中心軸1の回りに回転さ
せるとともに、サブストレイト 2内体も自転させるこ
とが望ましい。そして、サブストレイト 2の軌跡にし
たがってターゲット 3を配置しておく。It is difficult to target the Mg-TaXMg-Nb alloy in the present invention by melting, or
Since it is possible to place or embed either or both of a and Nb, the single-phase alloy of the present invention can be obtained by sputtering using such a target. In this case, in order to avoid unevenness in the produced alloy depending on the location, for example, the first
As shown in the figure, a plurality of substrates 2 (one is shown for convenience in the figure) is rotated in a sputtering device chamber 6 around a central axis 1 attached to the chamber 6, and the inner bodies of the substrates 2 also rotate. It is desirable to Then, target 3 is placed along the trajectory of substrate 2.
さらに生成する合金の組成を広い範囲で変化させるため
に、例えば第2図に示すように、1つのターゲット4は
Mg板にTaおよびNbのいずれかあるいはこの両者を
埋め込んだものとし、もう1つのターゲット 5はTa
およびNbのいずれかとして、これら2つのターゲット
4.5を互いに傾斜させて2つのターゲットの垂線の
交わる付近に中心軸1により公転し、かつ自転するサブ
ストレイト 2を設置し、これら2つのターゲットを2
つの電源で出力を互いに制御しながら同時に作動させる
。この方法によって生成する合金中の合金元素の濃度を
自由に変えることが可能である。このようにいろいろな
ターゲットと方法を組み合わせることによって、これら
の金属元素を含む種々の高耐食マグネシウム合金が得れ
る。Furthermore, in order to vary the composition of the produced alloy over a wide range, for example, as shown in FIG. 2, one target 4 is an Mg plate with Ta and/or Nb embedded in it, and the other Target 5 is Ta
and Nb, these two targets 4.5 are tilted with respect to each other, and a substrate 2 that revolves around the central axis 1 and rotates on its own axis is installed near the intersection of the perpendicular lines of the two targets. 2
Two power supplies operate simultaneously while controlling each other's outputs. It is possible to freely change the concentration of alloying elements in the alloy produced by this method. By combining various targets and methods in this way, various highly corrosion-resistant magnesium alloys containing these metal elements can be obtained.
スパッター法で作製した本発明の組成の合金は前記各元
素が均一に固溶した単相の合金である。均一固溶体であ
る本発明の合金には、化学的に極めて均一で高耐食性を
保証する保護皮膜が形成される。The alloy having the composition of the present invention produced by the sputtering method is a single-phase alloy in which each of the above-mentioned elements is uniformly dissolved in solid solution. The alloy of the present invention, which is a homogeneous solid solution, forms a protective film that is chemically extremely uniform and guarantees high corrosion resistance.
酸化力が乏しくきわめて激しい腐食環境である塩酸、あ
るいは塩素イオンを含む溶液中ではマグネシウムは容易
に侵されるため、このような環境でマグネシウム合金を
使用するためには、安定な保護皮膜を形成する能力をマ
グネシウム合金に付与する必要がある。これは有効元素
を必要量含むことによって実現される。しかし溶解法な
ど通常の方法で作製した結晶質合金の場合、多種多量の
合金元素を添加すると、しばしば化学的性質のことなる
多相構造となり、所定の耐食性が実現し得ないことがあ
る。また、化学的不均一性はむしろ耐食性に有害である
。これに対し、本発明の合金は均一固溶体であり、安定
な保護皮膜を形成させ得る所定量の有効元素を均一に含
むものであるため、強固で均一な保護皮膜が生じ、十分
に高い耐食性を発揮する。Magnesium is easily attacked by hydrochloric acid, which has poor oxidizing power and is an extremely corrosive environment, or solutions containing chlorine ions, so in order to use magnesium alloys in such environments, it is necessary to have the ability to form a stable protective film. It is necessary to impart this to the magnesium alloy. This is achieved by including the necessary amounts of effective elements. However, in the case of crystalline alloys made by conventional methods such as melting, adding a large amount of various alloying elements often results in a multiphase structure with different chemical properties, and it may not be possible to achieve the desired corrosion resistance. Also, chemical non-uniformity is rather detrimental to corrosion resistance. In contrast, the alloy of the present invention is a homogeneous solid solution and uniformly contains a predetermined amount of effective elements that can form a stable protective film, so it forms a strong and uniform protective film and exhibits sufficiently high corrosion resistance. .
