JPH04147569A - Manufacture of solid electrolyte fuel cell - Google Patents

Manufacture of solid electrolyte fuel cell

Info

Publication number
JPH04147569A
JPH04147569A JP2271230A JP27123090A JPH04147569A JP H04147569 A JPH04147569 A JP H04147569A JP 2271230 A JP2271230 A JP 2271230A JP 27123090 A JP27123090 A JP 27123090A JP H04147569 A JPH04147569 A JP H04147569A
Authority
JP
Japan
Prior art keywords
powders
mixture
granulated
zirconia
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2271230A
Other languages
Japanese (ja)
Other versions
JP2734768B2 (en
Inventor
Shizuyasu Yoshida
静安 吉田
Kazushi Shimizu
清水 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2271230A priority Critical patent/JP2734768B2/en
Publication of JPH04147569A publication Critical patent/JPH04147569A/en
Application granted granted Critical
Publication of JP2734768B2 publication Critical patent/JP2734768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To avoid large changes in the volume of an anode base and prevent cracking or warping of the anode base so as to enhance reliability by mixing powders of nickel oxide and zirconia together, and heat treating the powders in oxidation atmosphere after granulation, and then heat treating the powders in reduction atmosphere so as to prepare granulated powders, and baking the powders in reduction atmosphere after molding. CONSTITUTION:Nickel oxide and yttria stabilized zirconia are weighed as anode material in a weight ratio of 2:1 and polyvinyl alcohol and polyethylene gricole and the like are added to the anode material as binders and mixed therewith by wet method in a ball mill and then dried and granulated. The mixture is put in a fine alumina pot while preventing pressurization and is temporarily baked at temperatures of 1300 to 1500 deg.C in oxidation atmosphere for two hours. The mixture is then heat treated at temperatures of 800 to 1200 deg.C for two hours. Anmonium stearate is added to the mixture as skid and the mixture is molded into a thickness of 3mm at pressures of 0.3 to 1t/cm<2> in a metal mold of 130mm in diameter. Then the mixture is sintered at temperatures of 1200 to 1450 deg.C in hydrogen reduction atmosphere for two hours so as to obtain an anode base.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解質型燃料電池のアノード基板の製造
方法に係り、特に機械的安定性に優れるアノード基板の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an anode substrate for a solid oxide fuel cell, and particularly to a method for manufacturing an anode substrate with excellent mechanical stability.

〔従来の技術〕[Conventional technology]

固体電解質型燃料電池はジルコニア等の固体酸化物を電
解質に用い、800〜1000℃等の高温で作動するも
ので、電解質の支持や腐食等の問題がないうえ、活性化
分極を減少させる触媒が不要となるなどの特長を有し、
活発に研究開発が進められている。
Solid oxide fuel cells use solid oxides such as zirconia as the electrolyte and operate at high temperatures such as 800 to 1000°C.There are no problems such as electrolyte support or corrosion, and there is no catalyst to reduce activation polarization. It has features such as being unnecessary,
Research and development is actively underway.

第2図は従来の固体電解質型燃料電池を示す分解斜視図
である。ニッケルと固体電解質体であるジルコニアから
なる多孔質のアノード基板1の上に、固体電解質体2と
、ストロンチウムがドープされたランタンストロンチウ
ムマンガナイトLa (Sr) −Mn03からなるカ
ソード3が形成される。また、同じ< La(Sr)M
n03からなる多孔質のカソード基板4にカルシウムが
ドープされたLa(Ca)Crowからなるセパレータ
5が積層される。固体電解質体2は通常安定化ジルコニ
アを溶射して形成される。
FIG. 2 is an exploded perspective view showing a conventional solid oxide fuel cell. A solid electrolyte body 2 and a cathode 3 made of strontium-doped lanthanum strontium manganite La (Sr) -Mn03 are formed on a porous anode substrate 1 made of nickel and zirconia as a solid electrolyte body. Also, the same < La(Sr)M
A separator 5 made of calcium-doped La(Ca) Crow is laminated on a porous cathode substrate 4 made of n03. The solid electrolyte body 2 is usually formed by thermal spraying stabilized zirconia.

