JPH0414761A - Electrode catalyst layer for phosphoric acid type fuel cell and its manufacture - Google Patents

Electrode catalyst layer for phosphoric acid type fuel cell and its manufacture

Info

Publication number
JPH0414761A
JPH0414761A JP2117191A JP11719190A JPH0414761A JP H0414761 A JPH0414761 A JP H0414761A JP 2117191 A JP2117191 A JP 2117191A JP 11719190 A JP11719190 A JP 11719190A JP H0414761 A JPH0414761 A JP H0414761A
Authority
JP
Japan
Prior art keywords
catalyst
phosphoric acid
catalyst carrier
noble metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2117191A
Other languages
Japanese (ja)
Other versions
JP2689686B2 (en
Inventor
Makoto Aoki
信 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2117191A priority Critical patent/JP2689686B2/en
Publication of JPH0414761A publication Critical patent/JPH0414761A/en
Application granted granted Critical
Publication of JP2689686B2 publication Critical patent/JP2689686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide an electrode catalyst layer for a phosphoric acid type fuel cell which is excellent in stability of output voltage by using a catalyst carrier whose surface is composed of a carbon black region and a carbon fluoride region. CONSTITUTION:An electrode is formed of a catalyst carrier 2 with noble metal 1 such as platinum supported and an electrode catalyst layer 5 with fluorine resin 3 as a water-repellent material uniformly mixed laminated on an electrode substrate 4 made of a carbon material which is porous and excellent in electrical conductivity. The surface of the catalyst carrier 2 is composed of a carbon black region and a carbon fluoride region, while the noble metal which is supported on the surface of the catalyst carrier forms catalyst and the fluorine resin 3 is used to bond the catalyst. The carbon black region of the surface of the catalyst carrier is well wetted with phosphoric acid. On the other hand, the carbon fluoride region is not wetted with phosphoric acid. The carbon fluoride region is to be in contact with reaction gas. Thus three-phase interfaces are stably formed on the surface of the catalyst carrier and infiltration of phosphoric acid can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はリン酸型燃料電池用電極触媒層およびその製
法に係り、特に触媒担体および触媒担体への貴金属担持
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode catalyst layer for a phosphoric acid fuel cell and a method for producing the same, and particularly to a catalyst carrier and a method for supporting a noble metal on a catalyst carrier.

〔従来の技術〕[Conventional technology]

燃料電池の電極構造が第4図に示される。電極は多孔質
で電気伝導性に優れるカーボン材からなる電極基板4の
上に白金などの貴金属1を担持させた触媒担体2と、は
っ木材としてのフッ素樹脂3を均一に混合した電極触媒
層5を積層して形成され、さらに電極には電気絶縁性に
優れるシリコンカーバイド (図示せず)と接合材とし
てのフッ素樹脂(図示せず)を混合したマトリックス層
8が積層される。マトリックス層8は電解液であるリン
酸が含浸されており、電極触媒層5には、マトリックス
層8から電解液が、電極基板4より反応ガスが供給され
る。マトリックス層8には図示しないが他の電極がマト
リックス層8を中心として対称に配置され、各電極がア
ノードまたはカソードとなる。電極触媒層5の内部では
触媒(固体)と電解液(液体)と反応ガス (気体)の
3相界面が形成され電気化学的反応がおこって系外に電
気エネルギを取り出すことができる。
The electrode structure of the fuel cell is shown in FIG. The electrode has an electrode substrate 4 made of a porous carbon material with excellent electrical conductivity, and an electrode catalyst layer made of a uniform mixture of a catalyst carrier 2 supporting a precious metal 1 such as platinum, and a fluororesin 3 as a filler material. A matrix layer 8 made of a mixture of silicon carbide (not shown) having excellent electrical insulation properties and a fluororesin (not shown) as a bonding material is further laminated on the electrode. The matrix layer 8 is impregnated with phosphoric acid which is an electrolytic solution, and the electrolytic solution is supplied from the matrix layer 8 to the electrode catalyst layer 5, and the reaction gas is supplied from the electrode substrate 4 to the electrode catalyst layer 5. Although not shown, other electrodes are arranged symmetrically on the matrix layer 8 with the matrix layer 8 as the center, and each electrode serves as an anode or a cathode. Inside the electrode catalyst layer 5, a three-phase interface of catalyst (solid), electrolyte (liquid), and reaction gas (gas) is formed, an electrochemical reaction occurs, and electrical energy can be taken out of the system.

