JPH04147668A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPH04147668A
JPH04147668A JP27039490A JP27039490A JPH04147668A JP H04147668 A JPH04147668 A JP H04147668A JP 27039490 A JP27039490 A JP 27039490A JP 27039490 A JP27039490 A JP 27039490A JP H04147668 A JPH04147668 A JP H04147668A
Authority
JP
Japan
Prior art keywords
semiconductor
type
layer
semiconductor region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27039490A
Other languages
Japanese (ja)
Inventor
Mitsuzo Sakamoto
光造 坂本
Takeaki Okabe
岡部 健明
Isao Yoshida
功 吉田
Masatoshi Morikawa
正敏 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27039490A priority Critical patent/JPH04147668A/en
Publication of JPH04147668A publication Critical patent/JPH04147668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce noise and mutual intervention by growing an epitaxial layer on a low-resistivity substrate, by forming a diffused high-concentration layer reaching the substrate from the surface, connecting the diffused layer with a power supply, and by forming a semiconductor device within a region surrounded by these high-concentration semiconductor regions. CONSTITUTION:On a high-concentration P-type semiconductor substrate 1 having a resistivity of not exceeding 0.5OMEGAcm, there are formed a P-type epitaxial layer 2 having a lower impurity concentration than the substrate and then an N-type buried layer 3 and an element-separating P-type buried layer 4. Because boron is used as the impurity of the P-type semiconductor substrate 1, the boundary between the P-type epitaxial layer and the semiconductor substrate becomes indistinct according to a thermal process to be conducted] thereafter. Then, an N-type epitaxial layer 5a is formed, a high concentration N-type diffused layer 6 is formed so as to reach the N--type buried layer 3, and an element- separating high-concentration diffusion layer 7 is formed so as to reach the element-separating P-type diffused layer 4. After that, a conventional process is used also in the title method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置とその製造方法に係り、特
に、素子間または回路ブロック間に伝わる雑音を低減し
た半導体集積回路装置とその製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device and a method for manufacturing the same, and particularly to a semiconductor integrated circuit device and a method for manufacturing the same that reduce noise transmitted between elements or circuit blocks. Regarding.

〔従来の技術〕[Conventional technology]

バイポーラトランジスタや2重拡散型MO5)ランジス
タの素子分離を行う手法としては誘電体分離型ICとP
N接合分離型ICがあるが、コストの観点からPN接合
分離が良く使用されている。
Dielectric isolation type IC and P
Although there are N-junction isolation type ICs, PN junction isolation is often used from the viewpoint of cost.

一般的なPN接合分離型ICの製造方法並びに断面構造
に関しては、例えば、ジョン ウイリ アンド ソン出
版のパール アール グレイとロバート シイ メイヤ
著のアナリシス アンドデザイン オン アナログ イ
ンチグレイティラドサーキットの第73頁から第78頁
(PAUL R,GRAY、ROBERTG、MEYE
R,JOHN VILEY & 5ONS ”ANAL
YSISAND  DESIGN  OF  ANAL
OG  INTEGRATED CIRCUITS”p
p73−78)に記述されである。第10図は従来のN
PN トランジスタの断面構造図である。
Regarding the manufacturing method and cross-sectional structure of a general PN junction isolated type IC, for example, see pages 73 to 78 of Analysis and Design on Analog Ingredient Lad Circuits by Pearl Earl Gray and Robert Schie Mayer, published by John Wiley and Son. Page (PAUL R, GRAY, ROBERTG, MEYE
R, JOHN VILEY & 5ONS “ANAL”
YSISAND DESIGN OF ANAL
OG INTEGRATED CIRCUITS”p
It is described in p73-78). Figure 10 shows the conventional N
FIG. 2 is a cross-sectional structural diagram of a PN transistor.

通常の場合、コレクタ・基板間容量低減とコレクタ・基
板間耐圧確保のため100以上の高抵抗のP型基板2b
上にN型のエピタキシャル層5aを形成し、このN型の
エピタキシャル層をシリコン表面からP型基板に到達す
るP型拡散層7で分離し、個々のN型エピタキシャル層
の中に素子を形成するという手法が行われている。ここ
で、N型埋込層3は右図のNPNトランジスタのコレク
タの抵抗低減とベースのP型拡散層10とP型基板1と
の間に存在する寄生バイポーラトランジスタの電流利得
を低減するために設けである。
In normal cases, the P-type substrate 2b has a high resistance of 100 or more to reduce the capacitance between the collector and the substrate and ensure the withstand voltage between the collector and the substrate.
An N-type epitaxial layer 5a is formed on top, this N-type epitaxial layer is separated by a P-type diffusion layer 7 that reaches the P-type substrate from the silicon surface, and elements are formed in each N-type epitaxial layer. This method is being used. Here, the N-type buried layer 3 is used to reduce the resistance of the collector of the NPN transistor shown in the right figure and to reduce the current gain of the parasitic bipolar transistor existing between the P-type diffusion layer 10 of the base and the P-type substrate 1. It is a provision.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記PN接合分離型ICでは誘電体分離型ICに比べ低
コストな分離法であるという利点があるが、上記従来の
PN接合分離型ICではインダクタンス負荷を駆動する
場合、電流供給遮断時に出力トランジスタのコレクタ(
N型領域5a)の電圧がグランド(P型基板1)の電圧
より下がるという問題がある。このため、素子分離用P
N接合が順バイアスされベース用のP型拡散層12とP
型半導体基板lとの間に存在する寄生のPNP )−ラ
ンジスタやP型半導体基板をべ一不とする寄生のNPN
トランジスタがオン状態になり回路が誤動作したり、電
源とグランドとの間に大電流が流れるという問題があっ
た。また、寄生のバイポーラトランジスタが働かない場
合でも半導体集積回路装置内に急激な電位変動が存在す
る場合、素子分離用PN接合部、に拡散電流が流れ、ど
れがP型基板1を介して同一チップ上のアナログ回路へ
の雑音原因となり高精度なAD変換回路やDA変換回路
が実現できないという問題があった。
The above-mentioned PN junction isolation type IC has the advantage of being a lower-cost isolation method than the dielectric isolation type IC, but when driving an inductance load with the above-mentioned conventional PN junction isolation type IC, when the current supply is cut off, the output transistor is collector(
There is a problem in that the voltage of the N-type region 5a) is lower than the voltage of the ground (P-type substrate 1). For this reason, element isolation P
The N junction is forward biased and the P type diffusion layer 12 for the base and P
- Parasitic PNP that exists between the transistor and the P-type semiconductor substrate
There were problems such as transistors turning on, causing circuits to malfunction, and large currents flowing between the power supply and ground. In addition, even when the parasitic bipolar transistor does not work, if there is a sudden potential fluctuation within the semiconductor integrated circuit device, a diffusion current flows through the PN junction for element isolation, There is a problem in that this causes noise to the analog circuit above, making it impossible to realize a highly accurate AD conversion circuit or DA conversion circuit.

