JPH04147021A - Radiation thermometer for molten iron - Google Patents

Radiation thermometer for molten iron

Info

Publication number
JPH04147021A
JPH04147021A JP2271828A JP27182890A JPH04147021A JP H04147021 A JPH04147021 A JP H04147021A JP 2271828 A JP2271828 A JP 2271828A JP 27182890 A JP27182890 A JP 27182890A JP H04147021 A JPH04147021 A JP H04147021A
Authority
JP
Japan
Prior art keywords
temperature measuring
tube
temperature
molten iron
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2271828A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tarumi
義彦 垂水
Masaaki Sakurai
桜井 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2271828A priority Critical patent/JPH04147021A/en
Publication of JPH04147021A publication Critical patent/JPH04147021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly-precise and continuous measurement of the temperature of molten iron by constructing a temperature measuring tube of an outer tube of zirconium boride ceramic and an inner tube of alumina ceramic provided inside the outer tube. CONSTITUTION:A temperature measuring tube 9 of a radiation thermometer B for molten iron is constructed of an outer tube 9A of zirconium boride ceramic and an inner tube 9B of alumina ceramic provided inside the outer tube. This temperature measuring tube 9 is connected to a connection tube 12 made of stainless steel, with a bolt 10 and an inorganic adhesive such as cement. When the temperature of the molten iron flowing through a pig iron gutter, the temperature measuring tube 9 is inserted into a hole of a pig iron gutter cover and heated preliminarily. Next, the thermometer B is lowered and then fixed to the pig iron gutter cover in a state wherein the fore end of the temperature measuring tube 9 is immersed in the molten iron. In a light- sensing element of a radiant temperature measuring unit, in this way, a radiant light emitted from the inside bottom of the temperature measuring tube 9 heated to the same temperature with that of the molten iron is sensed without being disturbed by a slag on the molten iron.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶鉄用放射温度計、特に、溶鉄の温度を高
精度で連続的に測定することができる溶鉄用放射温度計
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a radiation thermometer for molten iron, and particularly to a radiation thermometer for molten iron that can continuously measure the temperature of molten iron with high accuracy. .

〔従来の技術〕[Conventional technology]

製銑から製鋼に至る工程の自動化、さらには。 Automation of processes from pig iron production to steel production, and even more.

AI制御を達成するためには、溶銑や溶鋼等の溶鉄の温
度を高精度で連続的に測定することが不可欠である。
In order to achieve AI control, it is essential to continuously measure the temperature of molten iron such as hot metal or molten steel with high accuracy.

溶鉄の温度を測定するために放射温度計の使用が考えら
れる6しかしながら、第3図に示すように、放射温度計
により、溶銑1の温度を測定する場合、放射温度計2を
単に出銑樋3のカッ<−4に取り付けたのでは、次のよ
うな問題が生じる。即ち、出銑樋3内を流れる溶銑1上
のスラグ等の浮遊物5によって、溶銑1の放射率が変動
して、測定温度に誤差が生じる。
It is possible to use a radiation thermometer to measure the temperature of molten iron.6 However, as shown in Figure 3, when measuring the temperature of hot metal 1 with a radiation thermometer, the radiation thermometer 2 is simply installed in the tapping trough. If the cap of 3 is attached to <-4, the following problem will occur. That is, the emissivity of the hot metal 1 fluctuates due to suspended matter 5 such as slag on the hot metal 1 flowing in the tap duct 3, causing an error in the measured temperature.

そこで、上記問題を解決するための放射温度計が、日本
鉄鋼協会発行の「材料とプロセスJ Vo12 (19
89)−1446に開示されている。以下、これを従来
放射温度計という。
Therefore, a radiation thermometer to solve the above problem was published in "Materials and Processes J Vo12 (19
89)-1446. Hereinafter, this will be referred to as a conventional radiation thermometer.

従来放射温度計を、図面を参照しながら説明する。A conventional radiation thermometer will be explained with reference to the drawings.

第4図は、従来放射温度計によって、溶銑温度を測定し
ている状況を示す断面図である。第4図に示すように、
従来放射温度計Aは、溶銑1中に浸漬される先端が閉塞
されている測温管6と、測温管6の先端内面から放射さ
れる放射光を受光部7Aに受けて、溶銑1の温度を測定
するための放射温度測定器7とからなっている。
FIG. 4 is a sectional view showing a situation in which hot metal temperature is measured using a conventional radiation thermometer. As shown in Figure 4,
The conventional radiation thermometer A includes a temperature measuring tube 6 whose tip is closed and which is immersed in the hot metal 1, and a light receiving section 7A that receives radiation light emitted from the inner surface of the tip of the temperature measuring tube 6, and detects the temperature of the hot metal 1. It consists of a radiation temperature measuring device 7 for measuring temperature.