このようなリン酸型燃料電池においては、アノードの電
極触媒層には通常、触媒層の空隙の80%程度がリン酸
で充たされ、カソードの電極触媒層は40〜50%がリ
ン酸で充たされる。このとき燃料電池は最大の出力電圧
を示す。
In such a phosphoric acid fuel cell, approximately 80% of the voids in the anode electrode catalyst layer are usually filled with phosphoric acid, and 40 to 50% of the voids in the cathode electrode catalyst layer are filled with phosphoric acid. Filled. At this time, the fuel cell exhibits maximum output voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこのような従来の燃料電池においては、所
定温度、所定電流密度で運転を続けると、時間の経過と
ともに電池電圧が下がる現象が認められる。その原因の
一つとして電解質であるリン酸が徐々にカソードに移行
し、カソード電極触媒層のリン酸含有率が増大していく
ことがわかった。
However, in such a conventional fuel cell, if operation is continued at a predetermined temperature and a predetermined current density, a phenomenon is observed in which the cell voltage decreases over time. It was found that one of the reasons for this is that phosphoric acid, which is an electrolyte, gradually migrates to the cathode, and the phosphoric acid content of the cathode electrode catalyst layer increases.

これはリン酸含有率の増大によって、カソード中の酸素
ガスの拡散が阻害されるためであると考えられる。リン
酸の移行を防止するため、カソードにおいて、はっ水付
であるフッ素樹脂を増加すると出力が低下してしまう、
上記リン酸のカソードへの移行は触媒がリン酸にぬれ5
いためおこる。
This is considered to be because the increase in the phosphoric acid content inhibits the diffusion of oxygen gas in the cathode. In order to prevent the migration of phosphoric acid, increasing the amount of water-repellent fluororesin in the cathode will reduce the output.
The above transfer of phosphoric acid to the cathode occurs when the catalyst is wetted with phosphoric acid.
I get angry.

この発明は上述の点に鑑みてなされ、その目的は触媒自
体にリン酸に対する適当なぬれ性を与えることにより、
電池運転中に電極触媒層へのリン酸の滲透がおこらず、
出力電圧の安定性に優れるリン酸型燃料電池の電極触媒
層を提供するとともにあわせてその製造方法を提供する
ことにある。
This invention was made in view of the above points, and its purpose is to provide the catalyst itself with appropriate wettability for phosphoric acid.
Phosphoric acid does not permeate into the electrode catalyst layer during battery operation.
An object of the present invention is to provide an electrode catalyst layer for a phosphoric acid fuel cell that has excellent output voltage stability, and also to provide a method for manufacturing the same.

〔!1題を解決するための手段〕 上述の目的はこの発明によれば、 1)触媒担体2と、貴金属1と、フッ素樹脂3とを有し
、 触媒担体はその表面がカーボンブラックの領域とフッ化
カーボンの領域からなり、 貴金属は触媒担体表面に担持されて触媒を形成し、 フッ素樹脂は前記触媒を結着するものであること、また
は 2)フッ素化処理工程と、有機溶媒湿潤工程と、水置換
工程と、貴金属担持工程と、結着工程とを有し、 フッ素化処理工程はカーボンブラックをフッ素で処理し
て表面の1部にフッ化カーボンを生成させ、 有機溶媒湿潤工程は、触媒担体表面を有機溶媒で湿潤さ
せ、 水置換工程は触媒担体表面の有機溶媒を水で置換し、 貴金属担持工程は、触媒担体表面に貴金属を担持し、 結着工程は、貴金属の担持された触媒担体である触媒を
フッ素樹脂を用いて結着するものであるとすることによ
り達成される。
[! [Means for Solving Problem 1] According to the present invention, the above-mentioned object is achieved by: 1) having a catalyst carrier 2, a noble metal 1, and a fluororesin 3, the catalyst carrier having a surface including a carbon black region and a fluorine resin; or 2) a fluorination treatment step and an organic solvent wetting step; The process includes a water displacement process, a noble metal supporting process, and a binding process.The fluorination process treats carbon black with fluorine to generate fluorinated carbon on a part of the surface, and the organic solvent wetting process uses a catalyst. The surface of the carrier is wetted with an organic solvent, the water displacement step replaces the organic solvent on the surface of the catalyst carrier with water, the noble metal supporting step supports the noble metal on the catalyst carrier surface, and the binding step removes the precious metal supported catalyst. This is achieved by binding the catalyst as a carrier using a fluororesin.