本発明の目的は異なった素子間並びに異なった回路領域
間で、半導体基板を介して伝わる雑音並びに相互干渉が
少ない半導体装置並びにその製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device and a method for manufacturing the same in which noise and mutual interference transmitted through a semiconductor substrate are reduced between different elements and between different circuit areas.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、まず半導体基板の抵抗を0
.5Ωcm以下に低抵抗化し、その上に半導体素子を形
成するエピタキシャル層の成長を行い、さらに、表面か
ら前記低抵抗基板に到達するするように半導体基板と同
じ導電型の高濃度拡散層を形成し、これら高濃度の半導
体領域をグランドまたは電源に接続し、さらにこれら高
濃度半導体領域に囲まれる領域内に半導体素子を形成し
た。
In order to achieve the above purpose, first the resistance of the semiconductor substrate is reduced to 0.
.. The resistance is lowered to 5 Ωcm or less, and an epitaxial layer for forming a semiconductor element is grown on the epitaxial layer, and a highly concentrated diffusion layer of the same conductivity type as the semiconductor substrate is formed so as to reach the low resistance substrate from the surface. These high concentration semiconductor regions were connected to the ground or a power supply, and semiconductor elements were formed in the region surrounded by these high concentration semiconductor regions.

また、縦方向の寄生バイポーラトランジスタの電流利得
を低減するためやバイポーラトランジスタや縦型2重拡
散型MOSトランジスタのオン抵抗低減のために、高濃
度基板の上に直接N型埋込層を設ける場合にはP型基板
の不純物としてN型埋込層の不純物(アンチモンまたは
ヒ素)の拡散係数に比べ拡散定数が大きいボロンをもち
いるため、その後の熱工程によりボロンが上方向に拡散
しN型埋込層が消失してしまうという問題生じうる。
In addition, in order to reduce the current gain of vertical parasitic bipolar transistors or to reduce the on-resistance of bipolar transistors or vertical double-diffused MOS transistors, an N-type buried layer is provided directly on a highly doped substrate. Since boron is used as an impurity in the P-type substrate and has a diffusion constant larger than that of the impurity (antimony or arsenic) in the N-type buried layer, boron diffuses upward during the subsequent thermal process and becomes an N-type buried layer. A problem may arise in which the mixed layer disappears.

そこで、前記高濃度基板の上に低濃度のP型拡散層また
はN型拡散層をエピタキシャル成長により形成し、その
後N型埋込層の形成と素子分離用P型埋込層の形成を行
い、さらに、エピタキシャル層を形成しシリコン表面か
らも素子分離用のP型拡散層を形成し前記素子分離用P
型拡散層と接続させた。また、ホットエレクトロンをフ
ローティングゲートに注入するEPROMやフラッシュ
EEPROMを共存する場合にはボディ領域の電位変動
防止のためボディ領域を前記P型埋込層を介してP型基
板と接続した。
Therefore, a low concentration P type diffusion layer or an N type diffusion layer is formed on the high concentration substrate by epitaxial growth, and then an N type buried layer and a P type buried layer for element isolation are formed. , an epitaxial layer is formed, and a P-type diffusion layer for element isolation is formed from the silicon surface as well.
It was connected to the mold diffusion layer. Further, when an EPROM or a flash EEPROM in which hot electrons are injected into the floating gate is used, the body region is connected to the P-type substrate via the P-type buried layer to prevent potential fluctuations in the body region.

〔作用〕[Effect]

本発明によれば、隣接半導体素子または隣接半導体回路
からの雑音を嫌う半導体素子または半導体回路を低抵抗
な半導体領域で囲むことにより、隣接素子間または隣接
回路間に寄生的に存在するバイポーラトランジスタの電
流利得を低減することができるためこれらの間に存在す
る相互干渉を低減することが可能である。また、この低
抵抗領域をグランドまたは電源に接続することにより、
隣接素子間または隣接回路間への雑音伝達を除去可能と
なる。また、逆に雑音発生の原因となる半導体素子また
は半導体回路を前記低抵抗な半導体領域で囲むことによ
り、隣接素子または隣接回路への悪影響を低減すること
が可能である。またさらに前記低抵抗な半導体領域をP
型で形成し、その内側にさらに低抵抗なN型埋込層とこ
れに達するように形成した高濃度N型半導体領域で半導
体素子または半導体回路を囲むことが可能となるため前
述した隣接素子間並びに隣接回路間での雑音低減効果を
高めることが可能となる。また、高濃度N型埋込層を用
いたバイポーラトランジスタ等を相互干渉を低減するた
めに設けた低抵抗なP型半導体領域の内部に形成できる
という効果がある。
According to the present invention, by surrounding a semiconductor element or a semiconductor circuit that is sensitive to noise from adjacent semiconductor elements or adjacent semiconductor circuits with a low-resistance semiconductor region, bipolar transistors that exist parasitically between adjacent elements or adjacent circuits can be eliminated. Since the current gain can be reduced, mutual interference between them can be reduced. Also, by connecting this low resistance area to ground or power supply,
It becomes possible to eliminate noise transmission between adjacent elements or between adjacent circuits. Moreover, by surrounding a semiconductor element or a semiconductor circuit that causes noise generation with the low-resistance semiconductor region, it is possible to reduce the adverse influence on adjacent elements or circuits. Furthermore, the low resistance semiconductor region is
This makes it possible to surround the semiconductor element or semiconductor circuit with a low-resistance N-type buried layer inside the mold and a high-concentration N-type semiconductor region formed to reach this layer. In addition, it becomes possible to enhance the effect of reducing noise between adjacent circuits. Another advantage is that a bipolar transistor or the like using a heavily doped N-type buried layer can be formed inside a low-resistance P-type semiconductor region provided to reduce mutual interference.