すなわち、酸化力が乏しく腐食性の激しい塩酸や、塩素
イオンのような腐食性イオンを含む溶液中で耐食性を発
揮するマグネシウム合金が備えるべき条件は、安定な保
護皮膜が材料に均一に生じる高い保護皮膜形成能力を持
つことである。これは本発明の合金組成で実現され、ま
た本発明合金が有効元素が均一に分布する単相構造を有
することは、複雑な組成の合金を過飽和な状態で単相固
溶体として作製することを可能とし、均一な保護皮膜を
保証するものである。In other words, a magnesium alloy that exhibits corrosion resistance in hydrochloric acid, which has poor oxidizing power and is highly corrosive, and in solutions containing corrosive ions such as chlorine ions, must have a high level of protection that allows a stable protective film to form uniformly on the material. It has the ability to form a film. This is achieved by the alloy composition of the present invention, and the fact that the alloy of the present invention has a single-phase structure in which effective elements are uniformly distributed makes it possible to fabricate alloys with complex compositions as single-phase solid solutions in a supersaturated state. This ensures a uniform protective film.
次に、本発明における各成分組成を限定する理由を述べ
る。Next, the reason for limiting the composition of each component in the present invention will be described.
TaおよびNbとMgはスパッター法を用いることによ
り広い範囲にわたり単相構造を形成する。しかし添加元
素が1種類である場合、本発明の目的である高耐食性を
発揮させるためには少なくとも31原子%以上のTaあ
るいはNbを含む必要がある。また、80原子%を越え
るTaあるいはNbを含む合金は、単相構造であっても
その結晶構造が変り、靭性が失われるため、耐食性にも
優れてい1、るが実用的ではない。Ta, Nb, and Mg form a single-phase structure over a wide range by using a sputtering method. However, when the number of additive elements is one, it is necessary to contain at least 31 atomic % or more of Ta or Nb in order to exhibit the high corrosion resistance that is the object of the present invention. Further, alloys containing more than 80 atomic % of Ta or Nb change their crystal structure and lose toughness even if they have a single phase structure, so although they have excellent corrosion resistance1, they are not practical.
したがって、本発明合金に含まれるTaあるいはNbの
原子比率は31〜80原子%とする必要がある。Therefore, the atomic ratio of Ta or Nb contained in the alloy of the present invention needs to be 31 to 80 atomic %.
しかし、TaおよびNbを複合添加する場合には、いず
れか1種を添加する場合より耐食性が向上するため、両
元素を含む三元合金ではTa或いはNbのいずれかを5
原子%以上含み、その合計が20原子%以上あればよい
。However, when adding Ta and Nb in combination, the corrosion resistance is improved compared to when adding either one of them, so in a ternary alloy containing both elements, either Ta or Nb is added to 5
It is sufficient if it contains at least atomic percent and the total amount is at least 20 at%.
[実施例] 以下、実施例によって本発明を具体的に詳述する。[Example] Hereinafter, the present invention will be specifically explained in detail with reference to Examples.
実施例1
直径1001s厚さ 61のMg円板上の中心から半径
29m−の円周上に直径2011%厚さ im−と直径
lO■■、厚さ llIのTaを任意の個数載せたもの
をターゲットとし、第1図に示した装置を用い、A「を
5g+I/sinの速度で流しながら、1x10−’
〜5 X 10−’Torrの真空に保ち、自転並びに
公転しているガラスのサブストレートに220〜280
Wの出力でスパッターデボジッシジンを行った。これら
の合金の組成はX線マイクロアナライザーで分析した。Example 1 An arbitrary number of Ta particles with a diameter of 2011% im-, a diameter lO■■, and a thickness llI are placed on the circumference of a 29m-radius from the center of a Mg disk with a diameter of 1001s and a thickness of 61. Using the apparatus shown in Figure 1 as a target, 1x10-'
A vacuum of ~5 X 10-' Torr is maintained, and a rotating and revolving glass substrate is heated to a temperature of 220 to 280 Torr.
Sputter deposition was performed at an output of W. The compositions of these alloys were analyzed using an X-ray microanalyzer.