〔作用〕[Effect]

1)触媒担体の表面のうちカーボンブラックの領域はリ
ン酸でよくぬれる。これに対してフッ化カーボンの領域
はリン酸でぬれることがない、フッ化カーボンの領域は
反応ガスと接触することになる。
1) The carbon black area on the surface of the catalyst carrier is well wetted with phosphoric acid. In contrast, the fluorocarbon region is not wetted by the phosphoric acid, and the fluorocarbon region comes into contact with the reaction gas.

このようにして触媒担体表面において3相界面が安定に
形成されリン酸の滲透が防止される。
In this way, a three-phase interface is stably formed on the surface of the catalyst carrier, and permeation of phosphoric acid is prevented.

2)フッ化カーボンの領域は水でぬれることがなく貴金
属担持工程で大きな結晶粒の貴金属を生成させるので、
有機溶媒湿潤工程により、触媒担体表面に有機溶媒を吸
着させる。触媒担体全表面はこの吸着された有機溶媒を
介して水置換工程により水でぬらされる。これは次工程
の貴金属担持工程において微細な貴金属を触媒担体表面
に形成させる。
2) The fluorocarbon region does not get wet with water and generates large crystal grains of precious metal in the precious metal supporting process.
The organic solvent is adsorbed onto the surface of the catalyst carrier through the organic solvent wetting step. The entire surface of the catalyst carrier is wetted with water via the adsorbed organic solvent in a water displacement step. This causes fine precious metals to be formed on the surface of the catalyst carrier in the next precious metal supporting step.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

比表面積100〜300m”/gのカーボンブラックを
渡辺等の方法(渡辺、小山、吉沢1を気化学、3i。
Carbon black with a specific surface area of 100 to 300 m''/g was prepared using the method of Watanabe et al.

756゜(1964))を用いてフッ素化処理を行った
。即ち、フッ素ガスを窒素ガスで2:1の割合で希釈し
てカーボンブラックの載置された反応管に導入し、40
0〜450℃で0.1〜5h処理を行いカーボンとフッ
素の比を種々に変えたフッ化カーボンを作製した。処理
前後における重量変化から推定されるカーボンとフッ素
の比は170.01−170.7であった。
756° (1964)) was used for fluorination treatment. That is, fluorine gas was diluted with nitrogen gas at a ratio of 2:1 and introduced into a reaction tube on which carbon black was placed.
Fluorinated carbon with various ratios of carbon and fluorine was produced by performing treatment at 0 to 450°C for 0.1 to 5 hours. The ratio of carbon to fluorine estimated from the weight change before and after treatment was 170.01-170.7.

上述のようにしてフッ素化処理されたカーボンブラック
のはっ水性と電気抵抗を調べるために40wt%の割合
でポリテトラフロロエチレン粉末を加え均一に混合して
アルミナ板上で温度360℃でプレス成形し試験用試料
を得た。
In order to examine the water repellency and electrical resistance of the fluorinated carbon black as described above, polytetrafluoroethylene powder was added at a ratio of 40 wt%, mixed uniformly, and press-molded on an alumina plate at a temperature of 360°C. A test sample was obtained.