また、本発明の半導体回路装置にホットエレクトロンを
フローティングゲートに注入するEPROMやフラッシ
ュEEPROMを共存する場合にもボディ領域の電位変
動防止のためボディ領域を前記P型の埋込層を介してP
型基板と接続できるため不揮発性記憶素子のボディ領域
の電位変動によるラッチアップを防止できる。
Further, even when an EPROM or a flash EEPROM in which hot electrons are injected into the floating gate coexists in the semiconductor circuit device of the present invention, the body region is connected to the P-type via the P-type buried layer to prevent potential fluctuations in the body region.
Since it can be connected to the mold substrate, latch-up due to potential fluctuations in the body region of the nonvolatile memory element can be prevented.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例の半導体集積回路装置の
構造断面図、第2図はその製造方法を示しである。
FIG. 1 is a cross-sectional view of the structure of a semiconductor integrated circuit device according to a first embodiment of the present invention, and FIG. 2 shows a manufacturing method thereof.

まず、抵抗率が0.5Ωcm以下の高濃度P型半導体基
板1上に、これより低濃度のP型エピタキシャル層2を
形成し、次にN型埋込層3と素子分離用のP型埋込層4
を形成する。ここでP型半導体基板1の不純物はボロン
を使用するためその後の熱工程によりP型エピタキシャ
ル層との境界が明確でなくなる。このため図面では破線
で示しである(第2図(a))。次に、N型エピタキシ
ャル層5aを形成し、前記N型埋込層3に到達するよう
に高濃度N型拡散層6を形成し、前記素子分離用P型拡
散層4に到達するように素子分離用高濃度拡散層7を形
成する(第2図(b))。その後は従来プロセスを用い
ることにより第1図の半導体集積回路装置が得られる。
First, a P-type epitaxial layer 2 with a lower concentration is formed on a highly doped P-type semiconductor substrate 1 with a resistivity of 0.5 Ωcm or less, and then an N-type buried layer 3 and a P-type buried layer 3 for element isolation are formed. Including layer 4
form. Since boron is used as the impurity in the P-type semiconductor substrate 1, the boundary with the P-type epitaxial layer becomes unclear due to the subsequent thermal process. For this reason, it is indicated by a broken line in the drawing (FIG. 2(a)). Next, an N-type epitaxial layer 5a is formed, a high concentration N-type diffusion layer 6 is formed so as to reach the N-type buried layer 3, and a high concentration N-type diffusion layer 6 is formed so as to reach the element isolation P-type diffusion layer 4. A high concentration diffusion layer 7 for separation is formed (FIG. 2(b)). Thereafter, the semiconductor integrated circuit device shown in FIG. 1 is obtained by using conventional processes.

高濃度基板の上に直接アンチモンやヒ素を用いたN型埋
込層形成した場合にはその後の熱工程により高濃度P型
基板のわき上がりによりN型埋込層が消失してしまう可
能性があるが本実施例によれば高濃度P型基板と高濃度
N型埋込層の間にP型エピタキシャル層2が形成されて
いるため上述した問題を回避することが可能である。ま
た、素子分離用のP型埋込層4を設けることにより前記
低濃度P型エピタキシャル層2の素子分離領域を高濃度
化し横方向の寄生バイポーラトランジスタの電流利得を
低減することが可能である。また、素子分離領域をP半
拡散層4,7で形成することにより、P型拡散層7だけ
を用いた場合に比べ熱工程を低減することが可能となる
。このため高濃度P型基板1に用いているボロンの上方
拡散を低減することが可能である。
If an N-type buried layer using antimony or arsenic is formed directly on a high-concentration substrate, there is a possibility that the N-type buried layer will disappear due to the rise of the high-concentration P-type substrate during the subsequent thermal process. However, according to this embodiment, since the P type epitaxial layer 2 is formed between the highly doped P type substrate and the heavily doped N type buried layer, it is possible to avoid the above-mentioned problems. Further, by providing the P-type buried layer 4 for element isolation, it is possible to increase the concentration of the element isolation region of the lightly doped P-type epitaxial layer 2 and reduce the current gain of the parasitic bipolar transistor in the lateral direction. Furthermore, by forming the element isolation region with the P semi-diffused layers 4 and 7, it is possible to reduce the number of thermal processes compared to the case where only the P-type diffused layer 7 is used. Therefore, it is possible to reduce upward diffusion of boron used in the high concentration P-type substrate 1.

