JPH0414730A - Circuit breaker - Google Patents

Circuit breaker

Info

Publication number
JPH0414730A
JPH0414730A JP11836490A JP11836490A JPH0414730A JP H0414730 A JPH0414730 A JP H0414730A JP 11836490 A JP11836490 A JP 11836490A JP 11836490 A JP11836490 A JP 11836490A JP H0414730 A JPH0414730 A JP H0414730A
Authority
JP
Japan
Prior art keywords
circuit
semiconductor switching
switching element
current
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11836490A
Other languages
Japanese (ja)
Inventor
Yukio Kishikawa
岸川 幸生
Yoshitake Araki
荒木 芳武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11836490A priority Critical patent/JPH0414730A/en
Publication of JPH0414730A publication Critical patent/JPH0414730A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To protect a semiconductor switching device from large current by short-circuiting a bypass circuit to a main circuit by closing a flow-changing switch simultaneously with shutting operation. CONSTITUTION:When large current runs to a main circuit 35 due to short- circuiting accidents, etc., a tripping apparatus 19 starts working by the operation of an instant tripping coil 21 and shutting operation is started by parting a movable contactor 15 from a fixed contactor 14. Simultaneously with that, over current runs in the reverse direction between a fixed conductor 24 and a movable conductor 26 of a flow-changing switch 25 to generate electromagnetic repulsive force and the movable conductor 26 is rotated downward in spite of a spring 50 by the electromagnetic repulsive force to contact a movable side contact point 28 to a fixed side contact point 29 and thus a bypass circuit 32 is short-circuited to a main circuit 34. As a result, large current in the main circuit 35 is flow-changed and shunted to the bypass circuit 32 through both contact points 28, 29 of the flow-changing switch 25.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、負荷側端子に接続された回路素子を短絡電流
等の大電流から保護する機能を備えた回路遮断器に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a circuit breaker having a function of protecting circuit elements connected to load-side terminals from large currents such as short-circuit currents. .

(従来の技術) 一般に、囲路遮断器は、短絡事故等により主回路に大電
流が流れたときに引外し装置により可動接触子を固定接
触子から離間させて大電流を遮断する構成となっている
。しかしながら、引外し装置の作動により大電流が完全
に遮断されるまでには、アークの発生等により若干の時
間遅れを伴うため、その間に、負荷側端子に接続された
半導体開閉素子にも、短時間ながら過電流が流れてしま
うことになる。このため、過電流耐量が小さい半導体開
閉素子が使用されている場合には、その半導体開閉素子
が遮断動作時に流れる過電流により耐熱温度以上に発熱
して破壊されてしまうおそれがあった。
(Prior art) Generally, when a large current flows in the main circuit due to a short-circuit accident, an enclosed circuit breaker is configured to separate the movable contact from the fixed contact using a tripping device to interrupt the large current. ing. However, there is a slight time delay before the large current is completely cut off due to the activation of the tripping device due to the occurrence of arcing, etc., and during that time, the semiconductor switching element connected to the load side terminal may also be short-circuited. Overcurrent will flow over time. For this reason, when a semiconductor switching element with a small overcurrent withstand capacity is used, there is a risk that the semiconductor switching element will generate heat exceeding its heat resistance temperature and be destroyed by the overcurrent flowing during the interrupting operation.

この様な問題を解決するために、従来より、第4図に示
すように、回路遮断器1の負荷側端子に速断ヒユーズ2
を介してトライアック等の半導体開閉素子3を接続し、
この半導体開閉素子3のオン・オフにより負荷4の通断
電を制御する一方、短絡電流等の大電流が流れたときに
は、速断ヒユーズ2の限流遮断により半導体開閉素子3
を保護するようにしたものがある。
In order to solve this kind of problem, conventionally, as shown in FIG.
A semiconductor switching element 3 such as a triac is connected through the
On/off of the semiconductor switching element 3 controls the energization and disconnection of the load 4, and when a large current such as a short circuit current flows, the semiconductor switching element 3
There is something designed to protect the

また、負荷側の半導体開閉素子が比較的小さい定格(例
えば50A以下)のときには、高限流遮断器を使用し、
この高限流遮断器の限流効果により半導体開閉素子を保
護することも行われている。
In addition, when the semiconductor switching element on the load side has a relatively small rating (for example, 50A or less), a high current limiting circuit breaker is used.
The current limiting effect of this high current limiting circuit breaker is also used to protect semiconductor switching elements.

(発明が解決しようとする課題) しかしながら、前者(速断ヒユーズ2を直列接続するも
の)は、事故発生後そのままでは直ぐに回路を復旧する
ことができず、速断ヒユーズ2の交換が必要で復旧作業
に手間がかかると共に、速断ヒユーズ2の取付スペース
が必要となって、省スペース化の要請に反する。
(Problem to be solved by the invention) However, with the former (connecting the quick-acting fuses 2 in series), it is not possible to restore the circuit immediately after an accident occurs, and the rapid-acting fuses 2 must be replaced, which requires restoration work. This is time-consuming and requires space for installing the quick-acting fuse 2, which goes against the demand for space saving.