従来、アノード基板1とカソード基板4は、それぞれ酸
化二フケルージルコニアN1O−ZrOi粉体と、ラン
タンストロンチウムマンガナイトLa(Sr)MnOs
粉体を造粒し、金型による一軸加圧成型、シート成型、
押し出し成型、或いはCIP(Cold Isosta
ticPressing)などの成型を行い、酸化雰囲
気或いは、還元雰囲気中で、焼成して形成される0通常
、アノード基板1は、作動時に燃料ガスを流すことによ
って、電池内部にて還元を行い、N1O−ZrO□の導
電性アノード基板となる。
Conventionally, the anode substrate 1 and the cathode substrate 4 are made of difluorozirconia N1O-ZrOi powder and lanthanum strontium manganite La(Sr)MnOs, respectively.
Powder is granulated, uniaxial pressure molding with a mold, sheet molding,
Extrusion molding or CIP (Cold Isosta)
Normally, the anode substrate 1 is formed by molding such as ticPressing) and firing in an oxidizing atmosphere or a reducing atmosphere. Normally, the anode substrate 1 is reduced inside the cell by flowing fuel gas during operation, and N1O- This becomes a conductive anode substrate of ZrO□.

〔発明が解決しようとする課題〕 しかしながらN1O−ZrO□アノード基板は還元時に
体積収縮を起こし割れを住しるという問題があった。こ
の剖れの問題は還元時に電子伝導性を確保できる限度で
あるニッケル含有量30体積%の場合においても起こる
。アノード基板の割れとともに固体電解質体2の割れも
起こる。またNi0−Zr賄テアノード基板還元後に生
したニッケルが再焼結を起こして体積が収縮するという
問題もあり、アノード基板を一層割れやすいものにして
いた。
[Problems to be Solved by the Invention] However, the N1O-ZrO□ anode substrate has a problem in that volume shrinks during reduction and cracks occur. This problem of deterioration occurs even when the nickel content is 30% by volume, which is the limit that can ensure electron conductivity during reduction. Along with cracking of the anode substrate, cracking of the solid electrolyte body 2 also occurs. There is also the problem that the nickel produced after reduction of the Ni0-Zr anode substrate causes re-sintering and shrinks in volume, making the anode substrate even more susceptible to cracking.

この発明は上述の点に鑑みてなされ、その目的はアノー
ド基板に大きな体積変化が起こらないようにしてアノー
ド基板に割れや反りがなく借問性に優れる固体電解質型
燃料電池の製造方法を提供することにある。
This invention has been made in view of the above-mentioned points, and its purpose is to provide a method for manufacturing a solid oxide fuel cell in which large volume changes do not occur in the anode substrate, the anode substrate is free from cracks and warpage, and has excellent stability. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば第一工程と、第二工程と
、第三工程とを有し、 第一工程は、酸化ニッケルとジルコニアの各粉体を混合
し、造粒したのち酸化ふん囲気中で熱処理して第一の造
粒粉を調製し、 第二工程は、前記第一〇造粒粉を還元ふん囲気中で熱処
理して第二〇造粒粉を調製し、第三工程は、第二の造粒
粉を成型し、かつ還元ふん囲気中で焼成する、とするこ
とにより達成される。
According to the present invention, the above-mentioned object has a first step, a second step, and a third step. A first granulated powder is prepared by heat treatment in an ambient atmosphere, a second step is a heat treatment of the 10th granulated powder in a reducing atmosphere to prepare a 20th granulated powder, and a third step is This is achieved by molding the second granulated powder and firing it in a reducing atmosphere.

〔作用〕[Effect]

第一工程は酸化ニッケルとジルコニアを反応させて強固
に結合させる。
The first step is to react nickel oxide and zirconia to form a strong bond.

第二工程は酸化ニッケルを還元するとともに得られたニ
ッケルをよく焼結させる。
In the second step, the nickel oxide is reduced and the resulting nickel is thoroughly sintered.

第三工程はアノード基板を形成させる。The third step is to form an anode substrate.