第1図に示した実施例では右側に出力素子や高耐圧用の
横型の2重拡散型NチャネルMO8トランジスタを示し
である。こここでN型埋込層3と高濃度N型拡散層6は
NチャネルMoSトランジスタのボディ用のP型拡散層
12とP型基板1゜2または素子分離用P型拡散層4,
7と間に存在する寄生バイポーラトランジスタの電流利
得低減のため設けである。また、図中の中央に高濃度N
型半導体層3,6で囲まれた領域は外部からの雑音を嫌
う高精度アナログ回路を形成する領域で例えばAD変換
器やDA変換器またはその回路の一部を形成する領域を
示しである。すなわち、この高濃度N型拡散層を電源に
固定することにより、たとえ低抵抗化したP型基板で雑
音が除去できなかった場合でも高濃度N型層の内側に雑
音が入りにくい構造となっている。なお、このような高
濃度N型拡散層内には高周波で動作する雑音発生元とな
るデジタル回路部を入れることにより外部へ雑音が放出
されることを防止することも可能である。また、P型エ
ピタキシャル層2の濃度と厚さを調整しN型埋込層と基
板のP型拡散層の間に存在するダイオードを図中布に示
したような2重拡散型MOS)−ランジスタのソース、
ドレイン間保護用ツェナーダイオードとして積極的に使
用することも可能である。第1図の左にはホットエレク
トロンをフローティングゲート11に注入するEPRO
MやフラッシュEPROM等の不揮発性記憶素子を示し
である。この場合不揮発性記憶素子のボディであるP型
拡散層10に書き込み時に基板電流が流れ基板電位が変
動しやすくなるこのためボディはP型基板1と接続しラ
ッチアップを防止する必要がある。本実施例ではこのた
めP型基板1とP型拡散層10をP型埋込層4を介して
接続している。なお、本実施例では高濃度N型埋込層3
とP型基板1との間に形成するエピタキシャル層を低濃
度のP型エピタキシャル層2としたがこの代わりにN型
埋込層3と同程度ないし低濃度のN型エピタキシャル層
を用いても同様の効果がある。
In the embodiment shown in FIG. 1, an output element and a horizontal double-diffusion type N-channel MO8 transistor for high breakdown voltage are shown on the right side. Here, the N-type buried layer 3 and the high concentration N-type diffusion layer 6 are connected to the P-type diffusion layer 12 for the body of the N-channel MoS transistor and the P-type substrate 1°2 or the P-type diffusion layer 4 for element isolation.
This is provided to reduce the current gain of the parasitic bipolar transistor that exists between 7 and 7. In addition, there is a high concentration of N in the center of the figure.
The region surrounded by the type semiconductor layers 3 and 6 is a region in which a high-precision analog circuit that is sensitive to external noise is formed, and is, for example, a region in which an AD converter, a DA converter, or a part of the circuit is formed. In other words, by fixing this highly doped N-type diffusion layer to the power supply, even if noise cannot be removed with a low-resistance P-type substrate, the structure is such that noise is difficult to enter inside the highly doped N-type layer. There is. Note that it is also possible to prevent noise from being released to the outside by inserting a digital circuit section that operates at a high frequency and becomes a source of noise in such a high concentration N-type diffusion layer. In addition, by adjusting the concentration and thickness of the P-type epitaxial layer 2, the diode existing between the N-type buried layer and the P-type diffusion layer of the substrate can be converted into a double-diffusion type MOS)-transistor as shown in the figure. source,
It is also possible to actively use it as a Zener diode for protection between drains. On the left side of Figure 1 is an EPRO that injects hot electrons into the floating gate 11.
This shows a non-volatile memory element such as M or flash EPROM. In this case, a substrate current flows during writing into the P-type diffusion layer 10, which is the body of the nonvolatile memory element, and the substrate potential tends to fluctuate. Therefore, the body needs to be connected to the P-type substrate 1 to prevent latch-up. For this reason, in this embodiment, the P-type substrate 1 and the P-type diffusion layer 10 are connected via the P-type buried layer 4. Note that in this embodiment, the high concentration N-type buried layer 3
Although the epitaxial layer formed between the P-type substrate 1 and the P-type substrate 1 is a low-concentration P-type epitaxial layer 2, an N-type epitaxial layer with the same or low concentration as the N-type buried layer 3 may be used instead. There is an effect.

第3図は本発明の第2の実施例の半導体集積回路装置の
構造断面図である。本実施例ではN型エピタキシャル層
5aの代わりにP型エピタキシャル層5bを用いである
が、前実施例と同様の構造が実現できるため同じ効果が
得られる。ただし本実施例では、図の右側の2重拡散型
NチャネルMOSトランジスタの構造として、図中に示
しであるようなN型拡散層9を用いる構造と用いない構
造が実現可能である。N型拡散層9を用いる構造の場合
では高濃度N型埋込層3の上にP型エピタキシャル層5
bの領域ができるがこの領域はフローティングにしても
ドレンと接続してもソースに接続しても良い。
FIG. 3 is a structural sectional view of a semiconductor integrated circuit device according to a second embodiment of the present invention. In this embodiment, a P-type epitaxial layer 5b is used in place of the N-type epitaxial layer 5a, but since the same structure as in the previous embodiment can be realized, the same effect can be obtained. However, in this embodiment, as the structure of the double-diffused N-channel MOS transistor on the right side of the figure, it is possible to realize a structure using the N-type diffusion layer 9 and a structure not using the N-type diffusion layer 9 as shown in the figure. In the case of a structure using an N-type diffusion layer 9, a P-type epitaxial layer 5 is formed on the heavily doped N-type buried layer 3.
A region b is created, and this region may be floating, connected to the drain, or connected to the source.

なお、本実施例でも高濃度N型埋込層3とP型基板1と
の間に形成す4低濃度P型エピタキシャル層2をN型埋
込層3と同程度ないし低濃度のN型エピタキシャル層を
用いても同様の効果が得られる。
In this embodiment as well, the 4 lightly doped P-type epitaxial layers 2 formed between the highly doped N-type buried layer 3 and the P-type substrate 1 are replaced with N-type epitaxial layers having a concentration similar to or as low as that of the N-type buried layer 3. A similar effect can be obtained using layers.