一方、後者(高限流遮断器を使用した場合)は、定格電
流の大きい半導体開閉素子になると、高限流遮断器の限
流効果だけでは、その半導体開閉素子の過電流耐量エネ
ルギを超えてしまい、半導体開閉素子を保護できないの
が現状である。
On the other hand, in the latter case (when using a high current limiting circuit breaker), when a semiconductor switching element with a large rated current is used, the current limiting effect of the high current limiting circuit breaker alone exceeds the overcurrent withstand energy of the semiconductor switching element. Currently, the semiconductor switching elements cannot be protected.

本発明はこの様な事情を考慮してなされたもので、従っ
てその目的は、事故発生後の復旧作業が簡単であると共
に、省スペース化の要請も満たし、しかも、半導体開閉
素子の過電流耐量の大小を問わずその半導体開閉素子を
過電流から確実に保護できる回路遮断器を提供すること
にある。
The present invention has been made in consideration of these circumstances, and its purpose is to simplify the recovery work after an accident occurs, satisfy the demand for space saving, and further improve the overcurrent withstand capacity of semiconductor switching elements. An object of the present invention is to provide a circuit breaker that can reliably protect semiconductor switching elements from overcurrent regardless of their size.

[発明の構成] (課題を解決するための手段) 本発明の回路遮断器は、電源側端子と負荷側端子との間
に、固定接触子と、この固定接触子に接離する可動接触
子とを設けて主回路を構成すると共に、この主回路に短
絡電流等の大電流が流れたときに前記可動接触子を前記
固定接触子から離間させて大電流を遮断する引外し装置
を設けたものにおいて、前記主回路に直列に設けられた
半導体開閉素子と、この半導体開閉素子と並列に設けら
れたバイパス回路と、前記主回路に短絡電流等の大電流
が流れたときにオンして前記バイパス回路を前記主回路
に短絡させる転流用スイッチと、前記半導体開閉素子に
対して過負荷電流が流れたときにそれを検知して前記半
導体開閉素子をオフさせる過負荷電流保護手段とを具備
して成るものである。
[Structure of the Invention] (Means for Solving the Problems) The circuit breaker of the present invention includes a fixed contact between a power supply side terminal and a load side terminal, and a movable contact that approaches and separates from the fixed contact. A tripping device is provided to separate the movable contact from the fixed contact and interrupt the large current when a large current such as a short circuit current flows through the main circuit. In the device, a semiconductor switching element is provided in series with the main circuit, a bypass circuit is provided in parallel with the semiconductor switching element, and the switching element is turned on when a large current such as a short circuit current flows through the main circuit. It comprises a commutation switch that short-circuits a bypass circuit to the main circuit, and overload current protection means that detects when an overload current flows to the semiconductor switching element and turns off the semiconductor switching element. It consists of

(作用) 主回路に短絡電流等の大電流が流れたときには、引外し
装置が作動して可動接触子を固定接触子から離間させて
大電流を遮断する。この遮断動作と同時に、転流用スイ
ッチが閉成してバイパス回路を主回路に短絡させ、それ
によって大電流をバイパス回路側に転流させることによ
り、半導体開閉素子を大電流から保護する。
(Function) When a large current such as a short circuit current flows in the main circuit, the tripping device is activated to separate the movable contact from the fixed contact and interrupt the large current. Simultaneously with this cutoff operation, the commutation switch closes to short-circuit the bypass circuit to the main circuit, thereby commutating the large current to the bypass circuit side, thereby protecting the semiconductor switching element from the large current.

ところで、短絡電流はど電流値が大きくなくて、引外し
装置が作動しないような場合でも、半導体開閉素子にと
っては過負荷電流になる場合があり、そのような過負荷
電流を半導体開閉素子に流し続けると、その半導体開閉
素子が故障してしまう。
By the way, even if the short-circuit current is not large and the tripping device does not operate, it may become an overload current for the semiconductor switching element, and such an overload current should not be passed through the semiconductor switching element. If this continues, the semiconductor switching element will break down.

それ故、上記構成では、半導体開閉素子に対して過負荷
電流が流れたときには、過負荷電流保護手段がそれを検
知して半導体開閉素子をオフさせる。これにより、半導
体開閉素子を過負荷電流から確実に保護できる。
Therefore, in the above configuration, when an overload current flows through the semiconductor switching element, the overload current protection means detects it and turns off the semiconductor switching element. Thereby, the semiconductor switching element can be reliably protected from overload current.

しかも、半導体開閉素子、バイパス回路や過負荷電流保
護手段が回路遮断器に組み込まれているので、これらを
回路遮断器の外部に設けた場合に比して、回路遮断器の
周辺回路をコンパクト化できる。
Moreover, since the semiconductor switching element, bypass circuit, and overload current protection means are built into the circuit breaker, the peripheral circuitry of the circuit breaker can be made more compact than if these were installed outside the circuit breaker. can.

(実施例) 以下、本発明の一実施例を第1図乃至第3図に基づいて
説明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3.