このようにして得られたアノード基板は還元ふん囲気中
で還元による体積収縮やニッケルの再焼結を起こすこと
がないので、割れや反りがなくなる。
The anode substrate obtained in this way does not undergo volumetric shrinkage due to reduction or re-sintering of nickel in a reducing atmosphere, and therefore is free from cracking and warping.

〔実施例〕〔Example〕

次にこの発明の実施例を地面に基いて説明する。 Next, an embodiment of the present invention will be explained based on the ground.

アノード基板lは次のようにして調製される6(実施例
1) アノード材としては、酸化ニッケルN10(特級。
The anode substrate 1 is prepared as follows6 (Example 1) The anode material is nickel oxide N10 (special grade).

和光純薬工業)とイツトリア安定化ジルコニアYSZ(
TZ−8Y、東ソー)を2=1の重量比で秤量し、バイ
ンダとしてポリビニルアルコールPv^、ポリエチレン
グリコールPEG等を添加しボールミルにて湿式混合す
る。これらのスラリーをスプレードライヤで乾燥・造粒
する。この造粒粉を緻密なアルミナルツボに加圧しない
うに入れ、酸化ふん囲気中の1300〜1500℃の温
度で2時間、仮焼する。仮焼した造粒粉をさらに水素還
元ふん囲気中の800〜1200℃の温度で2時間、熱
処理する。還元した造粒粉にステアリン酸アンモニウム
を滑材として添加し、直Pk130mの金型で3fiの
厚さに0,3〜1t/−の圧力で成形した。この成形体
を水素還元ふん囲気中、1200〜1450℃の温度で
2時間、焼結し、アノード基板を得た。
Wako Pure Chemical Industries) and Ittria stabilized zirconia YSZ (
TZ-8Y, Tosoh) was weighed at a weight ratio of 2=1, polyvinyl alcohol Pv^, polyethylene glycol PEG, etc. were added as a binder, and wet-mixed in a ball mill. These slurries are dried and granulated using a spray dryer. This granulated powder is placed in a dense aluminum crucible without pressure and calcined for 2 hours at a temperature of 1,300 to 1,500°C in an oxidizing atmosphere. The calcined granulated powder is further heat-treated at a temperature of 800 to 1200° C. in a hydrogen reducing atmosphere for 2 hours. Ammonium stearate was added as a lubricant to the reduced granulated powder, and it was molded to a thickness of 3fi with a pressure of 0.3 to 1t/- in a mold with a direct Pk of 130m. This molded body was sintered at a temperature of 1200 to 1450° C. for 2 hours in a hydrogen reducing atmosphere to obtain an anode substrate.

(実施例2) アノード材としては、酸化ニッケルN1p(特級和光純
薬工業)とイツトリア安定化ジルコニアYSZ(τZ−
BY、東ソー)を2:lの重量比で秤量し、バインダと
してPVA、 PEGを添加した水中にてボールミルに
て湿式混合する。これらのスラリーをスプレードライヤ
で乾燥・造粒する。得られた造粒粉を直径50mの金型
に入れてIt/−の圧力にて、成形し、厚さ30簡のデ
ィスク状とする。ディスク状の成形体をスタンプミルま
たはカンタ−ミルにより粗粉砕し、それらの粉体を目開
き300 nの篩いを遭遇させ、造粒する。得られた造
粒粉を緻密なアルミナルツボに加圧しないように入れ、
酸化ふん囲気中、1300〜1500℃の温度で2時間
、仮焼する。仮焼した造粒粉をさらに水素還元ふん囲気
中、800〜1200℃の温度で2時間、熱処理する。
(Example 2) As anode materials, nickel oxide N1p (special grade Wako Pure Chemical Industries) and ittria stabilized zirconia YSZ (τZ-
BY, Tosoh) at a weight ratio of 2:l, and wet-mixed in a ball mill in water to which PVA and PEG were added as binders. These slurries are dried and granulated using a spray dryer. The obtained granulated powder is put into a mold with a diameter of 50 m and molded at a pressure of It/- to form a disk shape with a thickness of 30 pieces. The disc-shaped compact is coarsely ground using a stamp mill or a canter mill, and the resulting powder is passed through a sieve with a mesh size of 300 nm to be granulated. Place the obtained granulated powder into a dense aluminum crucible without applying pressure.
Calcinate in an oxidizing atmosphere at a temperature of 1300 to 1500°C for 2 hours. The calcined granulated powder is further heat-treated at a temperature of 800 to 1200° C. for 2 hours in a hydrogen reducing atmosphere.