第4図は本発明の第3の実施例の半導体集積回路装置の
構造断面図である。インダクタンス負荷を駆動可能なブ
リッジ回路の下アーム素子と上アーム素子として用いる
ことができるNチャネルMOSトランジスタとPチャネ
ルMO8)−ランジスタの構造を本発明の第2の実施例
と同じ製造方法で実現した断面構造の例を示しである。
FIG. 4 is a structural sectional view of a semiconductor integrated circuit device according to a third embodiment of the present invention. The structure of an N-channel MOS transistor and a P-channel MO8) transistor, which can be used as the lower arm element and upper arm element of a bridge circuit capable of driving an inductance load, was realized using the same manufacturing method as in the second embodiment of the present invention. An example of a cross-sectional structure is shown.

インダクタンス負荷を駆動する場合にはNチャネルMO
Sトランジスタ(図中布)のドレインは基板電圧より下
がり、トレインから電子がP型頭域の5bに注入される
が高濃度P型拡散層4,7に囲まれているため隣接素子
との相互干渉を抑制することが可能である。また、Pチ
ャネルMOSトランジスタ (図中左)はドレインが電
源より上がりドレインから正孔がN型拡散層9に注入さ
れるが、高濃度N型拡散層3,6で囲まれているため隣
接素子との相互干渉を抑制することが可能である。
N-channel MO when driving an inductance load
The drain of the S transistor (cloth in the figure) is lower than the substrate voltage, and electrons are injected from the train into the P-type head region 5b, but because it is surrounded by the high concentration P-type diffusion layers 4 and 7, there is no interaction with adjacent elements. It is possible to suppress interference. In addition, in the P-channel MOS transistor (left in the figure), the drain rises above the power supply, and holes are injected from the drain into the N-type diffusion layer 9, but since it is surrounded by the high concentration N-type diffusion layers 3 and 6, the adjacent element It is possible to suppress mutual interference with

第5図は本発明の第4の実施例の半導体集積回路装置の
構造断面図である。本実施例では高濃度N型埋込層の不
純物としてP型基板用の不純物であるボロンより拡散定
数が大きいリンを用いることにより、たとえ高濃度のP
型基板1を用いてもn型埋込層3bが消失しないように
した場合の実施例を示す。本実施例の場合には第1並び
に第2の実施例に比べ、低抵抗なN型埋込層が得られに
くいがエピタキシャル層の形成が1回で済むという利点
がある。
FIG. 5 is a structural sectional view of a semiconductor integrated circuit device according to a fourth embodiment of the present invention. In this example, by using phosphorus, which has a larger diffusion constant than boron, which is an impurity for the P-type substrate, as the impurity for the high-concentration N-type buried layer, even if the high-concentration P
An example will be shown in which the n-type buried layer 3b is prevented from disappearing even if the type substrate 1 is used. In the case of this embodiment, compared to the first and second embodiments, it is difficult to obtain a low-resistance N-type buried layer, but there is an advantage that the epitaxial layer can be formed only once.

第6図は本発明の第5の実施例の半導体集積回路装置の
構造断面図である。第4の実施例の場合にはN型エピタ
キシャル層を用いていたが本実施例ではP型エピタキシ
ャル層5bを用いた場合の実施例を示しである。本実施
例では不揮発性記憶素子のボディ領域の抵抗低減のため
に素子分離用P型拡散層7をP型拡散層9と必ず接続し
不揮発性記憶素子のボディ部の電位変動を防止すること
が必要である。また第1または第2の実施例のようにP
型埋込層4を追加し不揮発性メモリのボディと基板を接
続してもよい。
FIG. 6 is a structural sectional view of a semiconductor integrated circuit device according to a fifth embodiment of the present invention. In the fourth embodiment, an N-type epitaxial layer was used, but in this embodiment, a P-type epitaxial layer 5b is used. In this embodiment, in order to reduce the resistance of the body region of the nonvolatile memory element, the element isolation P-type diffusion layer 7 is always connected to the P-type diffusion layer 9 to prevent potential fluctuations in the body region of the nonvolatile memory element. is necessary. Also, as in the first or second embodiment, P
A mold embedding layer 4 may be added to connect the body of the nonvolatile memory and the substrate.

第7図は本発明の第4の実施例の半導体集積回路の構造
断面図である。インダクタンス負荷を駆動可能なブリッ
ジ回路の下アーム素子と上アーム素子として用いること
ができるNチャネルMOSトランジスタとPチャネルM
OSトランジスタの構造を本発明の第5の実施例の製造
方法で実現した場合の断面構造の例を示しである。イン
ダクタンス負荷を駆動する場合にはNチャネルMOSト
ランジスタ(図中左)のドレインは基板電圧より下がり
、ドレインから電子がP型頭域の5bに注入されるが高
濃度P型基板1と高濃度P型拡散層7に囲まれているた
め隣接素子との相互干渉を抑制することが可能である。
FIG. 7 is a structural sectional view of a semiconductor integrated circuit according to a fourth embodiment of the present invention. N-channel MOS transistor and P-channel MOS transistor that can be used as the lower arm element and upper arm element of a bridge circuit that can drive an inductance load
An example of a cross-sectional structure when the structure of an OS transistor is realized by the manufacturing method of the fifth embodiment of the present invention is shown. When driving an inductance load, the drain of the N-channel MOS transistor (left in the figure) drops below the substrate voltage, and electrons are injected from the drain to the P-type head region 5b. Since it is surrounded by the type diffusion layer 7, it is possible to suppress mutual interference with adjacent elements.