第1図はフッ素化処理されたカーボンブラックにつき、
リン酸浸透量のカーボン−フッ素原子比依存性を示す線
図である。リン酸浸透量は前記試験用試料にリン酸をの
せて150℃の電気炉中に5h放置し試料の重量変化よ
り求めた。CF)、(C)はそれぞれフッ素とカーボン
の原子数を示す、原子比CF)/ (C)が増すにつれ
触媒担体表面のフッ化カーボン領域が増大し、そのはっ
水作用によりリン酸浸透量が減少することがわかる。
Figure 1 shows fluorinated carbon black.
FIG. 2 is a diagram showing the dependence of the amount of phosphoric acid permeation on the carbon-fluorine atomic ratio. The amount of phosphoric acid permeation was determined by placing phosphoric acid on the test sample and leaving it in an electric furnace at 150° C. for 5 hours, and from the change in weight of the sample. CF) and (C) indicate the number of atoms of fluorine and carbon, respectively. As the atomic ratio CF)/(C) increases, the fluorinated carbon area on the surface of the catalyst carrier increases, and its water repellency increases the amount of phosphoric acid permeated. It can be seen that the amount decreases.

第2図は前記試験用試料につき電気抵抗の原子比依存性
を示す線図である。原子比CF)/ (C)が増大する
と、触媒担体表面のフッ化カーボン領域が増し、フッ化
カーボンは絶縁性であるので電気抵抗が増大する梯子が
わかる。
FIG. 2 is a diagram showing the atomic ratio dependence of electrical resistance for the test sample. As the atomic ratio CF)/(C) increases, the fluorinated carbon area on the surface of the catalyst carrier increases, and since fluorinated carbon is insulating, a ladder is seen in which the electrical resistance increases.

カーボンブラックは非晶質の部分と短周期の結晶性の部
分とを含み、フッ素化されて固定されるのは結晶性の部
分であり、非晶質の部分はフッ素化されても低分子のフ
ロロカーボンとなり揮散して非晶質の部分が残り、この
部分がカーボンブラックの領域を形成している。
Carbon black contains an amorphous part and a short-period crystalline part, and it is the crystalline part that is fluorinated and fixed. It becomes fluorocarbon and volatilizes, leaving an amorphous portion that forms the carbon black region.

次にフッ素化処理された前記カーボンブラック粉体((
F) / (C) =0.2)をイソプロピルアルコー
ル400m1中に分散し10分間攪拌した。その後ろ過
し、純水200(1+1で水洗し、純水4001中に再
び分散した。有機溶媒としては低級アルコールや炭化水
素類等が使用できる。フッ化カーボンは、はう水性であ
り有機溶媒を介してぬれ性を改善する。この後は従来の
触媒製造方法に従って触媒金属成分を担持した。まず白
金として1gを含有する塩化白金酸水溶液を添加して室
温で攪拌したのち50℃に昇温した0次に0.1M炭酸
ナトリウム水溶液を添加してpiを9以上とし、30w
t%の過酸化水素水10m1を加えて5分間攪拌したの
ち0.1M蟻酸水溶液を1hかけて徐々に滴下した。そ
の後、ろ過。
Next, the carbon black powder ((
F)/(C) = 0.2) was dispersed in 400 ml of isopropyl alcohol and stirred for 10 minutes. Thereafter, it was filtered, washed with pure water 200 (1+1), and dispersed again in pure water 4001. As the organic solvent, lower alcohols, hydrocarbons, etc. can be used. After this, the catalyst metal component was supported according to the conventional catalyst manufacturing method.First, a chloroplatinic acid aqueous solution containing 1 g of platinum was added, stirred at room temperature, and then heated to 50°C. Next, add 0.1M sodium carbonate aqueous solution to make pi 9 or more, and add 30w
After adding 10 ml of t% hydrogen peroxide solution and stirring for 5 minutes, 0.1M formic acid aqueous solution was gradually added dropwise over 1 hour. Then filter.

水洗し、60℃に加熱しながら一晩真空乾燥した。It was washed with water and vacuum dried overnight while heating at 60°C.