還元した造粒粉にステアリン酸アンモニウムを滑材とし
て添加し、直径130fiの金型で3fiの厚さに0.
3〜it/−の圧力で成形した。この成形体を水素還元
ふん囲気中、1200〜1450℃の温度で2時間、焼
結し、アノード基板を得た。
Ammonium stearate was added as a lubricant to the reduced granulated powder, and it was molded to a thickness of 3fi using a mold with a diameter of 130fi.
Molding was carried out at a pressure of 3 to 1/-. This molded body was sintered at a temperature of 1200 to 1450° C. for 2 hours in a hydrogen reducing atmosphere to obtain an anode substrate.

(実施例3) アノード材としては、酸化ニッケルN1p(特級。(Example 3) The anode material is nickel oxide N1p (special grade).

和光純薬工巣)とイツトリア安定化ジルコニアYSZ(
TZ−8Y、東ソー)を2:1の重量比で秤量し、バイ
ンダとしてPVB、PEGを添加したエタノール中にて
湿式混合する。さらに、ジルコニア粗粒粉として、9モ
ル%のマグネシアMgOで部分安定化したジルコニア)
ISZ(TZ−9MG、東ソー)を1600℃で2時間
仮焼し、目開き300−の篩いを通過させた平均粒子径
を50〜100 nの範囲に造粒した粉末を添加し、さ
らに混合して乾燥した。得られた粉末を、実施例2と同
様の方法により、成形、粉砕1wI造粒し、酸化ふん囲
気中の仮焼と水素還元ふん囲気中での熱処理を行い、直
径130fiの金型で3鶴の厚さに0.3〜1 t/−
の圧力で成形した。この成形体を水素還元ふん囲気中、
1200〜1450℃の温度で2時間、焼結し、アノー
ド基板を得た。
Wako Pure Chemical Industries) and Ittria stabilized zirconia YSZ (
TZ-8Y, Tosoh) were weighed at a weight ratio of 2:1 and wet-mixed in ethanol to which PVB and PEG were added as binders. Furthermore, zirconia partially stabilized with 9 mol% magnesia MgO as zirconia coarse powder)
ISZ (TZ-9MG, Tosoh) was calcined at 1,600°C for 2 hours, passed through a 300-mesh sieve, and granulated powder with an average particle size in the range of 50 to 100 n was added and further mixed. and dried. The obtained powder was molded, pulverized, and granulated for 1 wI in the same manner as in Example 2, and then calcined in an oxidizing atmosphere and heat treated in a hydrogen reducing atmosphere. 0.3 to 1 t/- to the thickness of
It was molded at a pressure of This molded body was placed in a hydrogen reducing atmosphere.
Sintering was performed at a temperature of 1200 to 1450°C for 2 hours to obtain an anode substrate.

以上の実施例において、ジルコニア粗粒粉は、上述の他
イットリア、カルシアまたは、セリアによって部分安定
化あるいは完全安定化されたジルコニアを用いることが
できる。
In the above embodiments, the coarse zirconia powder may be zirconia partially or completely stabilized with yttria, calcia, or ceria.

ジルコニア粗粒粉を加えて造粒するのは、造粒。Granulation is the process of adding coarse zirconia powder to make granules.