また、PチャネルMOSトランジスタ(図中左)はドレ
インが電源より上がりドレインから正孔がN型拡散層9
に注入されるが、高濃度N型拡散層3b、6で囲まれて
いるため隣接素子との相互干渉を抑制することが可能で
ある。
In addition, in the P-channel MOS transistor (left in the figure), the drain rises above the power supply and holes flow from the drain to the N-type diffusion layer 9.
However, since it is surrounded by the heavily doped N-type diffusion layers 3b and 6, it is possible to suppress mutual interference with adjacent elements.

第8図は本発明の第7′の実施例の半導体集積回路装置
の構造断面図である。これまでの実施例では高濃度N型
埋込層を必要とする場合、すなわち、縦方向の寄生バイ
ポーラトランジスタの電流利得の低減またはバイポーラ
トランジスタを共存する場合の実施例を示してきた。こ
れに対し、第8図は高濃度N型埋込層が不要な場合の本
発明の実施例である。すなわち、抵抗率0.5Ω■以下
の低抵抗P型基板1とこれに到達する高濃度P型拡散層
6で囲まれる領域内に外部からの雑音を嫌うAD変換器
やDA変換器等の高精度アナログ回路、またはその回路
の一部を形成している。このため高濃度P型頭域で囲ま
れた領域の外部からの雑音遮断することが可能である。
FIG. 8 is a structural sectional view of a semiconductor integrated circuit device according to a seventh embodiment of the present invention. The embodiments so far have shown cases where a highly doped N-type buried layer is required, that is, cases in which the current gain of a vertical parasitic bipolar transistor is reduced or bipolar transistors coexist. On the other hand, FIG. 8 shows an embodiment of the present invention in which a high concentration N-type buried layer is not required. That is, in the area surrounded by the low-resistance P-type substrate 1 with a resistivity of 0.5 Ω or less and the high-concentration P-type diffusion layer 6 that reaches this substrate, there is a Precision analog circuits, or form part of such circuits. Therefore, it is possible to block noise from outside the area surrounded by the highly concentrated P-type head area.

また、逆に、このような高濃度P型頭域で包含される領
域内に高周波で動作する雑音発生元となるデジタル回路
部を入れることにより外部へ雑音が放出されることを防
止することも可能である。
Conversely, it is also possible to prevent noise from being emitted to the outside by inserting a digital circuit section that operates at a high frequency and becomes a source of noise within the area encompassed by such a high concentration P-type head area. It is possible.

第9図は本発明の第8の実施例の半導体集積回路装置の
構造断面図である。第7の実施例の場合にはN型エピタ
キシャル層5bを用いていたが本実施例ではP型エピタ
キシャル層を用いた場合の実施例を示しである。本実施
例の場合でも高濃度P型拡散層6で囲まれる領域内に外
部からの雑音登嫌うAD変換器やDA変換器等の高精度
アナログ回路、またはその回路の一部を形成することに
より、高濃度P型頭域で囲まれた領域の外部からの雑音
遮断することが可能である。また、逆に、このような高
濃度P型頭域で包含される領域内に高周波で動作する雑
音発生元となるデジタル回路部を入れることにより外部
へ雑音が放出されることを防止することも可能である。
FIG. 9 is a structural sectional view of a semiconductor integrated circuit device according to an eighth embodiment of the present invention. In the seventh embodiment, an N-type epitaxial layer 5b was used, but in this embodiment, a P-type epitaxial layer is used. In the case of this embodiment as well, by forming a high-precision analog circuit such as an AD converter or a DA converter, or a part of the circuit, in a region surrounded by the high-concentration P-type diffusion layer 6, which is sensitive to noise from the outside. , it is possible to block noise from outside the area surrounded by the highly concentrated P-type head area. Conversely, it is also possible to prevent noise from being emitted to the outside by inserting a digital circuit section that operates at a high frequency and becomes a source of noise within the area encompassed by such a high concentration P-type head area. It is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、隣接半導体素子または隣接半導体回路
からの雑音を嫌う半導体素子または半導体回路を低抵抗
な半導体領域で囲むことにより、隣接素子間または隣接
回路間の相互干渉を低減することが可能であるという効
果がある。また、逆に雑音発生の原因となる半導体素子
または半導体回路を前記低抵抗な半導体領域で囲むこと
により、隣接素子または隣接回路への悪影響を低減でき
るという効果がある。またさらに前記低抵抗な半導体領
域をP型で形成し、その内側にさらに低抵抗なN型埋込
層とこれに達するように形成した高濃度N型半導体領域
で半導体素子または半導体回路を囲むことが可能となる
ため前述した隣接素子間並びに隣接回路間での雑音低減
効果を高めることが可能となるという効果がある。また
このときには、高濃度N型埋込層を用いたバイポーラト
ランジスタ等を、相互干渉を低減するために設けた前記
低抵抗P型半導体領域の内部に形成できるという効果も
ある。
According to the present invention, it is possible to reduce mutual interference between adjacent elements or circuits by surrounding a semiconductor element or semiconductor circuit that does not like noise from adjacent semiconductor elements or adjacent semiconductor circuits with a low-resistance semiconductor region. There is an effect that Furthermore, by surrounding the semiconductor element or semiconductor circuit that causes noise generation with the low-resistance semiconductor region, there is an effect that the adverse effect on adjacent elements or circuits can be reduced. Furthermore, the low-resistance semiconductor region is formed of P type, and the semiconductor element or semiconductor circuit is surrounded by an N-type buried layer of low resistance and a high concentration N-type semiconductor region formed to reach this layer. This has the effect that it becomes possible to enhance the noise reduction effect between adjacent elements and between adjacent circuits as described above. Further, at this time, there is an effect that a bipolar transistor or the like using a heavily doped N-type buried layer can be formed inside the low-resistance P-type semiconductor region provided to reduce mutual interference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の半導体集積回路装置の
断面図、第2図は本発明の第1の実施例の半導体集積回
路装置の製造方法を示す構造断面図、第3図は本発明の
第2の実施例の半導体集積回路装置の断面図、第4図は
本発明の第3の実施例の半導体集積回路装置の断面図、
第5図は本発明の第4の実施例の半導体集積回路装置の
断面図、第6図は本発明の第5の実施例の半導体集積回
路装置の断面図、第7図は本発明の第6の実施例の半導
体集積回路装置の断面図、第8図は本発明の第7の実施
例の半導体集積回路装置の断面図、第9図は本発明の第
8の実施例の半導体集積回路装置の断面図、第10図は
従来の半導体集積回路装置の断面図である。 1・・・P型半導体基板、2・・・P型半導体層または
N型半導体層、2b・・・P型半導体層、3,3b・・
・N型埋込層、4 ・−P型埋込層、5a、6,9,1
5・・・N型半導体領域、5b、7,10,12.14
・・・P型半導体領域、8・・・絶縁層、11.13・
・・ゲート電極層、16・・・電極層。 第1図 第2図(a) 第2図(b) WJ3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 b
FIG. 1 is a cross-sectional view of a semiconductor integrated circuit device according to a first embodiment of the present invention, FIG. 2 is a structural cross-sectional view showing a method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention, and FIG. is a cross-sectional view of a semiconductor integrated circuit device according to a second embodiment of the present invention, and FIG. 4 is a cross-sectional view of a semiconductor integrated circuit device according to a third embodiment of the present invention.
5 is a sectional view of a semiconductor integrated circuit device according to a fourth embodiment of the present invention, FIG. 6 is a sectional view of a semiconductor integrated circuit device according to a fifth embodiment of the present invention, and FIG. 7 is a sectional view of a semiconductor integrated circuit device according to a fifth embodiment of the present invention. 8 is a cross-sectional view of a semiconductor integrated circuit device according to a seventh embodiment of the present invention, and FIG. 9 is a cross-sectional view of a semiconductor integrated circuit device according to a seventh embodiment of the present invention. 10 is a sectional view of a conventional semiconductor integrated circuit device. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... P-type semiconductor layer or N-type semiconductor layer, 2b... P-type semiconductor layer, 3, 3b...
・N-type buried layer, 4 ・-P-type buried layer, 5a, 6, 9, 1
5...N-type semiconductor region, 5b, 7, 10, 12.14
... P-type semiconductor region, 8... Insulating layer, 11.13.
...Gate electrode layer, 16... Electrode layer. Figure 1 Figure 2 (a) Figure 2 (b) WJ3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 b