X線回折の結果、生じた合金は単相合金であることが確
認された。それらのX線回折結果の最強線の角度(2θ
)と格子面間隔(d)の組成依存性を第3図に示す。As a result of X-ray diffraction, it was confirmed that the resulting alloy was a single-phase alloy. The angle of the strongest line of those X-ray diffraction results (2θ
) and the compositional dependence of the lattice spacing (d) are shown in FIG.
図から明らかなように、格子面間隔はTa濃度により変
化しており、MgとTaが単相の均一固溶体を形成して
いることが判る。しかし、Ta濃度80%以下と80%
を越える場合とでは格子面間隔に明らかな違いが認めら
れ、80%を越える合金は脆く靭性に乏しいことが判っ
た。As is clear from the figure, the lattice spacing changes depending on the Ta concentration, and it can be seen that Mg and Ta form a single-phase homogeneous solid solution. However, Ta concentration below 80% and 80%
A clear difference in the lattice spacing was observed between cases where the lattice spacing exceeded 80%, and it was found that alloys with a lattice spacing of more than 80% were brittle and lacked toughness.
実施例2
直径10011 %厚さ 6ivのMg円板上の中心か
ら半径29−の円周上に直径2011%厚さ 11のT
aを4個載せたものをターゲットとし、第1図に示した
装置を用い、Arを5ml/sinの速度で流しなから
e、ex to″’ Torrの真空に保ち、自転並び
に公転しているガラスのサブストレイトに250Wの出
力でスバッターデボジッションを行った。X線回折の結
果、生じた合金は実施例1に示したように、MgとTa
が単相の均一固溶体を形成していることか確認され、ま
た、X線マイクロアナライザーを用いた分析によってそ
の組成はMg−39原子%Ta合金であることが明らか
となった。この合金は30℃のINMCI溶液中で自己
不働態化しており、動電位法による電位I V (SC
E)での不働態電流密度もI X 10’ A 1vh
2と小さく優れた耐食性を示すことが判った。Example 2 A T with a diameter of 2011% and a thickness of 11 is placed on the circumference with a radius of 29- from the center on a Mg disk with a diameter of 10011% and a thickness of 6iv.
Using the apparatus shown in Figure 1, we set a target on which four pieces of a were mounted, and kept it in a vacuum of e, ex to''' Torr while flowing Ar at a rate of 5 ml/sin, and it rotated and revolved. Spatter deposition was performed on a glass substrate at a power of 250 W. As a result of X-ray diffraction, the resulting alloy was composed of Mg and Ta, as shown in Example 1.
was confirmed to form a single-phase homogeneous solid solution, and analysis using an X-ray microanalyzer revealed that the composition was a Mg-39 atomic % Ta alloy. This alloy is self-passivated in INMCI solution at 30°C and has a potential I V (SC
The passive current density at E) is also I x 10' A 1vh
2, indicating excellent corrosion resistance.
実施例3
直径100s+a、厚さ6■のMg円板上の中心が半径
29a+の円周上に直径20■、厚さ la+a+のN
bを6個載せたものをターゲットとし、第1図に示した
装置を用い、Arを5ml/sinの速度で流しなから
4X 10’ Torrの真空に保ち、自転並びに公
転しているガラスのサブストレイトに235Wの出力で
スバッターデボジッションを行った。Example 3 The center of an Mg disk with a diameter of 100s+a and a thickness of 6mm is placed on the circumference of a radius of 29a+ with a diameter of 20mm and a thickness of la+a+.
Using the apparatus shown in Figure 1, Ar was flowed at a rate of 5 ml/sin, and a vacuum of 4X 10' Torr was maintained, and a glass sub-assembly that was rotating and revolving was set as a target. I made a straight scatter deposition with an output of 235W.
X線回折の結果、生じた合金はMgとNbが単相の均一
固溶体を形成していることが確認され、またX線マイク
ロアナライザーを用いた分析によって、その組成はMg
−46原子%Nb合金であることが明らかとなった。こ
の合金は30℃のIN MCI溶液中で自己不働態化
しており、動電位法による電位I V (SCE)での
不働態電流密度も 1.2X 10” A /腸2と小
さく優れた耐食性を示すことが判った。As a result of X-ray diffraction, it was confirmed that Mg and Nb formed a single-phase homogeneous solid solution in the resulting alloy, and analysis using an X-ray microanalyzer revealed that the composition was Mg and Nb.