仮焼により、大きな原料粒子となり、この造粒粉を成形
、焼結することにより、焼結しした造粒粒子間に開口し
た空隙が生じ、ガス透過の良い多孔質基板を造るために
行う、また仮焼温度は、1300℃以下では、酸化ニッ
ケルとジルコニアの反応性が低く 、1600℃をこえ
ると、酸化ニッケルが飛散する。他方、成形体の還元ふ
ん囲気中での焼結温度は、1200℃より低いと焼結性
が悪く強度のある基板は得られない、 1450℃をこ
えると、ニッケルの融点以上となるため、成形体の形状
を保持することができず、かつ、多孔質性が失われる。
By calcination, large raw material particles are formed, and by molding and sintering this granulated powder, open voids are created between the sintered granulated particles, and this is done to create a porous substrate with good gas permeation. Further, if the calcination temperature is 1300°C or lower, the reactivity of nickel oxide and zirconia is low, and if it exceeds 1600°C, nickel oxide will scatter. On the other hand, if the sintering temperature of the compact in a reducing atmosphere is lower than 1200°C, the sinterability will be poor and a strong substrate cannot be obtained; if it exceeds 1450°C, the temperature will be higher than the melting point of nickel, so forming The shape of the body cannot be maintained and porosity is lost.

(比較例1) 実施例1における酸化ふん囲気中の1300〜1500
℃の温度で2時間、仮焼した造粒粉にバインダとしてP
VB、PEGの水溶液を添加、混合、乾燥し、その造粒
粉を直径130 mの金型で3日の厚さに1t/−の圧
力で成形した。この成形体を酸化ふん囲気中、1400
〜1550℃の温度で2時間、焼結後、水素還元ふん囲
気中、800〜1200℃の温度で還元し、アノード基
板を得た。
(Comparative Example 1) 1300 to 1500 in the oxidizing atmosphere in Example 1
P as a binder is added to the granulated powder calcined at a temperature of ℃ for 2 hours.
Aqueous solutions of VB and PEG were added, mixed, and dried, and the resulting granulated powder was molded to a thickness of 3 days using a mold with a diameter of 130 m at a pressure of 1 t/-. This molded body was placed in an oxidizing atmosphere for 1400 min.
After sintering at a temperature of ~1550°C for 2 hours, reduction was performed at a temperature of 800~1200°C in a hydrogen reducing atmosphere to obtain an anode substrate.

(比較例2) 実施例2における酸化ふん囲気中の1400〜1500
℃の温度で2時間、仮焼した造粒粉に比較例1と同様の
条件、方法により、アノード基板を得た。
(Comparative Example 2) 1400 to 1500 in the oxidizing atmosphere in Example 2
An anode substrate was obtained using the granulated powder which had been calcined at a temperature of .degree. C. for 2 hours under the same conditions and method as in Comparative Example 1.

(比較例3) 実施例3における酸化ふん囲気中の1400〜1500
℃の温度で2時間、仮焼した造粒粉に比較例1と同様の
条件、方法により、アノード基板を得た。
(Comparative Example 3) 1400 to 1500 in the oxidizing atmosphere in Example 3
An anode substrate was obtained using the granulated powder which had been calcined at a temperature of .degree. C. for 2 hours under the same conditions and method as in Comparative Example 1.

第1図は、アノード基板の水素還元ふん囲気中での10
00℃の再焼結による収縮を示すもので、実施例1およ
び2では、再焼結が小さく、実施例3では、はとんど認
められない、これに対し比較例では収縮率が大きい。
Figure 1 shows the hydrogen reduction of the anode substrate at 10
It shows the shrinkage due to resintering at 00°C. In Examples 1 and 2, resintering is small, and in Example 3, it is hardly observed. In contrast, the shrinkage rate is large in the comparative example.

第1表は、アノード基板の曲げ強度を示すもので実施例
1〜3のように、還元処理を行いニッケルージルコニア
とした造粒粉を成形、焼結することにより、比較例1〜
3のような、酸化ニッケルージルコニア焼結体を還元し
て得た基板より2倍以上の強度が得られた。
Table 1 shows the bending strength of the anode substrate, and as in Examples 1 to 3, by molding and sintering the granulated powder made into nickel-zirconia through reduction treatment, Comparative Examples 1 to 3
The strength was more than twice that of a substrate obtained by reducing a nickel oxide-zirconia sintered body such as No. 3.