白金のX線解析ピークをもとに5cherrerの式よ
り求めた白金の結晶子径は33人で、透過型電子顕微鏡
による観察結果からも白金は小さな粒子として良く分散
されて均一に担体上に担持されていることが分かった。
The crystallite diameter of platinum, determined from the 5cherrer equation based on the X-ray analysis peak of platinum, was 33, and the observation results using a transmission electron microscope also showed that platinum was well dispersed as small particles and was uniformly supported on the carrier. I found out that it was.

なお本発明による前処理を行わずに上記の触媒製造方法
に従って白金を担持した際の白金の結晶子径は87人と
非常に大きいものであった。
Note that when platinum was supported according to the above catalyst manufacturing method without performing the pretreatment according to the present invention, the crystallite diameter of platinum was 87, which was very large.

このようにして作製された触媒を40wt%のPTFE
粉末と均一に混合してカーボン基材上にのせてプレス成
形して電極化し、セルを作製して試験を行った際の特性
の経時変化を従来の触媒を用いた場合と対比して第3図
に示す0曲線31は本発明による触媒を用いた場合で、
曲線32は従来の触媒を用いた場合である0本発明によ
る触媒を用いた場合は初期特性は若干低下するが、運転
時間の経過にともなう特性の低下は大変小さくなってい
る。
The catalyst prepared in this way was mixed with 40 wt% PTFE.
We mixed the powder uniformly with the powder, placed it on a carbon base material, press-molded it to form an electrode, produced a cell, and conducted a test. The zero curve 31 shown in the figure is the case when the catalyst according to the present invention is used,
Curve 32 shows the case when a conventional catalyst is used. When the catalyst according to the present invention is used, the initial characteristics are slightly lowered, but the lowering of the characteristics with the passage of operating time is very small.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、 l)触媒担体と、貴金属と、フッ素樹脂とを有し、触媒
担体はその表面がカーボン、ブラックの領域とフッ化カ
ーボンの領域からなり、 貴金属は触媒担体表面に担持されて触媒を形成し、 フッ素樹脂は前記触媒を結着するものであり、または 2)フッ素化処理工程と、有機溶媒湿潤工程と、水置換
工程と、貴金属担持工程と、結着工程とを有し、 フッ素化処理工程はカーボンブラックをフッ素で処理し
て表面の1部にフッ化カーボンを生成させ、 有機溶媒湿潤工程は、触媒担体表面を存機溶媒で湿潤さ
せ、 水置換工程は触媒担体表面の有機溶媒を水で置換し、 貴金属担持工程は、触媒担体表面に貴金属を担持し、 結着工程は、貴金属の担持された触媒担体である触媒を
フッ素樹脂を用いて結着するものであるので、 1)触媒担体のカーボンブラック領域はリン酸でよくぬ
れ、フッ化カーボン領域はリン酸でぬれることがなく、
その結果触媒担体表面には3相界面が安定に形成され、
電極触媒層をリン酸が浸透することがなくなって信鯨性
に優れるリン酸型燃料電池用電極触媒層が得られる。
According to this invention, l) a catalyst carrier, a noble metal, and a fluororesin; the surface of the catalyst carrier is composed of carbon, a black region, and a fluorocarbon region; the noble metal is supported on the surface of the catalyst carrier; or 2) comprises a fluorination treatment step, an organic solvent wetting step, a water displacement step, a noble metal supporting step, and a binding step. In the fluorination process, carbon black is treated with fluorine to generate fluorinated carbon on a part of the surface, in the organic solvent wetting process, the surface of the catalyst carrier is moistened with the existing solvent, and in the water displacement process, the catalyst carrier is The organic solvent on the surface is replaced with water, the noble metal supporting step supports the noble metal on the surface of the catalyst carrier, and the binding step binds the catalyst, which is the catalyst carrier on which the precious metal is supported, using a fluororesin. 1) The carbon black region of the catalyst carrier is well wetted by phosphoric acid, and the fluorinated carbon region is not wetted by phosphoric acid.
As a result, a three-phase interface is stably formed on the surface of the catalyst carrier,
Since phosphoric acid does not permeate through the electrode catalyst layer, an electrode catalyst layer for a phosphoric acid fuel cell with excellent reliability can be obtained.