It became clear that it was a -46 atomic % Nb alloy. This alloy is self-passivated in IN MCI solution at 30°C, and has excellent corrosion resistance with a passive current density of 1.2 x 10" A/2 at potential IV (SCE) by potentiodynamic method. It was found that it shows.
実施例4
直径100m5、厚さ 6■の円板上の中心から半径2
9si+の円周上に直径20mm、厚さ 1■のTaお
よびNbを交互に3個ずつ計6個載せたものをターゲッ
トとし、第1図に示した装置を用い、Arを5 ml/
sinの速度で流しながら4X 10’Torrの真空
に保ち、自転並びに公転しているガラスのサブストレイ
トに270Wの出力でスバツターデポジッションを行っ
た。X線回折の結果、生じた合金はMgとTaおよびN
bが単相の均一固溶体を形成していることが確認され、
またX線マイクロアナライザーを用いた分析によって、
その組成はMg−15原子%Ta−20原子%Nb合金
であることが明らかとなった。この合金は30℃のIN
HCI溶液中で自己不働態化しており、動電位法に
よる電位I V (SCE)での不働態電流密度も9.
51X 1O−2A 7m2と小さく優れた耐食性を示
すことか判った。Example 4 Radius 2 from the center of a disk with a diameter of 100m5 and a thickness of 6mm
Using the apparatus shown in Fig. 1, a total of 6 pieces of Ta and Nb with a diameter of 20 mm and a thickness of 1 inch were placed alternately on the circumference of a 9si+, and Ar was added at 5 ml/cm using the apparatus shown in Fig. 1.
While flowing at a speed of sin, a vacuum of 4×10'Torr was maintained, and sputter deposition was performed at an output of 270 W on a rotating and revolving glass substrate. As a result of X-ray diffraction, the resulting alloy was composed of Mg, Ta, and N.
It was confirmed that b formed a single-phase homogeneous solid solution,
Also, by analysis using an X-ray microanalyzer,
The composition was revealed to be an alloy of Mg-15 at.% Ta-20 at.% Nb. This alloy has an IN temperature of 30°C.
It is self-passivated in HCI solution, and the passive current density at potential IV (SCE) by potentiodynamic method is also 9.
51X 1O-2A 7m2 It was found that it was small and exhibited excellent corrosion resistance.
実施例5
直径1100a、厚さ 6mmのMgターゲットと同じ
形状のMg円板上の中心から半径29a+aの円周上に
直径20a+m、厚さ 1■のTaを6個埋め込んだも
のをターゲットとし、第2図に示した装置を用い Ar
を5il/winの速度で流しながら5.5X 10’
Torrの真空に保ち、自転並びに公転しているガラ
スのサブストレイトにMgターゲットは150Wの出力
で、また埋め込みターゲットは250Wの出力でスバッ
ターデポジッションを行った。X線回折の結果、生じた
合金はMgとTaが単相の均一固溶体を形成しているこ
とが確認され、またX線マイクロアナライザーを用いた
分析によって、その組成はM g −31原子%Ta合
金であることが明らかとなった。この合金は30℃のI
N HCI溶液中で自己不働態化しており、動電位法
による電位I V (SCE)での不働態電流密度も
1.4X 1O−IA /1tr2と小さく優れた耐食
性を示すことが判った。Example 5 A Mg disk having the same shape as the Mg target with a diameter of 1100a and a thickness of 6mm was used, with 6 pieces of Ta each having a diameter of 20a+m and a thickness of 1mm embedded on the circumference with a radius of 29a+a from the center. Using the apparatus shown in Figure 2, Ar
5.5X 10' while flowing at a speed of 5il/win
A vacuum of Torr was maintained, and sputter deposition was performed on a rotating and revolving glass substrate with an output of 150 W for the Mg target and an output of 250 W for the embedded target. As a result of X-ray diffraction, it was confirmed that Mg and Ta formed a single-phase homogeneous solid solution in the resulting alloy, and analysis using an X-ray microanalyzer revealed that the composition was Mg - 31 at% Ta. It turned out to be an alloy. This alloy has an I of 30°C
It is self-passivated in N HCI solution, and the passive current density at potential IV (SCE) by potentiodynamic method is also
It was found that the corrosion resistance was as small as 1.4X 1O-IA/1tr2 and exhibited excellent corrosion resistance.