実施a t〜3のニッケルージルコニアのアノード基板
に、YSZを溶射し固体電解質体2を形成し、電池とし
て1000℃で作動試験したところ、固体電解質体およ
びアノード基板に、反り1割れ、脱落は生じなかった。
A solid electrolyte body 2 was formed by thermal spraying YSZ on the nickel-zirconia anode substrate of implementation a t~3, and an operation test was performed as a battery at 1000°C. As a result, the solid electrolyte body and anode substrate did not warp, crack, or fall off. It did not occur.

第 表 〔発明の効果〕 こめ発明によれば第一工程と、第二工程と、第三工程と
を有し、 第一工程は、酸化ニッケルとジルコニアの各粉体を混合
し、造粒したのち酸化ふん囲気中で熱処理して第一〇造
粒粉を調製し、 第二工程は、前記第一の造粒粉を還元ふん囲気中で熱処
理して第二の造粒粉を調製し、第三工程は、第二の造粒
粉を成型し、かつ還元ふん囲気中で焼成するので、ニッ
ケルとジルコニア、ニッケルとニッケルとがよく反応し
、強固なアノード基板が得られる。またアノード基板は
製造の段階で還元収縮、ニッケル焼結収縮を行っている
ので、電池作動時にアノード基板に大きな収縮がおこら
ず、従って固体電解質体やアノード基板に割れや反りが
発生せず、信鯨性に優れる固体電解電型燃料電池が得ら
れる。
Table [Effects of the invention] According to the invention, there are a first step, a second step, and a third step. Thereafter, the first granulated powder is prepared by heat treatment in an oxidizing atmosphere, and in the second step, the first granulated powder is heat treated in a reducing atmosphere to prepare a second granulated powder, In the third step, the second granulated powder is molded and fired in a reducing atmosphere, so that nickel and zirconia and nickel and nickel react well, resulting in a strong anode substrate. In addition, the anode substrate undergoes reduction shrinkage and nickel sintering shrinkage during the manufacturing stage, so the anode substrate does not undergo large shrinkage during battery operation. Therefore, the solid electrolyte body and the anode substrate do not crack or warp, making it reliable. A solid electrolyte fuel cell with excellent performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例に係るアノード基板の収縮
率時間依存性を比較例と対比して示す線図、第2図は従
来の固体電解電型燃料電池を示す分解斜視図である。 lニアノード基板、2:固体電解質体、3:カソード、
4:カソード基板、5:セパレータ。
FIG. 1 is a diagram showing the time dependence of shrinkage rate of an anode substrate according to an example of the present invention in comparison with a comparative example, and FIG. 2 is an exploded perspective view showing a conventional solid electrolyte fuel cell. . l near node substrate, 2: solid electrolyte body, 3: cathode,
4: Cathode substrate, 5: Separator.

Claims (1)

【特許請求の範囲】 1)第一工程と、第二工程と、第三工程とを有し、第一
工程は、酸化ニッケルとジルコニアの各粉体を混合し、
造粒したのち酸化ふん囲気中で熱処理して第一の造粒粉
を調製し、第二工程は、前記第一の造粒粉を還元ふん囲
気中で熱処理して第二の造粒粉を調製し、 第三工程は、第二の造粒粉を成型し、かつ還元ふん囲気
中で焼成することを特徴とする固体電解質型燃料電池の
製造方法。 2)請求項1記載の製造方法において、酸化ニッケルと
ジルコニアの各粉体を混合したのちイットリア、マグネ
シア、カルシアまたはセリアにより部分安定化あるいは
完全安定化されたジルコニア粗粒粉を加えて造粒するこ
とを特徴とする固体電解質型燃料電池の製造方法。 3)請求項2記載の製造方法において、ジルコニア粗粒
粉の粒度は、その平均粒子径が50〜100μmの範囲
にあることを特徴とする固体電解質型燃料電池の製造方
法。
[Claims] 1) It has a first step, a second step, and a third step, and the first step is to mix nickel oxide and zirconia powders,
After granulation, the first granulated powder is prepared by heat treatment in an oxidizing atmosphere, and in the second step, the first granulated powder is heat treated in a reducing atmosphere to prepare a second granulated powder. and the third step is to mold the second granulated powder and sinter it in a reducing atmosphere. 2) In the manufacturing method according to claim 1, after mixing each powder of nickel oxide and zirconia, coarse zirconia powder partially stabilized or completely stabilized with yttria, magnesia, calcia or ceria is added and granulated. A method for manufacturing a solid oxide fuel cell, characterized by: 3) The method of manufacturing a solid oxide fuel cell according to claim 2, wherein the average particle size of the coarse zirconia powder is in the range of 50 to 100 μm.
JP2271230A 1990-10-09 1990-10-09 Method for manufacturing solid oxide fuel cell Expired - Lifetime JP2734768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271230A JP2734768B2 (en) 1990-10-09 1990-10-09 Method for manufacturing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271230A JP2734768B2 (en) 1990-10-09 1990-10-09 Method for manufacturing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH04147569A true JPH04147569A (en) 1992-05-21
JP2734768B2 JP2734768B2 (en) 1998-04-02