2)有機溶媒湿潤工程により触媒担体表面に有機溶媒が
吸着される。触媒担体表面はこの吸着された有機溶媒を
介して水置換工程により水でぬらされる。その結果状の
貴金属担持工程において担体表面には微細な貴金属が形
成され信鯨性に優れるリン酸型燃料電池電極触媒層の製
造方法が得られる。
2) The organic solvent is adsorbed onto the surface of the catalyst carrier by the organic solvent wetting step. The surface of the catalyst carrier is wetted with water through the adsorbed organic solvent in a water displacement step. As a result, in the precious metal supporting step, fine precious metals are formed on the surface of the carrier, and a method for producing a phosphoric acid fuel cell electrode catalyst layer having excellent anti-corrosion properties is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る電極触媒層のフッ素化
処理されたカーボンブラックにつきリン酸浸透量と原子
比CF)/ (C)との関係を示す線図、第2図はこの
発明の実施例に係る電極触媒層のフッ素化処理されたカ
ーボンブラックにつき抵抗と原子比CF)/ (C)と
の関係を示す線図、第3図はこの発明の実施例に係る電
極触媒層のセル電圧安定性(曲線31)を従来の電極触
媒層のセル電圧安定性(曲線32)と対比して示す線図
、第4図はリン酸型燃料電池の電極触媒層を電極基板。 マトリックス層とともに示す断面図である。 1:貴金属、2:触媒担体、3:フッ素樹脂。 1か、5Fヒd二Fコ /cc:]) 第1図 運転時間/に 13図 !)ヒ’c(EFコ/[Cコ) 第4図 第2図
FIG. 1 is a diagram showing the relationship between the amount of phosphoric acid permeation and the atomic ratio CF)/(C) for the fluorinated carbon black of the electrode catalyst layer according to the embodiment of the invention, and FIG. FIG. 3 is a diagram showing the relationship between the resistance and the atomic ratio CF)/(C) for the fluorinated carbon black of the electrode catalyst layer according to the example of this invention. A diagram showing the cell voltage stability (curve 31) in comparison with the cell voltage stability (curve 32) of a conventional electrode catalyst layer. FIG. 4 shows the electrode catalyst layer of a phosphoric acid fuel cell as an electrode substrate. It is a sectional view shown together with a matrix layer. 1: noble metal, 2: catalyst carrier, 3: fluororesin. 1 or 5F/cc:]) Figure 1 Driving time / to Figure 13! ) Hi'c (EF ko/[C ko) Fig. 4 Fig. 2

Claims (1)

【特許請求の範囲】 1)触媒担体と、貴金属と、フッ素樹脂とを有し、触媒
担体はその表面がカーボンブラックの領域とフッ化カー
ボンの領域からなり、 貴金属は触媒担体表面に担持されて触媒を形成し、 フッ素樹脂は前記触媒を結着するものであることを特徴
とするリン酸型燃料電池用電極触媒層。 2)フッ素化処理工程と、有機溶媒湿潤工程と、水置換
工程と、貴金属担持工程と、結着工程とを有し、 フッ素化処理工程はカーボンブラックをフッ素で処理し
て表面の1部にフッ化カーボンを生成させ、 有機溶媒湿潤工程は、触媒担体表面を有機溶媒で湿潤さ
せ、 水置換工程は触媒担体表面の有機溶媒を水で置換し、 貴金属担持工程は、触媒担体表面に貴金属を担持し、 結着工程は、貴金属の担持された触媒担体である触媒を
フッ素樹脂を用いて結着するものであることを特徴とす
るリン酸型燃料電池用電極触媒層の製造方法。
[Scope of Claims] 1) A catalyst carrier, a noble metal, and a fluororesin, the surface of which comprises a carbon black region and a carbon fluoride region, and the noble metal is supported on the surface of the catalyst carrier. An electrode catalyst layer for a phosphoric acid fuel cell, characterized in that the fluororesin forms a catalyst, and the fluororesin binds the catalyst. 2) It has a fluorination treatment process, an organic solvent wetting process, a water displacement process, a noble metal supporting process, and a binding process. In the organic solvent wetting step, the surface of the catalyst carrier is wetted with an organic solvent, in the water displacement step, the organic solvent on the surface of the catalyst carrier is replaced with water, and in the noble metal supporting step, the noble metal is added to the surface of the catalyst carrier. 1. A method for producing an electrode catalyst layer for a phosphoric acid fuel cell, wherein the supporting and binding step involves binding a catalyst, which is a catalyst carrier on which a noble metal is supported, using a fluororesin.
JP2117191A 1990-05-07 1990-05-07 Method for producing electrode catalyst layer for phosphoric acid fuel cell Expired - Lifetime JP2689686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117191A JP2689686B2 (en) 1990-05-07 1990-05-07 Method for producing electrode catalyst layer for phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117191A JP2689686B2 (en) 1990-05-07 1990-05-07 Method for producing electrode catalyst layer for phosphoric acid fuel cell