まず、回路遮断器の機械的構成を第2図に基づいて説明
する。この回路遮断器の本体ケース11の左右両側には
、電源側端子12と負荷側端子13とが設けられている
。そして、電源側端子12には、右側部分が0字状に曲
成された固定接触子14が接続され、この固定接触子1
4の先端部の上面には、固定側接点14aが固着されて
いる。
First, the mechanical configuration of the circuit breaker will be explained based on FIG. 2. A power supply side terminal 12 and a load side terminal 13 are provided on both left and right sides of a main body case 11 of this circuit breaker. A fixed contact 14 whose right side portion is bent into a 0-shape is connected to the power supply side terminal 12.
A fixed side contact 14a is fixed to the upper surface of the tip of 4.

この固定接触子14の上方には、可動接触子15が軸1
6を介して上下回動可能に設けられ、この可動接触子1
5の先端部の下面に固着された可動側接点15aが固定
接触子14の固定側接点14aと接離するようになって
いる。そして、可動接触子15は、操作ハンドル17に
リンク機構18を介して連結され、その操作ハンドル1
7を第2図の状態から右方向に回動操作することにより
、可動接触子15の可動側接点15aを固定接触子14
の固定側接点14aに接触させた状!!3(閉路状態)
に復帰させることができるようになっている。
Above the fixed contact 14, a movable contact 15 is mounted on the shaft 1.
The movable contact 1 is provided so as to be movable up and down via the
A movable contact 15a fixed to the lower surface of the tip of the fixed contact 14 comes into contact with and separates from the fixed contact 14a of the fixed contact 14. The movable contactor 15 is connected to the operating handle 17 via a link mechanism 18, and the operating handle 1
7 in the right direction from the state shown in FIG.
In contact with the fixed side contact 14a! ! 3 (closed circuit state)
It is now possible to return to.

一方、リンク機構18の右側には引外し装置19が設け
られている。この引外し装置19は、非磁性体製のオイ
ルケース20に瞬時用外しコイル21を巻装し、この瞬
時用外しコイル21の一端を可撓導体22を介して可動
接触子15に接続すると共に、その瞬時用外しコイル2
1の他端を、過負荷電流を検出するバイメタル23の加
熱用のヒータ23aに接続している。そして、このバイ
メタル23のヒータ2Bgの下端部には、左方向に延び
る固定導体24が接続され、この固定導体24の左端部
に、転流用スイッチ25の可動導体26がピン27を介
して上下回動可能に支持され、この可動導体26の右端
部下面に可動側接点28が設けられている。この可動側
接点28の下方には、固定側接点29を有する固定導体
30が右方向に突出するように設けられ、この固定導体
30の右端部が負荷側端子13に接続されている。これ
によって、転流用スイッチ25の固定側接点29から固
定導体30を介して負荷側端子13へ至るバイパス回路
32が構成されている。
On the other hand, a tripping device 19 is provided on the right side of the link mechanism 18. This tripping device 19 has an oil case 20 made of a non-magnetic material wrapped around an instantaneous disconnection coil 21, and one end of the instantaneous disconnection coil 21 is connected to the movable contact 15 via a flexible conductor 22. , the instantaneous removal coil 2
The other end of 1 is connected to a heater 23a for heating a bimetal 23 that detects overload current. A fixed conductor 24 extending to the left is connected to the lower end of the heater 2Bg of the bimetal 23, and a movable conductor 26 of a commutation switch 25 is connected to the left end of the fixed conductor 24 via a pin 27 for vertical and downward movement. The movable conductor 26 is movably supported, and a movable contact 28 is provided on the lower surface of the right end of the movable conductor 26 . A fixed conductor 30 having a fixed contact 29 is provided below the movable contact 28 so as to protrude to the right, and the right end of the fixed conductor 30 is connected to the load terminal 13 . This constitutes a bypass circuit 32 extending from the fixed contact 29 of the commutation switch 25 to the load terminal 13 via the fixed conductor 30.

一方、転流用スイッチ25の可動導体26は、可撓導体
33を介してトライアック等の半導体開閉素子34の一
方の端子に接続され、この半導体開閉素子34の他方の
端子が負荷側端子13に接続されている。従って、負荷
電流が流れる主回路35は、電源側端子12−固定接触
子14−可動接触子15−可撓導体22−瞬時用外しコ
イル21−ヒータ23a−固定導体24−可動導体26
−可撓導体33−半導体開閉素子34−負荷側端子13
の経路となる。そして、この主回路35中の半導体開閉
素子34に対し、前記バイパス回路32が並列に設けら
れた構成となっている。
On the other hand, the movable conductor 26 of the commutation switch 25 is connected to one terminal of a semiconductor switching element 34 such as a triac via a flexible conductor 33, and the other terminal of this semiconductor switching element 34 is connected to the load side terminal 13. has been done. Therefore, the main circuit 35 through which the load current flows is the power supply terminal 12 - fixed contact 14 - movable contact 15 - flexible conductor 22 - instantaneous disconnection coil 21 - heater 23a - fixed conductor 24 - movable conductor 26
- Flexible conductor 33 - Semiconductor switching element 34 - Load side terminal 13
This will be the route. The bypass circuit 32 is provided in parallel to the semiconductor switching element 34 in the main circuit 35.