実施例6
種々のターゲットを組合せ、実施例2〜5に示す方法と
同様の方法を用い第1表に示すMg合金を作製した。Example 6 Mg alloys shown in Table 1 were produced by combining various targets and using the same methods as those shown in Examples 2 to 5.
第1表には実施例2〜5の結果も併せて示しである。Table 1 also shows the results of Examples 2 to 5.
X線回折の結果、これらの合金は単相の均一固溶体を形
成していることが確認された。As a result of X-ray diffraction, it was confirmed that these alloys formed a single-phase homogeneous solid solution.
これらの合金は、30℃のIN MCI溶液中で自己
不働態化しており、第1表に合わせて示すように、動電
位法による電位I V (SCE)での不働態電流密度
も小さく、優れた耐食性を示すことが判った。These alloys are self-passivated in IN MCI solution at 30°C, and as shown in Table 1, the passivation current density at the potential I V (SCE) measured by the potentiodynamic method is also small and excellent. It was found that the material exhibited excellent corrosion resistance.
第1表
合金(原子%)不働態電流密度(^/i2)Mg−31
Ta 1.4X 10−’Mg−39Ta
1.OX 10−1Mg−44Ta
Mg−80Ta
Mg−73Ta
Mg−10−1
Mg−44Ta
%g−46Nb
Mg−57Nb
Mg−72Nb
Mg−8ONb
Mg−5Ta−15Nb
Mg−10Ta−1ONb
Mg−15Ta−2ONb
Mg−27Ta−2ONb
Mg−13Ta−32Nb
Mg−34Ta−5Nb
Mg−44Ta−27Nb
Mg−55Ta−25Nb
[発明の効果]
以上詳述したとお
シウム単相合金は、
9、OX 10−2
5.2X 10−2
3、lX 10−2
2.8X 10−2
1.7X10’
1.2X10”
9、OX 10−2
5.5X 10−2
5、OX 10−2
1、IXLQol
1.0Xlo”
9.5X to−2
8、OX 10−2
9、OX 10−2
7.2X 10−2
5.8X 10−2
2、lX 10−2
す、本発明の高耐食マグネ
スパッター法で作製される
TaおよびNbを必須元素として含むMg合金であって
、酸化力が乏しく腐食性の激しい塩酸溶液中あるいは塩
素イオンを含む腐食性環境においても安定な保護皮膜を
形成し、腐食速度が小さく、不働態電流密度も小さい高
耐食合金である。Table 1 Alloy (atomic %) Passive current density (^/i2) Mg-31
Ta 1.4X 10-'Mg-39Ta
1. OX 10-1Mg-44Ta Mg-80Ta Mg-73Ta Mg-10-1 Mg-44Ta %g-46Nb Mg-57Nb Mg-72Nb Mg-8ONb Mg-5Ta-15Nb Mg-10Ta-1ONb Mg-15Ta-2ONb Mg- 27Ta-2ONb Mg-13Ta-32Nb Mg-34Ta-5Nb Mg-44Ta-27Nb Mg-55Ta-25Nb [Effect of the invention] The sium single-phase alloy detailed above is: 9, OX 10-2 5.2X 10- 2 3, lX 10-2 2.8X 10-2 1.7X10'1.2X10" 9, OX 10-2 5.5X 10-2 5, OX 10-2 1, IXLQol 1.0Xlo" 9.5X to -2 8, OX 10-2 9, OX 10-2 7.2X 10-2 5.8X 10-2 2, lX 10-2 An alloy containing Mg as an essential element, which has poor oxidizing power and forms a stable protective film even in highly corrosive hydrochloric acid solutions or corrosive environments containing chlorine ions, has a low corrosion rate, and has a low passive current density. It is a highly corrosion resistant alloy.
第1図および第2図は本発明合金を作製するスパッター
装置の例を示す概略図、第3図は実施例1のX線回折結
果を示すグラフである。
1・・・サブストレイトの公転軸、
2・・・自転するサブストレイト、
3.4.5・・・ターゲット、
6・・・スパッターチャンバー1 and 2 are schematic views showing an example of a sputtering apparatus for producing the alloy of the present invention, and FIG. 3 is a graph showing the X-ray diffraction results of Example 1. 1... Substrate revolution axis, 2... Autorotating substrate, 3.4.5... Target, 6... Sputter chamber
Claims (2)
子%含み、残部は実質的にMgからなる高耐食マグネシ
ウム合金。(1) A highly corrosion-resistant magnesium alloy containing 31 to 80 atomic % of either Ta or Nb, with the remainder substantially consisting of Mg.
含み、TaおよびNbの合計が20〜80原子%であり
、残部が実質的にMgからなる高耐食マグネシウム合金
。(2) A highly corrosion-resistant magnesium alloy containing 5 atomic % or more of either Ta or Nb, with a total of 20 to 80 atomic % of Ta and Nb, and the balance substantially consisting of Mg.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27046590A JPH04147938A (en) | 1990-10-11 | 1990-10-11 | High corrosion resistant magnesium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27046590A JPH04147938A (en) | 1990-10-11 | 1990-10-11 | High corrosion resistant magnesium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04147938A true JPH04147938A (en) | 1992-05-21 |
Family
ID=17486682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27046590A Pending JPH04147938A (en) | 1990-10-11 | 1990-10-11 | High corrosion resistant magnesium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04147938A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409555A (en) * | 1992-09-30 | 1995-04-25 | Mazda Motor Corporation | Method of manufacturing a forged magnesium alloy |
US5902424A (en) * | 1992-09-30 | 1999-05-11 | Mazda Motor Corporation | Method of making an article of manufacture made of a magnesium alloy |
JP2008020590A (en) * | 2006-07-12 | 2008-01-31 | National Institute Of Advanced Industrial & Technology | Reflective light control thin film material using magnesium-niobium alloy thin film |
CN108930023A (en) * | 2018-07-18 | 2018-12-04 | 北方民族大学 | A kind of method that Mg alloy surface magnetron sputtering prepares tantalum biological coating |
-
1990
- 1990-10-11 JP JP27046590A patent/JPH04147938A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409555A (en) * | 1992-09-30 | 1995-04-25 | Mazda Motor Corporation | Method of manufacturing a forged magnesium alloy |
US5902424A (en) * | 1992-09-30 | 1999-05-11 | Mazda Motor Corporation | Method of making an article of manufacture made of a magnesium alloy |
JP2008020590A (en) * | 2006-07-12 | 2008-01-31 | National Institute Of Advanced Industrial & Technology | Reflective light control thin film material using magnesium-niobium alloy thin film |
CN108930023A (en) * | 2018-07-18 | 2018-12-04 | 北方民族大学 | A kind of method that Mg alloy surface magnetron sputtering prepares tantalum biological coating |
CN108930023B (en) * | 2018-07-18 | 2020-07-17 | 北方民族大学 | Method for preparing tantalum biological coating on surface of magnesium alloy through magnetron sputtering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5123980A (en) | Sputter deposited amorphous titanium aluminum alloys | |
JP2677721B2 (en) | High corrosion resistance amorphous alloy | |
JPH0477069B2 (en) | ||
JP2937580B2 (en) | High corrosion resistant amorphous alloy | |
JPH04147938A (en) | High corrosion resistant magnesium alloy | |
US5030300A (en) | Amorphous aluminum alloys | |
JP2965776B2 (en) | High corrosion resistant amorphous aluminum alloy | |
Nam et al. | Synthesis of high-entropy alloy thin films via grain boundary diffusion–assisted solid-state alloying | |
EP0364902B1 (en) | Preparation method of amorphous superlattice alloys | |
JP2677667B2 (en) | High corrosion resistance amorphous aluminum alloy | |
JP2911672B2 (en) | High corrosion resistant amorphous aluminum alloy | |
JPH07103454B2 (en) | High corrosion resistance amorphous alloy | |
JPH0579751B2 (en) | ||
JPH068492B2 (en) | High corrosion resistance amorphous aluminum alloy | |
JPH0610328B2 (en) | High corrosion resistance amorphous aluminum alloy | |
JP2911675B2 (en) | High temperature corrosion resistant amorphous alloy | |
JP2965805B2 (en) | High temperature corrosion resistant amorphous alloy | |
KR930006294B1 (en) | Amorphous aluminium alloys | |
JP2948410B2 (en) | High temperature corrosion resistant amorphous alloy |