Family

ID=17497170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271230A Expired - Lifetime JP2734768B2 (en) 1990-10-09 1990-10-09 Method for manufacturing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2734768B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344426B1 (en) 1998-05-20 2002-02-05 Nippon Shokubai Co., Ltd. Porous ceramic sheet, process for producing the same, and setter for use in the process
KR100756518B1 (en) * 2006-03-22 2007-09-10 고등기술연구원연구조합 Method of preparing a material for electrolysis
JP2012520394A (en) * 2009-03-12 2012-09-06 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melting cermet products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185010B1 (en) * 2004-12-24 2012-09-21 재단법인 포항산업과학연구원 Method for manufacturing cathode of cathode supported solid oxide fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344426B1 (en) 1998-05-20 2002-02-05 Nippon Shokubai Co., Ltd. Porous ceramic sheet, process for producing the same, and setter for use in the process
KR100756518B1 (en) * 2006-03-22 2007-09-10 고등기술연구원연구조합 Method of preparing a material for electrolysis
JP2012520394A (en) * 2009-03-12 2012-09-06 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Melting cermet products

Also Published As

Publication number Publication date
JP2734768B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
KR100344936B1 (en) Tubular Solid Oxide Fuel Cell supported by Fuel Electrode and Method for the same
JP3887413B2 (en) Sintered solid electrolyte with high oxygen ion conductivity
JPH04118861A (en) Solid electrolyte type fuel cell and its manufacture
KR101499622B1 (en) Nickel Oxide Powder Material for Solid Electrolyte Fuel Battery, Production Process thereof, Raw Material Composition for Use in the Same, and Fuel Electrode Material Using the Nickel Oxide Powder Material
JPH06124711A (en) Ceramic electrode material
CZ275498A3 (en) Cheap stable material of air electrodes for high-temperature electrochemical cells with electrolyte of solid oxide
KR101117103B1 (en) Porous anode substrate for protonic ceramic fuel cell and fabrication method thereof
JPH053037A (en) Solid electrolyte type fuel cell
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
Murphy et al. Tape casting of lanthanum chromite
JP3502685B2 (en) Air electrode support
US20040033886A1 (en) Method for producing an electrode that has a temperature-stabilized conductivity
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP2740634B2 (en) Method for producing composite metal oxide, method for producing electrode for fuel cell, and electrode for fuel cell
JPH02293384A (en) Production of electrically conductive porous ceramic tube
JP3661676B2 (en) Solid oxide fuel cell
JP2734768B2 (en) Method for manufacturing solid oxide fuel cell
KR100660218B1 (en) Fabrication method for anode of solid oxide fuel cell
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JP3254456B2 (en) Method for manufacturing solid oxide fuel cell
Gaudon et al. YSZ electrolyte of anode-supported SOFCs prepared from sub micron YSZ powders
JP4192733B2 (en) Solid oxide fuel cell
JPH09132459A (en) Porous ceramic sintered compact
JPH05225986A (en) Manufacture of solid electrolyte type fuel cell
US20100297527A1 (en) Fast Ion Conducting Composite Electrolyte for Solid State Electrochemical Devices