一方、転流用スイッチ25の可動導体26はばね50に
より上方に付勢されて、常には、第1図に示すように可
動側接点28が固定側接点29から離間した状態に保持
され、バイパス回路32と主回路35との間が開放され
た状態に維持される。
On the other hand, the movable conductor 26 of the commutation switch 25 is urged upward by the spring 50, and as shown in FIG. 32 and the main circuit 35 are maintained in an open state.

この状態では、負荷電流はバイパス回路32へ転流(分
流)せず、可動導体26−可撓導体33−半導体開閉素
子34−負荷側端子13の経路で流れる。この場合、主
回路35の固定導体24と可動導体26とが互いに平行
に設けられて、負荷電流が互いに逆方向に流れるように
なっており、短絡電流等の大電流が流れたときには、固
定導体24と可動導体26との間に逆方向電流による電
磁反発力が発生して、可動導体26をばね50に抗して
下方に回動させ、第2図に示すように可動側接点28を
固定側接点29に接触させて、バイパス回路32を主回
路35に短絡させるようになっている。
In this state, the load current does not commutate (shunt) to the bypass circuit 32, but flows along the path of the movable conductor 26--flexible conductor 33--semiconductor switching element 34--load side terminal 13. In this case, the fixed conductor 24 and the movable conductor 26 of the main circuit 35 are provided in parallel to each other so that the load current flows in opposite directions, and when a large current such as a short circuit current flows, the fixed conductor 24 and the movable conductor 26 24 and the movable conductor 26 due to a reverse current, the movable conductor 26 is rotated downward against the spring 50, and the movable contact 28 is fixed as shown in FIG. By contacting the side contact 29, the bypass circuit 32 is short-circuited to the main circuit 35.

而して、本体ケース11内には、半導体開閉素子34を
過負荷電流から保護する過負荷電流保護手段36が設け
られている。この過負荷電流保護手段36は、過負荷電
流を検知する手段としてヒータ23a付きのバイメタル
23を備え、過負荷電流が流れたときには、バイメタル
23が変形[7て常閉接点37(第1図参照)を開放す
る。この常閉接点37は、フォトカブラ38の発光素子
である発光ダイオード39と直列に接続され、この直列
回路の両端が本体ケース11に設けられた外部制御端子
40.41に接続されている。一方、フォトカブラ38
の受光素子であるフォトサイリスタ42は、そのアノー
ド側が直流電源43を介して半導体開閉素子34(トラ
イアック)のゲートに接続され、カソード側が抵抗44
を介して負荷側端子13側に接続されている。
An overload current protection means 36 is provided within the main body case 11 to protect the semiconductor switching element 34 from overload current. This overload current protection means 36 includes a bimetal 23 with a heater 23a as a means for detecting overload current, and when an overload current flows, the bimetal 23 deforms [7] and the normally closed contact 37 (see Fig. 1). ). This normally closed contact 37 is connected in series with a light emitting diode 39 which is a light emitting element of the photocoupler 38, and both ends of this series circuit are connected to external control terminals 40 and 41 provided on the main body case 11. On the other hand, Photo Cabra 38
The photothyristor 42, which is a light receiving element, has its anode side connected to the gate of a semiconductor switching element 34 (TRIAC) via a DC power supply 43, and its cathode side connected to a resistor 44.
It is connected to the load side terminal 13 side via.

以上のように構成された過負荷電流保護手段36が組み
込まれた回路遮断器を使用する場合には、第1図に示す
ように、電源側端子12と負荷側端子13との間に、交
流電源46と負荷45とを直列に接続すると共に、外部
制御端子40.41間に外部操作スイッチ47と外部直
流電源48とを直列に接続する。
When using a circuit breaker incorporating the overload current protection means 36 configured as described above, as shown in FIG. A power source 46 and a load 45 are connected in series, and an external operation switch 47 and an external DC power source 48 are connected in series between external control terminals 40 and 41.