Publications (2)

Publication Number Publication Date
JPH0414761A true JPH0414761A (en) 1992-01-20
JP2689686B2 JP2689686B2 (en) 1997-12-10

Family

ID=14705658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117191A Expired - Lifetime JP2689686B2 (en) 1990-05-07 1990-05-07 Method for producing electrode catalyst layer for phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JP2689686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208310A1 (en) * 2018-04-25 2019-10-31 ステラケミファ株式会社 Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell provided therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003561B2 (en) 2005-03-28 2011-08-23 Stella Chemifa Corporation Fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136169A (en) * 1983-12-26 1985-07-19 Mitsubishi Electric Corp Electrode recovering method of phosphoric acid type fuel cell
JPH025365A (en) * 1988-06-23 1990-01-10 Fuji Electric Co Ltd Electrode catalyst for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136169A (en) * 1983-12-26 1985-07-19 Mitsubishi Electric Corp Electrode recovering method of phosphoric acid type fuel cell
JPH025365A (en) * 1988-06-23 1990-01-10 Fuji Electric Co Ltd Electrode catalyst for fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208310A1 (en) * 2018-04-25 2019-10-31 ステラケミファ株式会社 Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell provided therewith
CN111837272A (en) * 2018-04-25 2020-10-27 斯泰拉化工公司 Catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell provided with same
US11469424B2 (en) 2018-04-25 2022-10-11 Stella Chemifa Corporation Fuel cell catalyst, membrane electrode assembly for fuel cell, and fuel cell including the same

Also Published As

Publication number Publication date
JP2689686B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
US4017663A (en) Electrodes for electrochemical cells
US4078119A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
US3972735A (en) Method for making electrodes for electrochemical cells
KR20180076957A (en) Cathode for fuel cell, and method for preparing membrane electrode assembly comprising the same
JPWO2006104123A1 (en) Fuel cell
JP4997618B2 (en) Fuel cell electrode and fuel cell using molybdenum carbide catalyst
JPH07211324A (en) Electrode catalyst composition, electrode material, and manufacture thereof
JP2003208905A (en) Carbonaceous material for fuel cell and dispersion liquid containing the same
US3311508A (en) Method of activating platinum or palladium containing electrode
JP2689686B2 (en) Method for producing electrode catalyst layer for phosphoric acid fuel cell
JPS6231788B2 (en)
JP2001043865A (en) Solid polymer electrolyte type fuel cell
US3377204A (en) Method of incorporating platinum in carbon
JP2011023170A (en) Method for manufacturing electrode of fuel cell
US20220200014A1 (en) Method of producing gas diffusion layer
CN113471494A (en) Membrane electrode based on molten proton conductor electrolyte membrane and preparation method thereof
JPH0684520A (en) Fuel cell and its manufacture
JP6593308B2 (en) Fuel cell catalyst layer
CA1041163A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
JPS6065465A (en) Gas diffusion electrode for fuel cell
JP2005294088A (en) Solid polymer fuel cell and manufacturing method of water repellence layer of solid polymer fuel cell
JP2569769B2 (en) Phosphoric acid fuel cell
KR100570692B1 (en) Catalyst for fuel cell and fuel cell comprising same
CN114068953A (en) Preparation method and application of locally-reinforced fuel cell gas diffusion layer