Claims (1)

【特許請求の範囲】 1、抵抗率が0.5Ωcm以下の高濃度半導体基板(第
1半導体領域)上にN型半導体領域または前記第1半導
体領域より高抵抗率のP型半導体領域からなる第2半導
体領域を設け、さらに、表面から前記第1半導体領域に
達するように形成した高濃度P型拡散領域(第3半導体
領域)を設け、第1半導体領域と第3半導体領域によっ
て区切られる前記第2半導体領域に半導体素子を形成し
たことを特徴とする半導体集積回路装置とその製造方法
。 2、前記第2半導体領域下部に高濃度N型埋込層(第4
半導体領域)を設けたことを特徴とする請求項第1項記
載の半導体集積回路装置とその製造方法。 3、前記表面から第4半導体層に到達するように設けた
高濃度N型拡散層(第5半導体領域)と前記第4半導体
層によって区切られる前記第2半導体領域内に半導体素
子を形成したことを特徴とする請求項第1項から第2項
記載の半導体集積回路装置とその製造方法。4、前記第
4半導体領域の不純物としてリンを用いたことを特徴と
する請求項第2から第3項記載の半導体集積回路装置と
その製造方法。 5、前記第1半導体領域が0.5Ωcm以下の高濃度P
型半導体基板(第6半導体領域)と第6半導体領域より
高抵抗率のP型半導体層(第7半導体領域)またはN型
半導体層(第8半導体領域)からなることを特徴とする
請求項第2項から第4項記載の半導体集積装置とその製
造方法。 6、前記第3半導体領域が前記第7半導体領域表面から
形成した高濃度P型拡散層(第9半導体領域)と半導体
表面から拡散して形成した高濃度P型拡散層(第10半
導体領域)からなることを特徴とする請求項第1項から
第5項記載の半導体集積装置とその製造方法。 7、前記第4半導体領域が前記第7半導体領域表面(ま
たは前記第8半導体領域)から拡散して形成したことを
特徴とする請求項第2項から第6項記載の半導体集積回
路装置とその製造方法。 8、N型の不揮発性記憶素子のボディ領域となるP型拡
散層(第11半導体領域)を前記第1半導体領域または
前記第9半導体領域に到達するように形成したことを特
徴とする請求項第1項から第7項記載の半導体集積回路
装置とその製造方法。 9、N型の不揮発性素子のボディ領域となるP型拡散層
(第11半導体領域)を前記第3半導体領域に接続した
ことを特徴とする請求項第1項から第7項記載の半導体
集積回路装置とその製造方法。 10、前記第1半導体層と前記第2半導体層で区分また
は分離される前記第2半導体層内にアナログ回路ブロッ
クのみを形成したことを特徴とする請求項第1項から第
9項記載の半導体集積回路装置とその製造方法。 11、前記アナログ回路ブロックが前記第4半導体領域
と前記第5半導体層で囲まれていることを特徴とする請
求項第9項記載の半導体集積回路装置とその製造方法。
[Scope of Claims] 1. A first semiconductor region comprising an N-type semiconductor region or a P-type semiconductor region having a higher resistivity than the first semiconductor region on a highly doped semiconductor substrate (first semiconductor region) with a resistivity of 0.5 Ωcm or less. Further, a high concentration P type diffusion region (third semiconductor region) formed so as to reach the first semiconductor region from the surface is provided, and the third semiconductor region is separated by the first semiconductor region and the third semiconductor region. 2. A semiconductor integrated circuit device and its manufacturing method, characterized in that a semiconductor element is formed in a semiconductor region. 2. A high concentration N-type buried layer (fourth layer) is formed under the second semiconductor region.
2. The semiconductor integrated circuit device and method for manufacturing the same according to claim 1, further comprising: a semiconductor region). 3. A semiconductor element is formed in the second semiconductor region separated by the fourth semiconductor layer and a high concentration N-type diffusion layer (fifth semiconductor region) provided so as to reach the fourth semiconductor layer from the surface. A semiconductor integrated circuit device and its manufacturing method according to claim 1 or 2, characterized in that: 4. The semiconductor integrated circuit device and method of manufacturing the same according to claim 2, wherein phosphorus is used as an impurity in the fourth semiconductor region. 5. The first semiconductor region has a high concentration of P of 0.5 Ωcm or less
Claim 1, characterized in that the semiconductor substrate comprises a P-type semiconductor substrate (sixth semiconductor region) and a P-type semiconductor layer (seventh semiconductor region) or an N-type semiconductor layer (eighth semiconductor region) having a higher resistivity than the sixth semiconductor region. The semiconductor integrated device and its manufacturing method according to items 2 to 4. 6. A high concentration P type diffusion layer (ninth semiconductor region) formed by the third semiconductor region from the surface of the seventh semiconductor region and a high concentration P type diffusion layer (tenth semiconductor region) formed by diffusion from the semiconductor surface 6. The semiconductor integrated device and method for manufacturing the same according to claim 1, wherein the semiconductor integrated device comprises: 7. The semiconductor integrated circuit device according to claim 2, wherein the fourth semiconductor region is formed by diffusion from the surface of the seventh semiconductor region (or the eighth semiconductor region). Production method. 8. Claim 8, characterized in that a P-type diffusion layer (eleventh semiconductor region) serving as a body region of an N-type nonvolatile memory element is formed so as to reach the first semiconductor region or the ninth semiconductor region. A semiconductor integrated circuit device and its manufacturing method according to items 1 to 7. 