次に、上記構成の作用について説明する。負荷45への
通電を開始する場合には、操作ハンドル17の回動操作
により可動接触子15を固定接触子14に接触させて主
回路35を閉路すると共に、外部操作スイッチ47をオ
ン操作する。これにより、外部直流電源48から常閉接
点37を通してフォトカブラ38の発光ダイオード39
に通電され、この発光ダイオード39の発光によりフォ
トサイリスタ42がターンオンして、半導体開閉素子3
4にゲート電流を流し、この半導体開閉素子34をター
ンオンさせる。この状態では、交流電源46から電源側
端子12−固定接触子14−可動接触子15−可撓導体
22−瞬時用外しコイル21−ヒータ23a−固定導体
24−可動導体26−可撓導体33−半導体開閉素子3
4−負荷側端子13−負荷45という経路で負荷電流が
流れる。その後、短絡事故等により主回路35に大電流
が流れると、瞬時用外しコイル21によって引外し装置
19が動作し、可動接触子15を固定接触子14から開
離させて遮断動作を開始する。このとき同時に、固定導
体24と転流用スイッチ25の可動導体26との間に逆
方向の過電流が流れて電磁反発力が発生し、その電磁反
発力により可動導体26をばね50に抗して下方に回動
させ、第2図に示すように可動側接点28を固定側接点
29に接触させて、バイパス回路32を主回路34に短
絡させる。これにより、主回路35の大電流は、転流用
スイッチ25の両接点28.29を通してバイパス回路
32に転流分流される。このときの分流比は、可撓導体
33の抵抗rl、半導体開閉素子34の抵抗r2、バイ
パス回路32の抵抗「1、両接点28.29の接触抵抗
r4とすると、半導体開閉素子34の電流IRとバイパ
ス回路32の電流I、との比は、次のようになる。
Next, the operation of the above configuration will be explained. To start energizing the load 45, the operating handle 17 is rotated to bring the movable contact 15 into contact with the fixed contact 14 to close the main circuit 35, and the external operating switch 47 is turned on. As a result, the light emitting diode 39 of the photocoupler 38 is connected to the external DC power supply 48 through the normally closed contact 37.
The photothyristor 42 is turned on by the light emission of the light emitting diode 39, and the semiconductor switching element 3 is turned on.
A gate current is applied to 4 to turn on this semiconductor switching element 34. In this state, the AC power supply 46 is connected to the power supply side terminal 12 - fixed contact 14 - movable contact 15 - flexible conductor 22 - momentary disconnection coil 21 - heater 23a - fixed conductor 24 - movable conductor 26 - flexible conductor 33 - Semiconductor switching element 3
A load current flows through the path 4-load side terminal 13-load 45. Thereafter, when a large current flows through the main circuit 35 due to a short-circuit accident or the like, the tripping device 19 is operated by the instantaneous disconnection coil 21, and the movable contact 15 is separated from the fixed contact 14 to start a breaking operation. At the same time, an overcurrent flows in the opposite direction between the fixed conductor 24 and the movable conductor 26 of the commutation switch 25, generating electromagnetic repulsion, which causes the movable conductor 26 to resist the spring 50. It is rotated downward to bring the movable contact 28 into contact with the fixed contact 29 as shown in FIG. 2, thereby short-circuiting the bypass circuit 32 to the main circuit 34. Thereby, the large current of the main circuit 35 is commutated and shunted to the bypass circuit 32 through both contacts 28 and 29 of the commutation switch 25. The current division ratio at this time is the resistance rl of the flexible conductor 33, the resistance r2 of the semiconductor switching element 34, the resistance "1" of the bypass circuit 32, and the contact resistance r4 of both contacts 28 and 29, and the current IR of the semiconductor switching element 34. The ratio between the current I of the bypass circuit 32 and the current I of the bypass circuit 32 is as follows.

IR: Is −(r3+r4): (r+ +r2)
この場合、バイパス回路32の抵抗r、は、主として固
定導体30(銅導体)の抵抗で極めて小さく、且つ両接
点28.29の接触抵抗r4も極めて小さいことは明ら
かであるから、半導体開閉素子34の電流IRとバイパ
ス回路32の電流I5との大小関係は、IR((15と
なる。
IR: Is −(r3+r4): (r+ +r2)
In this case, the resistance r of the bypass circuit 32 is mainly the resistance of the fixed conductor 30 (copper conductor) and is extremely small, and it is clear that the contact resistance r4 of both contacts 28 and 29 is also extremely small. The magnitude relationship between the current IR and the current I5 of the bypass circuit 32 is IR((15).

ところで、遮断動作時には、第3図(a)に示すように
、推定短絡電流Inに対して、可動接触子15と固定接
触子14の接点14a、15B間のアーク抵抗による限
流により遮断電流1cは限流され、電流ピーク値はPl
からP2に低下する。
By the way, during the breaking operation, as shown in FIG. 3(a), with respect to the estimated short circuit current In, the breaking current 1c is reduced due to the current limiting due to the arc resistance between the contacts 14a and 15B of the movable contact 15 and the fixed contact 14. is current limited, and the current peak value is Pl
to P2.

この遮断電流1eは、遮断動作開始後t、において、前
述したように転流用スイッチ25の両接点28.29が
閉成してバイパス回路32を主回路35に短絡させるこ
とにより、半導体開閉素子34に流れる電流IRは第3
図(b)のように急激に減少する一方、バイパス回路3
2には、第3図(c)に示すようにtlから電流Isが
転流分流し始める。この結果、半導体開閉素子34に流
れる電流IRは、従来に比し著しく小さくなり、半導体
開閉素子34をジュール熱による溶損・焼損から確実に
保護できる。しかも、前述した転流用スイッチ25の開
成によるバイパス回路32への転流分流は、半導体開閉
素子34Ω過電流耐量の大小を問わず円滑に行われるの
で、従来の高限流遮断器とは異なり、半導体開閉素子3
4をその過電流耐二の大小を問わず短絡事故時の過電流
から確実に保護できる。
This breaking current 1e is generated by the semiconductor switching element 34 by closing both contacts 28 and 29 of the commutation switch 25 and short-circuiting the bypass circuit 32 to the main circuit 35 at t after the start of the breaking operation. The current IR flowing in the third
While the bypass circuit 3 decreases rapidly as shown in Figure (b),
2, the current Is begins to commutate and shunt from tl as shown in FIG. 3(c). As a result, the current IR flowing through the semiconductor switching element 34 becomes significantly smaller than that in the past, and the semiconductor switching element 34 can be reliably protected from melting and burning due to Joule heat. Moreover, the commutation of the current to the bypass circuit 32 by opening the commutation switch 25 described above is performed smoothly regardless of the magnitude of the overcurrent withstand capacity of the semiconductor switching element 34Ω. Semiconductor switching element 3
4 can be reliably protected from overcurrent in the event of a short-circuit accident, regardless of the magnitude of its overcurrent resistance.

ところで、短絡電流はど電流値が大きくなくて、引外し
装置19が作動しないような場合でも、半導体開閉素子
34にとっては過負荷電流になる場合があり、そのよう
な過負荷電流を半導体開閉素子34に流し続けると、そ
の半導体開閉素子34が故障してしまう。
By the way, even if the current value of the short circuit current is not large and the tripping device 19 does not operate, it may become an overload current for the semiconductor switching element 34. 34, the semiconductor switching element 34 will break down.

これに対処するため、上記実施例では、半導体開閉素子
34に対して過負荷電流が流れたときには、過負荷電流
保護手段36のバイメタル23がヒータ23aの発熱に
より変形して常閉接点37を開放する。これにより、フ
ォトカブラ38の発光ダイオード39が断電されて、フ
ォトサイリスタ42がターンオフし、それによって半導
体装置素子34のゲート電流が遮断されて、この半導体
開閉素子34がターンオフする。このターンオフにより
、主回路35が開路して過負荷電流が遮断され、半導体
開閉素子34が過負荷電流から確実に保護される。
To deal with this, in the above embodiment, when an overload current flows to the semiconductor switching element 34, the bimetal 23 of the overload current protection means 36 is deformed by the heat generated by the heater 23a, and the normally closed contact 37 is opened. do. As a result, the light emitting diode 39 of the photocoupler 38 is cut off, the photothyristor 42 is turned off, the gate current of the semiconductor device element 34 is cut off, and the semiconductor switching element 34 is turned off. This turn-off opens the main circuit 35, cuts off the overload current, and reliably protects the semiconductor switching element 34 from the overload current.

そして、短絡事故発生後に復旧する場合には、操作ハン
ドル17を時計回り方向へ回動すれば、それに連動する
リンク機構18により可動接触子15が押し下げられて
、その可動接触子15の接点15aが固定接触子14の
接点14aに接触し、主回路35が閉路される。従って
、従来のような速断ヒユーズ2の取換という面倒な作業
が不要で、復旧作業が極めて簡単である。
When recovering after a short-circuit accident occurs, when the operation handle 17 is rotated clockwise, the movable contact 15 is pushed down by the link mechanism 18 linked thereto, and the contact 15a of the movable contact 15 is The contact point 14a of the fixed contactor 14 is contacted, and the main circuit 35 is closed. Therefore, there is no need for the troublesome work of replacing the quick-break fuse 2 as in the prior art, and the restoration work is extremely simple.

しかも、回路遮断器の本体ケース11内に半導体開閉素
子34.バイパス回路32や過負荷電流保護手段36が
組み込まれているので、本体ケース11の外部に従来の
ような速断ヒユーズ2や半導体開閉素子34等の配設ス
ペースが不要であり、省スペース化・コンパクト化の要
請も満たす。
Furthermore, a semiconductor switching element 34 is installed inside the main body case 11 of the circuit breaker. Since the bypass circuit 32 and overload current protection means 36 are incorporated, there is no need for space for the conventional fast-acting fuse 2, semiconductor switching element 34, etc. outside the main body case 11, resulting in space saving and compact design. It also satisfies the demands of

尚、上記実施例では、半導体開閉素子34に流れる過負
荷電流を検出する手段として、ヒータ23a付きのバイ
メタル23を用いたが、これに代え、変流器等の電流検
出手段により過負荷電流を検出し、その検出信号を増幅
回路等を含む電子回路で処理して、半導体開閉素子34
のゲート電流を遮断する構成としても良い。
In the above embodiment, the bimetal 23 with the heater 23a is used as a means for detecting the overload current flowing through the semiconductor switching element 34, but instead of this, the overload current can be detected by a current detecting means such as a current transformer. The detection signal is processed by an electronic circuit including an amplifier circuit, etc., and the semiconductor switching element 34
The structure may be such that the gate current is cut off.

或は、半導体開閉素子34として、トライアックやサー
ミスタに代えてインテリジェントパワーICを採用し、
その半導体開閉素子そのものが過負荷電流を検出して自
己遮断するようにしても良い。この場合には、半導体開
閉素子自体に過負荷電流保護手段を備えた構成となる。
Alternatively, an intelligent power IC may be used as the semiconductor switching element 34 instead of a triac or thermistor,
The semiconductor switching element itself may detect an overload current and self-shut off. In this case, the semiconductor switching element itself is provided with overload current protection means.

更に、短絡事故発生時に主回路35からバイパス回路3
2への転流を促進するために、半導体開閉素子34と直
列に限流接点(短絡電流により発生する電磁反発力によ
って開放する接点)を設ける構成としても良い。
Furthermore, when a short circuit accident occurs, the main circuit 35 is connected to the bypass circuit 3.
In order to promote the commutation to 2, a current limiting contact (a contact that opens due to electromagnetic repulsion generated by a short-circuit current) may be provided in series with the semiconductor switching element 34.

その他、本発明は、例えばリンク機構18や引外し装置
19の構成を適宜変更しても良い等、種々の変形が可能
である。
In addition, the present invention can be modified in various ways, for example, the configurations of the link mechanism 18 and the tripping device 19 may be changed as appropriate.

[発明の効果コ 本発明は以上の説明から明らかなように、主回路に直列
に半導体開閉素子を設けると共に、この半導体開閉素子
と並列にバイパス回路を設け、前記主回路に短絡電流等
の大電流が流れたときには、転流用スイッチがオンして
前記バイパス回路を前記主回路に短絡させる一方、前記
半導体開閉素子に対して過負荷電流が流れたときには、
過負荷電流保護手段がそれを検知して前記半導体開閉素
子をオフさせる構成としたので、短絡事故発生時の大電
流を速やかにバイパス回路へ転流させて、半導体開閉素
子に大電流が流れないようにすることができると共に、
短絡電流はど電流値が大きくなくても半導体開閉素子に
とって過負荷となるような電流が流れたときには、過負
荷電流保護手段によって半導体開閉素子をオフさせるこ
とにより過負荷電流を遮断できて、半導体開閉素子を過
負荷電流から確実に保護でき、しかも従来の高限流遮断
器とは異なり、半導体開閉素子の過電流耐量の大小を問
わず保護できる利点がある。その上、事故発生後に復旧
する場合でも、従来のような速断ヒユーズの取換という
面倒な作業が不要で、復旧作業が極めて簡単である。更
に、回路遮断器に半導体開閉素子、バイパス回路や過負
荷電流保護手段が組み込まれているので、回路遮断器の
外部に従来のような速断ヒユーズや半導体開閉素子等の
配設スペースが不要であり、省スペース化・コンパクト
化の要請も満たす。
[Effects of the Invention] As is clear from the above description, the present invention provides a semiconductor switching element in series with the main circuit, and a bypass circuit in parallel with the semiconductor switching element to prevent large short-circuit currents from occurring in the main circuit. When current flows, the commutation switch is turned on to short-circuit the bypass circuit to the main circuit, while when an overload current flows to the semiconductor switching element,
Since the overload current protection means detects this and turns off the semiconductor switching element, the large current in the event of a short-circuit accident is immediately diverted to the bypass circuit, and the large current does not flow to the semiconductor switching element. can be done as well as
What is the short-circuit current? Even if the current value is not large, when a current that causes an overload to the semiconductor switching element flows, the overload current can be cut off by turning off the semiconductor switching element using the overload current protection means, and the semiconductor switching element can be shut off. It has the advantage that switching elements can be reliably protected from overload current, and unlike conventional high current limiting circuit breakers, protection can be achieved regardless of the overcurrent withstand capacity of semiconductor switching elements. Furthermore, even when recovering after an accident occurs, there is no need for the troublesome work of replacing quick-acting fuses as in the past, making the recovery work extremely simple. Furthermore, since the circuit breaker incorporates semiconductor switching elements, bypass circuits, and overload current protection means, there is no need for space outside the circuit breaker for installing quick-acting fuses, semiconductor switching elements, etc. It also satisfies the demands for space saving and compactness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の一実施例を示したもので、
第1図は電気回路図、第2図は全体の縦断正面図、第3
図(a)乃至(c)は遮断動作時の各部の電流の経時的
変化を示す図である。そして、第4図は従来例を示す電
気回路図である。 図面中、11は本体ケース、12は電源側端子、13は
負荷側端子、14は固定接触子、15は可動接触子、1
7は操作ハンドル、18はリンク機構、19は引外し装
置、21は瞬時切外しコイル、23はバイメタル、23
aはヒータ、24は固定導体、25は転流用スイッチ、
26は可動導体、30は固定導体、32はバイパス回路
、34は半導体開閉素子、35は主回路、36は過負荷
電流保護手段、37は常閉接点、38はフォトカブラ、
39は発光ダイオード、40及び41は外部制御端子、
42はフォトサイリスク、45は負荷、47は外部操作
スイッチである。 出願人  株式会社  東  芝
1 to 3 show an embodiment of the present invention,
Figure 1 is an electrical circuit diagram, Figure 2 is a longitudinal front view of the entire structure, and Figure 3 is an electrical circuit diagram.
Figures (a) to (c) are diagrams showing changes over time in the current of each part during the interrupting operation. FIG. 4 is an electric circuit diagram showing a conventional example. In the drawing, 11 is a main body case, 12 is a power supply side terminal, 13 is a load side terminal, 14 is a fixed contact, 15 is a movable contact, 1
7 is an operation handle, 18 is a link mechanism, 19 is a tripping device, 21 is an instantaneous disconnection coil, 23 is a bimetal, 23
a is a heater, 24 is a fixed conductor, 25 is a commutation switch,
26 is a movable conductor, 30 is a fixed conductor, 32 is a bypass circuit, 34 is a semiconductor switching element, 35 is a main circuit, 36 is an overload current protection means, 37 is a normally closed contact, 38 is a photocoupler,
39 is a light emitting diode, 40 and 41 are external control terminals,
42 is a photosilisk, 45 is a load, and 47 is an external operation switch. Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、電源側端子と負荷側端子との間に、固定接触子と、
この固定接触子に接離する可動接触子とを設けて主回路
を構成すると共に、この主回路に短絡電流等の大電流が
流れたときに前記可動接触子を前記固定接触子から離間
させて大電流を遮断する引外し装置を設けた回路遮断器
において、前記主回路に直列に設けられた半導体開閉素
子と、この半導体開閉素子と並列に設けられたバイパス
回路と、このバイパス回路と前記主回路との間を開閉す
るように設けられ前記主回路に短絡電流等の大電流が流
れたときにオンして前記バイパス回路を前記主回路に短
絡させる転流用スイッチと、前記半導体開閉素子に対し
て過負荷電流が流れたときにそれを検知して前記半導体
開閉素子をオフさせる過負荷電流保護手段とを具備して
成る回路遮断器。
1. A fixed contact between the power supply side terminal and the load side terminal,
A main circuit is constructed by providing a movable contact that connects and separates from the fixed contact, and the movable contact is separated from the fixed contact when a large current such as a short circuit current flows through the main circuit. In a circuit breaker equipped with a tripping device for interrupting large currents, a semiconductor switching element is provided in series with the main circuit, a bypass circuit is provided in parallel with the semiconductor switching element, and the bypass circuit and the main circuit are connected to the main circuit. a commutation switch which is provided to open and close between the circuit and the semiconductor switching element and which is turned on when a large current such as a short circuit current flows through the main circuit to short-circuit the bypass circuit to the main circuit; a circuit breaker comprising overload current protection means that detects when an overload current flows and turns off the semiconductor switching element.
JP11836490A 1990-05-08 1990-05-08 Circuit breaker Pending JPH0414730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11836490A JPH0414730A (en) 1990-05-08 1990-05-08 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11836490A JPH0414730A (en) 1990-05-08 1990-05-08 Circuit breaker

Publications (1)

Publication Number Publication Date
JPH0414730A true JPH0414730A (en) 1992-01-20

Family

ID=14734877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11836490A Pending JPH0414730A (en) 1990-05-08 1990-05-08 Circuit breaker

Country Status (1)

Country Link
JP (1) JPH0414730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309135A (en) * 2007-06-18 2008-12-25 Calsonic Kansei Corp Pressure type reserve tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309135A (en) * 2007-06-18 2008-12-25 Calsonic Kansei Corp Pressure type reserve tank

Similar Documents

Publication Publication Date Title
US8213133B2 (en) Load breaker arrangement
US5629658A (en) Methods of arc suppression and circuit breakers with electronic alarmers
AU593886B2 (en) Current breaking device with solid-state switch and built-in protective circuit breaker
US5886860A (en) Circuit breakers with PTC (Positive Temperature Coefficient resistivity
US3868549A (en) Circuit for protecting contacts against damage from arcing
US4531172A (en) Electric circuit breaker with a remote controlled static switch
JPH11512598A (en) Overcurrent protection circuit
CA2024645A1 (en) Ultra high-speed circuit breaker with galvanic isolation
US6061217A (en) Electrical switching apparatus employing twice-energized trip actuator
JP2001515652A (en) Circuit breaker with improved arc breaking performance
JP4172916B2 (en) Short-circuit protection device
JPH0414730A (en) Circuit breaker
US3515940A (en) Parallel-assisted circuit interrupting device
GB1576877A (en) Apparatus for the rapid interruption of currents
KR100487408B1 (en) trip portion structure of MCCB
JP2603662B2 (en) Circuit protector
JPH08508154A (en) Device for disconnecting a branch of a low-voltage network during a short circuit
US3454831A (en) Quick-opening,low cost,current limiting circuit breaker
KR880000702B1 (en) Circuit breaker
RU2352012C1 (en) Multiphase safety fuse-switch-disconnector (sfsd) for protection against overloads and short circuit (sc)
JPH03291826A (en) Circuit breaker
SU760230A1 (en) Automatic switch
JPH0458432A (en) Circuit-breaker
JPH03291825A (en) Circuit breaker
KR200377582Y1 (en) A Control Circuit Apparatus for Circuit Braker or LBS