測温管6は、後述するように、ステンレス等の接続管8
を介して放射温度測定器7の受光部7Aに接続されてい
る。測温管6は、高温度の溶銑1に対−して高耐食性を
示す硼化ジルコニウム質セラミックスからなっている。
As described later, the temperature measuring tube 6 is a connecting tube 8 made of stainless steel or the like.
It is connected to the light receiving section 7A of the radiation temperature measuring device 7 via. The temperature measuring tube 6 is made of zirconium boride ceramics that exhibits high corrosion resistance against the hot metal 1 at a high temperature.

測温管6の先端は半球状に形成されている。これは、後
述するように、測温管6の先端が半球状に形成されてい
ると、測温管6の先端が、例えば、平面状に形成されて
いる場合に比べて、見掛けの放射率が1に近づき、放射
光による温度測定がより正確に行えるからである。
The tip of the temperature measuring tube 6 is formed into a hemispherical shape. As will be described later, if the tip of the thermometer tube 6 is formed into a hemispherical shape, the apparent emissivity will be higher than if the tip of the thermometer tube 6 is formed into a flat shape, for example. is close to 1, and temperature measurement using synchrotron radiation can be performed more accurately.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来放射温度計は、以下のよう
な問題を有している。即ち、後述するように、硼化ジル
コニウム質セラミックスは、約1500℃の高温雰囲気
中でB20.ガスを発生するために、温度測定に誤差が
生じる。
However, the conventional radiation thermometer described above has the following problems. That is, as will be described later, zirconium boride ceramics can be heated to B20. The generation of gas causes errors in temperature measurements.

従って、この発明の目的は、高温雰囲気でB2O3ガス
が発生することがなく、 高精度で溶鉄の温度を連続的
に測定できる放射温度計を提供することにある。
Therefore, an object of the present invention is to provide a radiation thermometer that can continuously measure the temperature of molten iron with high accuracy without generating B2O3 gas in a high-temperature atmosphere.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、溶鉄中に浸漬される先端が半球状に閉塞さ
れている測温管と、前記測温管の先端内面から放射され
る放射光を受光部に受けて、前記溶鉱の温度を測定する
ための放射温度測定器とからなる溶鉄用放射温度計にお
いて、前記測温管は、硼化ジルコニウム質セラミックス
の外管と前記外管の内側に設けられたアルミナ質セラミ
ックスの内管とからなっていることに特徴を有するもの
である。
The present invention includes a temperature measuring tube whose tip is closed in a hemispherical shape and is immersed in molten iron, and a light receiving section receives radiation light emitted from the inner surface of the tip of the temperature measuring tube to measure the temperature of the molten ore. A radiation thermometer for molten iron comprising a radiation temperature measuring device for measuring radiation temperature, the temperature measuring tube comprising an outer tube made of zirconium boride ceramics and an inner tube made of alumina ceramics provided inside the outer tube. It is characterized by the fact that it is

硼化ジルコニウム質セラミックスとしては。As for zirconium boride ceramics.

ZrB、を66wt%以上含むものであるのが好ましく
、例えば、ZrB、 : 70−95tzt%、 Si
C:1〜15wt%、BN:0〜29wt%、嵩比重=
3〜6、抗折強度:10kg/am”以上、熱膨張率二
6 x 10−@/”C,耐熱衝撃性(ΔT)250〜
1000℃のような組成と特性を有するものが使用でき
る。
It is preferable that ZrB is contained in an amount of 66 wt% or more, for example, ZrB: 70-95 tzt%, Si
C: 1 to 15 wt%, BN: 0 to 29 wt%, bulk specific gravity =
3-6, bending strength: 10 kg/am" or more, thermal expansion coefficient 26 x 10-@/"C, thermal shock resistance (ΔT) 250-
A material having a composition and characteristics such as 1000° C. can be used.

このうちSiCは硼化ジルコニウム質セラミックスの焼
結を促進する助剤として添加されているものであり、B
Nは硼化ジルコニウム質セラミックスに耐熱衝撃性を付
与するために添加されている。これらの副成分の添加量
が少ないと10例えば、BNは、4wt%未満では添加
効果は得られないが、溶鉄やスラグに対する耐食性を確
保するためにはZrB、成分の多い方が好ましい。
Of these, SiC is added as an auxiliary agent to promote the sintering of zirconium boride ceramics, and B
N is added to zirconium boride ceramics to impart thermal shock resistance. For example, if the amount of addition of these subcomponents is small, the effect of adding BN less than 4 wt% will not be obtained, but in order to ensure corrosion resistance against molten iron and slag, it is preferable to have a large amount of ZrB.

BNを含まない材料は耐熱衝撃性が小さく、充分な予熱
を必要とするが、耐久性は優れている。
Materials that do not contain BN have low thermal shock resistance and require sufficient preheating, but have excellent durability.

測温管の内底(先端内面)を球面状1例えば半球状に形
成すると、測温管の底の見掛は放射率が平らな底を有す
る測温管の場合よりも1に近づくため、放射光による温
度測定がより正確にできる。
If the inner bottom (inner surface of the tip) of the temperature measuring tube is formed into a spherical shape (1, for example, a hemisphere), the apparent emissivity of the bottom of the temperature measuring tube will be closer to 1 than in the case of a temperature measuring tube with a flat bottom. Temperature measurement using synchrotron radiation can be performed more accurately.

例えばL=200Inのとき、平らな内底の測温管で見
掛は放射率が0.94であるのに対し、同じ条件でL/
R=10とし、半球状の内底とすることにより見掛は放
射率が0.9’76に増える。
For example, when L = 200 In, the apparent emissivity of a thermometer tube with a flat inner bottom is 0.94, but under the same conditions, L/
By setting R=10 and using a hemispherical inner bottom, the apparent emissivity increases to 0.9'76.

但し、Lは、測温管の浸漬深さ、Rは、測温管の内半径
である。
However, L is the immersion depth of the temperature measuring tube, and R is the inner radius of the temperature measuring tube.

また、測温管の先端部がほぼ均等な肉厚で球面状に形成
されていると、測温管の先端部の加熱や冷却に際して、
測温管の壁の中に応力集中が生じる箇所がなくなり、測
温管が熱応力で破損し難くなるので好ましい。
In addition, if the tip of the temperature measuring tube is formed into a spherical shape with approximately uniform wall thickness, when heating or cooling the tip of the temperature measuring tube,
This is preferable because there is no place where stress concentration occurs in the wall of the temperature measuring tube, and the temperature measuring tube is less likely to be damaged by thermal stress.

放射温度測定器と硼化ジルコニウム質セラミックスの測
温管との間に、ステンレス鋼製等の接続管を配置するこ
とにより、高価な硼化ジルコニウム質の測温管を必要か
つ最小限の長さのものにでき、接続管の長さを調節すれ
ば、測温を行なう測温管先端の位置の調節も可能である
。この接続管は測温管との間の接続部分が密封されてお
り、この発明の溶鉄用放射温度計を1例えば、溶銑樋中
を流れる溶銑の温度測定に使用するとき、溶銑樋中に存
在するヒユームなどにより放射光が遮られたり、放射温
度測定器の受光部が汚されたりするのを防ぐ働きをする
By placing a connecting tube made of stainless steel or other material between the radiation temperature measuring device and the zirconium boride ceramic temperature measuring tube, the expensive zirconium boride temperature measuring tube can be shortened to the necessary and minimum length. By adjusting the length of the connecting tube, it is also possible to adjust the position of the tip of the temperature measuring tube for temperature measurement. This connecting tube is sealed at the connection part between it and the temperature measuring tube. This function prevents the radiation from being blocked by fumes, etc., and from contaminating the light receiving part of the radiation temperature measuring device.

測温管の内底の見掛は放射率を更に1に近づけるために
は、溶湯中に浸漬する測温管の内底の溶湯面からの深さ
Lを、測温管の内半径Rの10倍以上30倍以下とする
のが好ましい。内底が半球状に形成されて、L/Rが1
0より大きいとき。
In order to make the apparent emissivity of the inner bottom of the temperature measuring tube even closer to 1, the depth L from the molten metal surface of the inner bottom of the temperature measuring tube immersed in the molten metal should be changed by the inner radius R of the temperature measuring tube. It is preferably 10 times or more and 30 times or less. The inner bottom is formed into a hemispherical shape, and the L/R ratio is 1.
When greater than 0.

見掛は放射率は通常0.97以上となり、 L/Rを1
5とすれば見掛は放射率は通常殆ど黒体に近い0.99
9となる。溶湯中に浸漬する測温管の内側の長さしを内
半径Rの30倍以下とするのが好ましいのは、さらに深
く浸漬しても有用な効果が得られないためである。しか
し、溶湯面が上下に変動する場合には、Lをこの変動分
を見込んで少し大きくしておくとよい。
The apparent emissivity is usually 0.97 or higher, and L/R is 1.
5, the apparent emissivity is usually 0.99, which is close to that of a black body.
It becomes 9. The reason why it is preferable that the inner length of the temperature measuring tube immersed in the molten metal is 30 times or less the inner radius R is because no useful effect can be obtained even if the tube is immersed deeper. However, if the molten metal surface fluctuates up and down, it is better to make L a little larger to account for this fluctuation.

測温管の全長は、L/Rを10以上確保するため、接続
管との接続部に要する長さと、溶湯面が上下する分等を
併せてRの2o倍以上とするのが好ましい。また、余り
長くしても長くする利点がないので、Rの700倍以下
とすれば充分である。
In order to ensure L/R of 10 or more, the total length of the temperature measuring tube is preferably 20 times R or more, including the length required for the connection with the connecting tube and the amount for the rise and fall of the molten metal surface. Further, since there is no advantage in making the length too long, it is sufficient to make the length R 700 times or less.

この発明のように、アルミナ質セラミックスの内管が配
置されているときには、内管についてこのRとLの関係
が満足されれば良い。
When the inner tube made of alumina ceramics is arranged as in the present invention, it is sufficient that the relationship between R and L is satisfied for the inner tube.

測温管の内半径Rは、例えば放射温度測定器の受光部と
測温管の内底の距離を1000mとするとき、充分な視
野角度を確保し良好な精度で温度を測定するには、3m
m以上あるのが好ましい。しかし、Rを余り大きくして
も利点はなく、市販の放射温度測定器を用いる場合、3
0+m+あれば充分である。
The inner radius R of the temperature measuring tube is, for example, when the distance between the light receiving part of the radiation temperature measuring device and the inner bottom of the temperature measuring tube is 1000 m, in order to ensure a sufficient viewing angle and measure the temperature with good accuracy. 3m
It is preferable that the number is m or more. However, there is no advantage to increasing R too much, and when using a commercially available radiation temperature measuring device, 3
0+m+ is sufficient.

測温管の壁厚は、測温管の耐久性にも関係するので、2
1II11以上の厚さが必要であり、好ましくは4II
I11以上とする。しかし、壁厚を余り大きくすると耐
熱衝撃性が低下することもあり、15IIIl以下とす
るのが好ましい。
The wall thickness of the thermometer tube is also related to the durability of the thermometer tube, so
A thickness of 1II11 or more is required, preferably 4II
I11 or higher. However, if the wall thickness is too large, the thermal shock resistance may deteriorate, so it is preferably 15IIIl or less.

測温管の溶損は通常湯面部において激しく、その寿命は
湯面部の溶損速度によって決まる。
Temperature-measuring tubes usually suffer severe erosion at the surface of the hot water, and their lifespan is determined by the rate of erosion at the surface of the hot water.

測温管、即ち放射温度計の寿命を延ばすためには、この
場面部にリング状のプロテクターを設けることが有効で
ある。プロテクターの材質としCは、溶鉄用の検体に利
用されている各種の耐火物が使用可能であるが、余り肉
厚としないでも耐久性が得られ、狭い場所でも使えるた
め、硼化ジルコニウム質の耐火物、あるいはセラミック
スのプロテクターを用いるのが有利である。リング状の
プロテクターは測温管に無機質の接着剤などにより固着
しておくこともできるが、湯面が上下に動くような場合
には、湯面上に浮遊した状態で用いるのが好ましい。
In order to extend the life of the temperature measuring tube, that is, the radiation thermometer, it is effective to provide a ring-shaped protector in this area. As for the material C of the protector, various refractories that are used for molten iron specimens can be used, but zirconium boride can be used because it is durable without being too thick and can be used in narrow spaces. It is advantageous to use refractory or ceramic protectors. The ring-shaped protector can be fixed to the thermometer tube with an inorganic adhesive, but if the hot water level moves up and down, it is preferable to use it while floating on the hot water surface.

この場合、リング状のプロテクターを測温管にはめ、ワ
イヤーで吊った状態で溶鉄に浸漬したり。
In this case, a ring-shaped protector is fitted onto the thermometer tube, suspended by a wire, and immersed in molten iron.

アルミナシリカ質等のセラミックスファイバーからなる
シール材を測温管に巻き付けておき、この外周にリング
状のプロテクターをはめ合わせた状態で溶鉄に浸漬する
と、ワイヤーやシール材が溶損してリング状のプロテク
ターが湯面に浮遊した状態になる。
If a sealing material made of ceramic fiber such as alumina silica is wrapped around a temperature measuring tube and a ring-shaped protector is fitted around the outer circumference and immersed in molten iron, the wire and sealing material will melt and the ring-shaped protector will melt. becomes suspended on the surface of the water.

接続管の内径は、放射温度測定器の受光部から測温管の
内底を見る視野を狭くしないように、測温管の内径と同
等以上にするのが好ましい。また、接続管の長さは、通
常測温管と同等以上の長さのものを使うのが好ましく、
測温管と接続管を連結したときの全長としては、大抵の
場合2500mあれば足りる。
The inner diameter of the connecting tube is preferably equal to or larger than the inner diameter of the temperature measuring tube so as not to narrow the field of view of the inner bottom of the temperature measuring tube from the light receiving part of the radiation temperature measuring device. In addition, it is preferable to use a connecting tube that is equal to or longer than a normal temperature measuring tube.
In most cases, a total length of 2,500 m is sufficient when the temperature measuring tube and the connecting tube are connected.

硼化ジルコニウム質セラミックスの表面は、1500m
程度の高温において、空気中の酸素により酸化され2Z
rB2+ 50□−+ 22rO2+ 28203  
の反応によりB2O3のヒユームを発生する。このヒユ
ームは硼化ジルコニウム質セラミックスの測温管の内側
表面がZrO□で覆われるまでの間1例えば、数時間に
互って漂うことになる。このヒユームが測温管中を漂っ
ていると、放射温度計による温度測定値が20〜40℃
低くなる。
The surface of zirconium boride ceramics is 1500m
At a high temperature of about
rB2+ 50□-+ 22rO2+ 28203
The reaction generates a fume of B2O3. This fume will float for several hours, for example, until the inner surface of the zirconium boride ceramic thermometer tube is covered with ZrO□. When this fume floats in the temperature measuring tube, the temperature measured by the radiation thermometer will be 20 to 40 degrees Celsius.
It gets lower.

この発明は、このB20.のヒユームの影響を排除し、
正確な温度測定値を得るために、測温管を、硼化ジルコ
ニウム質セラミックス製の外管とアルミナ質セラミック
スの内管との二重構造としたものである。
This invention is based on this B20. eliminate the influence of Huyum,
In order to obtain accurate temperature measurements, the temperature measuring tube has a double structure of an outer tube made of zirconium boride ceramics and an inner tube made of alumina ceramics.

酸化物系セラミックスは酸化性雰囲気に強く、酸化され
てヒユームを発生することがない、酸化物系セラミック
スとしては融点の高いジルコニア質セラミックス、マグ
ネシア質セラミックス、アルミナ質セラミックスなどが
利用できるが、特にアルミナ質セラミックスは保護管用
として市販されている各種の寸法のものがあり、硼化ジ
ルコニウム質セラミックスと使用温度で反応したりしな
いので測温管を構成する内管の材質として好適である。
Oxide ceramics are resistant to oxidizing atmospheres and do not generate fumes when oxidized. Examples of oxide ceramics that can be used include zirconia ceramics, magnesia ceramics, and alumina ceramics, which have high melting points. Quality ceramics are commercially available in various sizes for use in protection tubes, and because they do not react with zirconium boride ceramics at operating temperatures, they are suitable as materials for the inner tubes constituting thermometer tubes.

単色放射光による放射温度測定器は、周囲や雰囲気中の
ガスからの散乱光による影響が小さく。
Radiation temperature measuring instruments that use monochromatic synchrotron radiation are less affected by scattered light from the surroundings and gases in the atmosphere.

精度の良い温度測定を行なうのに好都合である。This is convenient for performing accurate temperature measurements.

また、放射温度測定器としては、単波長の放射光の強度
により温度を測定するものの他、二つの波長の放射光の
強度比から温度を測定する二色光温度測定器等の利用も
可能である。
In addition, as a radiation temperature measuring device, in addition to one that measures temperature by the intensity of radiation light of a single wavelength, it is also possible to use a dichroic temperature measuring device that measures temperature from the intensity ratio of radiation light of two wavelengths. .

〔実施例〕〔Example〕

以下、この発明の溶鉄用放射温度計を、高炉樋中を流れ
る溶銑の温度を測定した例により、さらに詳しく説明す
る。
Hereinafter, the radiation thermometer for molten iron of the present invention will be explained in more detail using an example in which the temperature of molten pig iron flowing in a blast furnace gutter is measured.

第1図は、この発明の溶鉄用放射温度計の一部切欠き断
面図である。
FIG. 1 is a partially cutaway sectional view of the radiation thermometer for molten iron of the present invention.

第1図において、溶鉄用放射温度計Bは、放射温度測定
器(図示せず)の受光部にステンレス鋼製等の接続管1
2を介して、先端が球面状に閉じられた測温管9が取り
つけられた構成となっている。
In Fig. 1, the radiation thermometer B for molten iron has a connecting tube 1 made of stainless steel or the like connected to the light receiving part of the radiation temperature measuring device (not shown).
2, a temperature measuring tube 9 whose tip is closed in a spherical shape is attached.

測温管9は、後述する硼化ジルコニウム質セラミックス
の外管9Aと、外管9Aの内側に99wt%以上がA1
□O1であるアルミナ質セラミックスの内管9Bが配置
された構成のものである。第1図において、測温管9は
長さ400mm、外径45mm、内径35mmのもので
あり、内管9Bは全長395m。
The temperature measuring tube 9 has an outer tube 9A made of zirconium boride ceramics, which will be described later, and 99 wt% or more of A1 on the inside of the outer tube 9A.
It has a structure in which an inner tube 9B made of alumina ceramics □O1 is arranged. In FIG. 1, the temperature measuring tube 9 has a length of 400 mm, an outer diameter of 45 mm, and an inner diameter of 35 mm, and the inner tube 9B has a total length of 395 m.

外径32m、内径28nmのものである。測温管9は、
ボルト10およびセメント等の無機質の接着剤11を介
してステンレス鋼製の接続管12と接続され、接続され
た全長は2000onである。
It has an outer diameter of 32 m and an inner diameter of 28 nm. The temperature measuring tube 9 is
It is connected to a stainless steel connecting pipe 12 via a bolt 10 and an inorganic adhesive 11 such as cement, and the total length of the connection is 2000 on.

試験に供した硼化ジルコニウム質セラミックス測温管9
の材質は、ZrB296wt%、SiC4wt%の組成
からなっている。放射温度測定器としては。
Zirconium boride ceramic thermometer tube used for testing 9
The material has a composition of 296 wt% ZrB and 4 wt% SiC. As a radiation temperature measuring device.

株式会社チノー製のmodel IR−R5T −65
5を用いた。
Model IR-R5T-65 manufactured by Chino Co., Ltd.
5 was used.

この放射温度測定器は、5ilicon cellの5
ensorと干渉膜フィルタを用いており、0.65μ
mの波長の単色放射光の強度により、1000〜160
0℃の温度範囲の温度を1000℃で1℃以内の分解能
で測定できるものである。
This radiation temperature measuring device uses 5 ilicon cells.
0.65μ sensor and interference film filter are used.
1000-160 depending on the intensity of monochromatic radiation with a wavelength of m
It can measure temperatures in the temperature range of 0°C at 1000°C with a resolution of within 1°C.

放射温度計Bを温度の高い溶鉄に対しても使用するため
、放射温度測定器は空気を供給して冷却を施した冷却箱
内に収納して保護した。この溶鉄用放射温度計Bによっ
て、出銑樋内を流れる溶銑の温度を測定するには、出銑
樋カバーに設けられた穴に溶鉄用放射温度計Bの測温管
9を差し込み、測温管9の先端を溶銑上に保持した状態
で測温管9を約40分間予備加熱する。この予熱方法で
、測温管9の先端部の温度は約1000℃になり、次い
で、測温管9を溶銑中に浸漬するときの熱衝撃を緩和す
るとともに、溶銑上に浮遊しているスラグが浸漬する測
温管9に接触し、冷却されて管壁に付着する現象を軽減
できる。放射温度計Bを下降させ測温管9の先端を約2
1011IIl溶銑中に浸漬した状態とし、放射温度計
Bを出銑樋カバーに固定する。かくして、放射温度測定
器の受光部には。
Since the radiation thermometer B was also used for high-temperature molten iron, the radiation thermometer was protected by being housed in a cooling box that was cooled by supplying air. In order to measure the temperature of the hot metal flowing in the tap duct with this molten iron radiation thermometer B, insert the temperature measuring tube 9 of the molten iron radiation thermometer B into the hole provided in the tap duct cover. The thermometer tube 9 is preheated for about 40 minutes while the tip of the tube 9 is held above the hot metal. With this preheating method, the temperature at the tip of the thermometer tube 9 reaches approximately 1000°C, and the thermal shock when the thermometer tube 9 is immersed in the hot metal is reduced, and the slag floating on the hot metal It is possible to reduce the phenomenon in which the temperature measuring tube 9 comes into contact with the immersed temperature measuring tube 9, is cooled, and adheres to the tube wall. Lower the radiation thermometer B and touch the tip of the thermometer tube 9 by about 2
The radiation thermometer B is immersed in 1011IIl hot metal and fixed to the tap-hole cover. Thus, in the light receiving part of the radiation temperature measuring instrument.

溶銑と同じ温度になった測温管9の内底から放射される
放射光が、溶銑上に浮遊するスラブによる妨害や、溶銑
から発生するヒユームなどの影響を受けることなく到達
する。
Radiant light emitted from the inner bottom of the thermometer tube 9, which has reached the same temperature as the hot metal, reaches the hot metal without being disturbed by slabs floating on the hot metal or by fumes generated from the hot metal.

この溶鉄用放射温度計Bにより、溶銑樋を流れる溶銑の
温度を9回のTapρingに亙って測定した。
Using this radiation thermometer B for molten iron, the temperature of the hot metal flowing through the hot metal gutter was measured over nine tappings.

この間、同時に使い捨て式熱電対温度計により溶銑の温
度を84回測定し、この発明の溶鉄用放射温度計の温度
測定値との間の相関関係を第2図に示した。第2図にお
いて、各点は、使い捨て式の熱電対温度計を用いて測定
した温度と、この発明による溶鉄用放射温度計を用いて
測定した温度の対応を示し1図中、実線は、その回帰線
である。
During this time, the temperature of the hot metal was simultaneously measured 84 times using a disposable thermocouple thermometer, and the correlation between the temperature values and the temperature measurements of the radiation thermometer for molten iron of the present invention is shown in FIG. In Figure 2, each point indicates the correspondence between the temperature measured using a disposable thermocouple thermometer and the temperature measured using the radiation thermometer for molten iron according to the present invention. It is a regression line.

この結果から、この発明の溶鉄用放射温度計を用いる場
合、標準偏差約2℃という良好な精度で温度測定ができ
ることを確認した。
From this result, it was confirmed that when using the radiation thermometer for molten iron of the present invention, temperature can be measured with good accuracy of standard deviation of about 2°C.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、溶銑や溶鋼等
の溶鉄上に浮遊するスラグ等の測定値に及ぼす影響を排
除し、高精度で安定した温度測定が連続的に行えるよう
になった。その結果、製銑から製鋼に至る工程の自動化
、さらにはAI制御に不可欠な数値である溶鉄温度の、
正確で連続的な測定値が安定して得られるようになった
As explained above, according to the present invention, it is possible to continuously perform highly accurate and stable temperature measurements by eliminating the influence of slag floating on molten iron such as hot metal or molten steel on measured values. . As a result, we have automated the process from pig iron making to steel making, and also improved the temperature of molten iron, which is an essential value for AI control.
Accurate and continuous measurement values can now be stably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の溶鉄用放射温度計の一部切欠き断
面図、第2図は、使い捨て成熱電対温度計およびこの発
明の放射温度計によ、す、溶銑樋を流れる溶銑の温度を
測定した結果を示すグラフ、第3図は、測温管を有さな
い放射温度計による溶銑温度の測定状況を示す断面図、
第4図は、従来の放射温度計による溶銑温度の測定状況
を示す断面図である。図面において、 A−・−従来放射温度計、 B−・・この発明の放射温度計、 1・−・・溶銑、     2・−・放射温度計、3−
・・出銑樋、 5・−浮遊物、 7・−・−放射温度測定器、 9−・・−測温管、 11・−接着剤、 4−・・カバー 6・−・・測温管、 8−接続管、 10・−・・ボルト、 12−接続管。
FIG. 1 is a partially cutaway sectional view of a radiation thermometer for molten iron according to the present invention, and FIG. A graph showing the results of temperature measurement, FIG. 3 is a cross-sectional view showing the measurement status of hot metal temperature by a radiation thermometer without a temperature measuring tube,
FIG. 4 is a cross-sectional view showing how hot metal temperature is measured by a conventional radiation thermometer. In the drawings, A--Conventional radiation thermometer, B-- Radiation thermometer of the present invention, 1-- Hot metal, 2-- Radiation thermometer, 3-
...Tapping trough, 5.--Floating objects, 7.--Radiation temperature measuring device, 9-.-Temperature measuring tube, 11.-Adhesive, 4-..Cover 6.--Temperature measuring tube , 8-connecting pipe, 10...bolt, 12-connecting pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)溶鉄中に浸漬される先端が半球状に閉塞されてい
る測温管と、前記測温管の先端内面から放射される放射
光を受光部に受けて、前記溶鉄の温度を測定するための
放射温度測定器とからなる溶鉄用放射温度計において、 前記測温管は、硼化ジルコニウム質セラミックスの外管
と前記外管の内側に設けられたアルミナ質セラミックス
の内管とからなっていることを特徴とする溶鉄用放射温
度計。
(1) Measure the temperature of the molten iron by using a temperature measuring tube whose tip is immersed in molten iron and whose tip is closed in a hemispherical shape, and by receiving radiation light emitted from the inner surface of the tip of the temperature measuring tube into a light receiving section. In the radiation thermometer for molten iron, the temperature measuring tube is composed of an outer tube made of zirconium boride ceramics and an inner tube made of alumina ceramics provided inside the outer tube. A radiation thermometer for molten iron.
JP2271828A 1990-10-09 1990-10-09 Radiation thermometer for molten iron Pending JPH04147021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271828A JPH04147021A (en) 1990-10-09 1990-10-09 Radiation thermometer for molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271828A JPH04147021A (en) 1990-10-09 1990-10-09 Radiation thermometer for molten iron

Publications (1)

Publication Number Publication Date
JPH04147021A true JPH04147021A (en) 1992-05-20

Family

ID=17505427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271828A Pending JPH04147021A (en) 1990-10-09 1990-10-09 Radiation thermometer for molten iron

Country Status (1)

Country Link
JP (1) JPH04147021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545975A (en) * 2005-06-09 2008-12-18 ウジナス・シデルルジカス・デ・ミナス・ジェライス・ソシエダッド・アノニマ・ウジミナス Apparatus for continuous temperature measurement of molten steel in tundish using optical fiber and infrared pyrometer
JP5828033B2 (en) * 2012-08-03 2015-12-02 Semitec株式会社 Contact-type infrared temperature sensor, thermal equipment and exhaust system used in high temperature measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545975A (en) * 2005-06-09 2008-12-18 ウジナス・シデルルジカス・デ・ミナス・ジェライス・ソシエダッド・アノニマ・ウジミナス Apparatus for continuous temperature measurement of molten steel in tundish using optical fiber and infrared pyrometer
JP5828033B2 (en) * 2012-08-03 2015-12-02 Semitec株式会社 Contact-type infrared temperature sensor, thermal equipment and exhaust system used in high temperature measurement
US9273586B2 (en) 2012-08-03 2016-03-01 Semitec Corporation Contact-type infrared temperature sensor for high temperature measurement, thermal apparatus, and exhaust system

Similar Documents

Publication Publication Date Title
KR950006015B1 (en) Temperature sensing device
US3018663A (en) Furnace lining temperature-thickness measuring apparatus
CA1326377C (en) Protective tube for a temperature sensor
US5180228A (en) Radiation thermometer for molten iron and method for measuring the temperature of molten iron
US3530716A (en) Device for continuously measuring the temperature of metal baths in melting or refining furnaces,particularly in converters
US3250125A (en) Hot metal temperature measuring device and temperature measuring method
US2405075A (en) Protecting tube
US4038105A (en) Radiation shields for aspirating pyrometers
JPH04147021A (en) Radiation thermometer for molten iron
US3570277A (en) Arrangement for measuring the temperature of a metal bath
SE508842C2 (en) Method and apparatus for measuring the temperature of a melt in a sample vessel and using optical pyrometry
Vaisburd et al. A combined unit for viscosity, surface tension and density measurements in oxide melts
US2384024A (en) Thermocouple tube
US7445384B2 (en) Pyrometer
US3278341A (en) Thermocouple device for measuring the temperature of molten metal
JPH04329323A (en) Temperature measuring apparatus for high temperature molten body
JPH0339701Y2 (en)
RU2000871C1 (en) Thermal probe for steel-making furnaces
JPH04348236A (en) Temperature detector for molten metal
CN207570670U (en) A kind of temperature measuring equipment
SU320127A1 (en) DEVICE FOR CONTINUOUS MEASUREMENT OF TEMPERATURE IN MELTING AND REFINING HEATERS
JPS5924979Y2 (en) Immersion thermometer for slag
JPH01163634A (en) Temperature measuring method
SU144620A1 (en) Thermocouple to measure the temperature of liquid steel
JPH032850Y2 (en)