9. The semiconductor integrated device according to any one of claims 1 to 7, characterized in that a P-type diffusion layer (eleventh semiconductor region) serving as a body region of an N-type nonvolatile element is connected to the third semiconductor region. Circuit devices and their manufacturing methods. 10. The semiconductor according to claim 1, wherein only an analog circuit block is formed in the second semiconductor layer that is divided or separated by the first semiconductor layer and the second semiconductor layer. Integrated circuit devices and their manufacturing methods. 11. The semiconductor integrated circuit device and method of manufacturing the same according to claim 9, wherein the analog circuit block is surrounded by the fourth semiconductor region and the fifth semiconductor layer.
JP27039490A 1990-10-11 1990-10-11 Semiconductor integrated circuit device and manufacture thereof Pending JPH04147668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27039490A JPH04147668A (en) 1990-10-11 1990-10-11 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27039490A JPH04147668A (en) 1990-10-11 1990-10-11 Semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04147668A true JPH04147668A (en) 1992-05-21

Family

ID=17485650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27039490A Pending JPH04147668A (en) 1990-10-11 1990-10-11 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04147668A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889314A (en) * 1996-06-03 1999-03-30 Nec Corporation Mixed-mode IC having an isolator for minimizing cross-talk through substrate and method of fabricating same
WO2003041161A3 (en) * 2001-11-02 2003-11-13 Motorola Inc High frequency signal isolation in a semiconductor device
JP2010171134A (en) * 2009-01-21 2010-08-05 Denso Corp Protection device for integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889314A (en) * 1996-06-03 1999-03-30 Nec Corporation Mixed-mode IC having an isolator for minimizing cross-talk through substrate and method of fabricating same
WO2003041161A3 (en) * 2001-11-02 2003-11-13 Motorola Inc High frequency signal isolation in a semiconductor device
CN1314098C (en) * 2001-11-02 2007-05-02 自由度半导体公司 High Frequency Signal Isolation in Semiconductor Devices
JP2010171134A (en) * 2009-01-21 2010-08-05 Denso Corp Protection device for integrated circuit

Similar Documents

Publication Publication Date Title
US4862233A (en) Integrated circuit device having vertical MOS provided with Zener diode
US4826780A (en) Method of making bipolar transistors
US4825275A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US8304827B2 (en) Semiconductor device having on a substrate a diode formed by making use of a DMOS structure
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
US5087579A (en) Method for fabricating an integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US4912054A (en) Integrated bipolar-CMOS circuit isolation process for providing different backgate and substrate bias
US5060044A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
JP2008526039A (en) SOI device further having resistance against substrate voltage
US5708290A (en) Driving circuit for electronic semiconductor devices including at least a power transistor
EP0178991B1 (en) A complementary semiconductor device having high switching speed and latchup-free capability
JP2718907B2 (en) PIC structure and manufacturing method thereof
US6831346B1 (en) Buried layer substrate isolation in integrated circuits
US7960796B2 (en) Semiconductor device having element isolation region
US5969391A (en) Complementary insulated-gate field-effect transistors having improved anti-latchup characteristic
JPH04147668A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0783113B2 (en) Semiconductor device
JPS61245563A (en) Bipolar cmos semiconductor device
JPH1012746A (en) Semiconductor device
JPH04139758A (en) Semiconductor device and its manufacture
JPH01189955A (en) Semiconductor device
JP2730450B2 (en) Semiconductor device
US6030888A (en) Method of fabricating high-voltage junction-isolated semiconductor devices
JP3334170B2 (en) Semiconductor device
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof