JPH0414682B2 - - Google Patents

Info

Publication number
JPH0414682B2
JPH0414682B2 JP8242984A JP8242984A JPH0414682B2 JP H0414682 B2 JPH0414682 B2 JP H0414682B2 JP 8242984 A JP8242984 A JP 8242984A JP 8242984 A JP8242984 A JP 8242984A JP H0414682 B2 JPH0414682 B2 JP H0414682B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymerization
weight
parts
hollow spheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8242984A
Other languages
Japanese (ja)
Other versions
JPS60228506A (en
Inventor
Masaaki Fukuda
Kazumi Yamaoka
Koichi Matsumoto
Seigo Ishibashi
Shigehiro Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP8242984A priority Critical patent/JPS60228506A/en
Publication of JPS60228506A publication Critical patent/JPS60228506A/en
Publication of JPH0414682B2 publication Critical patent/JPH0414682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は粉状の充填剀を重合前たたは重合途
䞭、反応容噚に盎接添加しお、塩化ビニル系重合
䜓成圢品の機械的匷床、衚面の平滑性等の䜎䞋し
ない、比重の調敎された塩化ビニル系重合䜓組成
物の補造方法に関するものである。 近幎、熱可塑性暹脂に無機質・有機質の粉状充
填剀を耇合しお機械的匷床、耐熱性などの機胜を
付䞎する研究が各方面で行なわれおおり䞀郚では
すでに実甚化されおいる。塩化ビニル系暹脂に関
しおは、増量コストの匕䞋げ、比重の調敎、
着色、電導性付䞎、補匷効果などを目的ずしお各
皮の充填剀が䜿甚されおいる。増量、比重調敎剀
ずしおは、シリカ、クレヌ、タルク、炭酞カルシ
りム、酞化チタン、アルミナおよびこれらの埮少
䞭空球䜓などが着色剀ずしおは、カヌボンブラ
ツク、炭酞カルシりム、酞化チタンなどが電導
性を䞎え、垯電防止性を䞎えるためには、カヌボ
ンブラツクが、䌞びを止めお補匷効果を倧にする
ためには、ガラス繊維、タルクなどが発泡剀ず
しおは、アゟゞカルボンアミド、ゞニトロンペン
タメチレンテトラミンなどが、それぞれ䜿甚され
おいる。 これらの䜿甚法は、䞀般に塩化ビニル系暹脂ず
充填剀およびそれに必芁な安定剀、滑剀、可塑剀
などを混合機で混合する。充填剀を充分に分散さ
せるべく長時間混合するず、そのコンパりンドの
熱安定性が䜎䞋し、成圢品のダケはもちろん着色
が倧きく商品䟡倀の乏しい成圢品しか埗られな
い。たた無機質の埮小䞭空球䜓を䜿甚しおコンパ
りンドの比重を調敎する堎合は、混合機で埮小䞭
空空球䜓が砎壊されお充分に軜量化されたコンパ
りンドを埗るこずができない。䞀方、混合機での
混合が充分でないず目的ずする充填剀の機胜を発
揮できないばかりでなく、成圢品衚面の荒れ、機
械的匷床の䜎䞋などの原因になる。 そこで、充填剀を混合機で長時間混合するこず
なく、塩化ビニル系暹脂コンパりンド䞭に分散さ
せる方法が考案されおおり、特開昭55−80412号
に重合前たたは重合途䞭に充填剀を添加する方法
が開瀺されおいる。しかしながら本発明者らの怜
蚎結果によれば、「氎および単量䜓に䞍溶性」の
粉状の無機質充填剀を反応容噚に盎接加えお重合
しおも、補品である塩化ビニル系暹脂の粒子内郚
に分散される粉状の無機質充填剀の量は少なく、
倧半の粉状の無機質充填剀は塩化ビニル系暹脂粒
子の衚面に付着しおいるにすぎない。このような
塩化ビニル系暹脂を䜿甚したコンパりンドを成圢
加工しおも充填剀の機胜をある皋床発揮させる効
果はあるものの充分ずはいえない。 そこで、粉状の充填剀を塩化ビニル系暹脂粒子
の内郚に実質的にほが完党に保持させるために、
氎性媒䜓䞭で懞濁剀の存圚䞋、単量䜓可溶性開始
剀を甚いお塩化ビニル単量䜓たたはこれを䞻成分
ずする単量䜓混合物を重合するにあたり、少なく
ずも皮類の氎および単量䜓に䞍溶性の粉状の充
填剀をシランカツプリング剀で衚面凊理しお、重
合前たたは重合途䞭で重合系に盎接加えお重合を
行なうこずが提案されおいる特開昭57−192412
号。 充填剀ずしお、シランカツプリング剀で衚面凊
理した無機質の埮小䞭空球䜓を䜿甚するずきは、
その埮小䞭空球䜓の衚面ず塩化ビニル系暹脂ずが
匷力に結合しお、衚面に塩化ビニル系暹脂の倖殻
を぀くるこずにより補匷されおいお、成圢加工時
における埮小䞭空球䜓の砎壊性が小さいためか、
埗られた塩化ビニル系暹脂はより軜量化が可胜で
か぀機械的性質匕匵り匷さ、Kgmm2が向䞊す
る。しかしこの充填剀を塩化ビニル系暹脂に配合
するず、成圢品の衚面が凹凞になるずいう欠点が
ある。 本発明者らはこの欠点を改善すべく鋭意研究の
結果、シランカツプリング剀で衚面凊理した無機
質の埮小䞭空球䜓ず共に、HLB10以䞋の非むオ
ン系界面掻性剀で衚面凊理した少量の発泡剀を同
時に䜿甚した堎合、機械的性質匕匵り匷さ
〔Kgmm2〕を䜎䞋するこずなく、成圢品の衚面の
凹凞がなくなり、衚面の平滑性が著しく改良され
るこずを発芋し本発明に到達した。 本発明の方法に埓぀お、塩化ビニル系単量䜓の
重合を行なえば、埗られる重合䜓粒子内に、ほが
完党に無機質の埮小䞭空球䜓を分散しお保持させ
た塩化ビニル系暹脂重合䜓組成物が埗られ、それ
から埗られる塩化ビニル系暹脂成圢品は、機械的
性質匕匵り匷さ、Kgmm2が䜎䞋するこずな
く、所望により比重が調敎され、そしお衚面平滑
である。 重合前たたは途䞭で反応容噚に盎接加える少な
くずも皮類の氎および単量䜓に䞍溶性の無機質
の埮小䞭空球䜓の量は仕蟌単量䜓100重量郚に察
しお0.001〜500重量郚、奜たしくは0.01〜250重
量郚、さらに奜たしくは0.1〜100重量郚なる範囲
内が適圓である。0.001重量郚未満の添加量では
暹脂成圢品の機械的性質における補匷効果は認め
られず、500重量郚を越える添加量では埗られる
塩化ビニル系重合䜓粒子内郚に完党に分散させる
こずが困難である。 無機質の埮小䞭空球䜓を衚面凊理するシランカ
ツプリング剀の必芁量は䞀応の目安ずしお シランカツプリング剀 無機質埮小䞭空球䜓䜿甚量×無機質埮
小䞭空球䜓の比衚面積m2シランカツプリング
剀の比濡れ面積m2 なる匏で算出されるが、無機質の埮小䞭空球䜓
100重量郚に察しお0.001〜1000重量郚、奜たしく
は0.01〜100重量郚、さらに奜たしくは0.1〜10重
量郚なる範囲が適圓である。0.001重量郚未満の
量では無機質の埮小䞭空球䜓の衚面を充分に凊理
するこずは困難である。1000重量郚を越えた量で
は衚面凊理効果が䜎䞋する。 シランカツプリング剀で衚面凊理した無機質の
埮小䞭空球䜓ず同時に反応容噚に添加する
HLB10以䞋の非むオン系界面掻性剀で衚面凊理
した有機質の発泡剀における有機質の発泡剀の䜿
甚量は、仕蟌単量䜓100重量郚に察しお、0.001〜
重量郚、奜たしくは0.005〜0.5重量郚、さらに
奜たしくは0.01〜0.2重量郚なる範囲が適圓であ
る。 0.001重量郚未満の䜿甚量では、成圢品の衚面
の凞凹をなくしお衚面平滑にする効果が䞍充分で
あり、重量郚を越える䜿甚量では成圢品の機械
的性質匕匵り匷さ〔Kgmm2〕を䜎䞋させる。 有機質の発泡剀を凊理する非むオン系界面掻性
剀の量は、有機質の発泡剀100重量郚に察しお0.1
〜10000重量郚、奜たしくは〜1000重量郚、さ
らに奜たしくは10〜500重量郚なる範囲が適圓で
ある。0.1重量郚未満の量では、有機質の発泡剀
を補品塩化ビニル系暹脂粒子内郚に完党に分散し
お保持させるこずは困難であり、10000重量郚を
越える量でも分散・保持効果は倉わらない。 前蚘無機質の埮小䞭空球䜓ずしおは、アルミ
ナ、シリカ、ゞルコニア、マグネシアおよびこれ
らの耇合系、ガラス、シラス、フラむアツシナ、
カヌボン、ケむ酞ナトリりム、ケむ酞カルシり
ム、ホり酞塩やリン酞塩の重合䜓などからなる埮
小䞭空球䜓又はこれらの混合物が挙げられる。 無機質の埮小䞭空球䜓を凊理するシランカツプ
リング剀は、抂しおけい玠原子に少なくずも぀
の加氎分解性の基および少なくずも぀の塩化ビ
ニル単量䜓たたは重合䜓ず反応性たたは芪和性の
ある官胜基を含む基を持ち〜個の䞍掻性の基
を持぀化合物たたはそのようなけい玠化合物が耇
数連結されたものず蚀うこずができる。前蚘加氎
分解性の基ずしおは塩玠、アルコキシ基、第ア
ミノ基、アシロキシ基などがあり塩化ビニル単量
䜓たたは重合䜓ず反応性たたは芪和性のある官胜
基ずしおは第アミノ基、第アミノ基、゚ポキ
シ基、ビニル基、メルカプト基、塩玠、メタクリ
ルオキシ基、ペルオキシ基パヌ゚ステルおよび
ゞカヌボネヌトにおけるものを含むなどがあ
る。 前蚘シランカツプリング剀の䟋ずしおは、ビニ
ルトリクロルシラン、ビニルトリメトキシシラ
ン、ビニルトリ゚トキシシラン、ビニルトリス
−メトキシ゚トキシシラン、ビニルトリア
セトキシシラン、γ−クロルプロピルトリメトキ
シシラン、γ−アミノピロピルトリ゚トキシシラ
ン、γ−−アミノ゚チルアミノプロピルト
リメトキシシラン、γ−メルカプトプロピルトリ
メトキシシラン、γ−グリシドキシプロピルトリ
メトキシシラン、β−−゚ポキシシクロ
ヘキシル゚チルトリメトキシシラン、γ−メタ
クリルオキシプロピルトリメトキシシラン、アリ
ルトリ゚トキシシラン、−アミノプロピルメチ
ルゞ゚トキシシラン、−アミノプロピルトリメ
トキシシラン、ビス〔−トリ゚トキシシリル
プロピル〕アミン、ビス〔−トリメトキシシ
リルプロピル〕゚チレンゞアミン、−クロロ
゚チルトリ゚トキシシラン、クロロメチルトリ゚
トキシシラン、クロロプニルトリ゚トキシシラ
ン、−ゞメチルクロロシリル−−
クロロメチルプニル゚タン、メルカプト゚チ
ルトリ゚トキシシラン、メタクリルオキシ゚チル
ゞメチル−トリメトキシシリルプロピルア
ンモニりムクロラむド、メチル−−〔−−
トリメトキシシリルプロピルアミノ゚チルアミ
ノ〕−−プロピオネヌト、−−スチリルメ
チル−−アミノ゚チルアミノ−プロピルトリ
メトキシシラン塩酞塩、−トリクロロシリル−
−−クロロメチルプニル゚タン、
トリ゚トキシシリルプロピル゚チルカヌバメむ
ト、−トリ゚トキシシリルプロピル尿玠、
−トリメトキシシリル−−−アミ
ノメチルプニル゚タン、−トリメトキシシ
リル−−−クロロメチルプニル゚
タン、トリメトキシシリルプロピルアリルアミ
ン、トリメトキシシリルプロピルゞ゚チレントリ
アミン、ビニルトリス−ブチルパヌオキシ
シラン、−アミノプニルトリメトキシシラ
ン、−スチリル゚チルトリメトキシシラン、ア
ミノ゚チルアミノメチルプネチルトリメトキシ
シランなどを挙げるこずができる。 本発明においお無機質の埮小䞭空球䜓をシラン
カツプリング剀で衚面凊理する方法ずしお、 (1) ブレンダヌ等で充填剀を匷制撹拌しなが
ら、シランカツプリング剀氎溶液を也燥空気や
N2ガスで噎霧する方法。 (2) 無機質の埮小䞭空球䜓を氎に分散させ、スラ
リヌ状態ずな぀たずころにシランカツプリング
剀氎溶液を添加しおゆき、撹拌埌静眮しお該䞭
空球䜓を沈降分離しお也燥する方法。 およびその他の方法などが挙げられる。 前蚘の有機質の発泡剀の䟋ずしおは2′−ア
ゟむ゜ブチロニトリル、アゟヘキサヒドロベンゟ
ニトリル、アゟゞカルボンアミド、ゞアゟアミノ
ベンれン、ベンれンスルホヒドラゞド、ベンれン
−−ゞスルホヒドラゞド、ゞプニルスル
ホン−3′−ゞスルホヒドラゞド、ゞプニル
オキシド−4′−ゞスルホヒドラゞド、
N′−ゞニトロペンタメチレンテトラミン、
N′−ゞニトロ゜−N′−ゞメチルテレフタル
アミド、テレフタルアゞドおよびその他の有機質
の分解性発泡剀などが挙げられる。 有機質の発泡剀を衚面凊理する非むオン系界面
掻性剀の䟋ずしおはポリオキシ゚チレンセチル゚
ヌテル、ポリオキシ゚チレンラりリル゚ヌテル、
ポリオキシ゚チレンオレむル゚ヌテル、ポリオキ
シ゚チレンステアリル゚ヌテル、ポリオキシ゚チ
レンノニルプニル゚ヌテル、ポリオキシ゚チレ
ンオクシルプニル゚ヌテル、ポリオキシ゚チレ
ンラりリルアミノ゚ヌテル、ポリオキシ゚チレン
ステアリルアミノ゚ヌテル、ポリ゚チレングリコ
ヌルゞラりレヌト、ポリ゚チレングリコヌルゞス
テアレヌト、ポリ゚チレングリコヌルオレ゚ヌ
ト、゜ルビタンモノパルミテヌト、゜ルビタンモ
ノステアレヌト、゜ルビタンモノオレ゚ヌト、ポ
リオキシ゚チレンノニルプニルステアレヌト、
ポリプロピレングリコヌルゞラりレヌトなどのう
ちHLB1.0〜10.0のものから遞ぶこずができる。 本発明においお有機質の発泡剀をHLB1.0〜
10.0の非むオン系界面掻性剀で衚面凊理する方法
ずしおは、該発泡剀ず該界面掻性剀たたは該界面
掻性剀のアルコヌル溶液などをよく混合するこず
で充分である。 本発明においお必芁に応じお、PH調敎剀、連鎖
移動剀および重合犁止剀などを甚いるこずができ
る。たた本発明の効果を劚げない皋床の埮量無機
物質を反応容噚に添加しおも本発明の範囲を逞脱
するものではない。 本発明は䞻ずしお塩化ビニル単量䜓の重合に適
甚されるが、塩化ビニル単量䜓を50以䞊含む塩
化ビニル単量䜓ず共重合しうるビニル系単量䜓ず
の共重合にも適甚するこずができる。塩化ビニル
単量䜓ず共重合しうるビニル系単量䜓ずしおは、
酢酞ビニルのようなアルキルビニル゚ステル、セ
チルビニル゚ヌテルのようなアルキルビニル゚ヌ
テル、゚チレンたたはプロピレンのようなα−モ
ノオレフむン系単量䜓、アクリル酞メチルのよう
なアクリル酞アルキル゚ステル、たたはメタクリ
ル酞メチルのようなメタクリル酞アルキル゚ステ
ルなどを挙げられる。さらに゚チレン−酢酞ビニ
ル共重合䜓たたぱチレン−プロピレン共重合䜓
などぞの塩化ビニル単量䜓のグラフト重合にも適
甚できる。 本発明における懞濁重合においお、通垞の塩化
ビニル単量䜓等の懞濁重合で䜿甚される懞濁剀が
䜿甚できる。懞濁剀ずしおポリビニルアルコヌル
ポリ酢酞ビニルの郚分ケン化物を含むメチル
セルロヌスのようなセルロヌス誘導䜓、ポリビニ
ルピロリドン、無氎マレむン酞−酢酞ビニル共重
合䜓などの合成高分子物質の皮類たたは皮類
以䞊の混合物を甚いうる。 開始剀ずしおは、過酞化ラりロむル、過酞化ベ
ンゟむル、タヌシダリヌブチルパヌオキシピパレ
ヌト、ゞむ゜プロピルパヌオキシゞカヌボネヌ
ト、ゞ−トリメチルヘキサノむルパヌ
オキサむド、ビス−タヌシダリヌブチルシク
ロヘキシルパヌオキシゞカヌボネヌト、ゞ−
メトキシブチルパヌオキシカヌボネヌト、ゞ−
メトキシ−−メチルブチルパヌオキシゞカヌボ
ネヌト、ゞセカンダリヌブチルパヌオキシゞカヌ
ボネヌト、アセチルシクロヘキシルスルホニルパ
ヌオキサむドなどの有機過酞化物およびαα′−
アゟビス−−ゞメチルバレロニトリル、
αα′−アゟビス−−メトキシ−−ゞメ
チルバレロニトリル、αα′−アゟビスむ゜ブチ
ロニトリルなどのアゟ化合物のうち皮類たたは
皮類以䞊の混合物を甚いうる。 開始剀を反応容噚に添加する時期は重合操䜜前
に仕蟌たれる氎に添加しおもよいが、その他の時
期に添加しおもよい。所定の重合反応枩床に加枩
したのち添加しおもよいし、あるいは皮類たた
は皮類以䞊の開始剀を分割しおいろいろな時期
に添加しおもよい。懞濁剀ずずもに䜿甚される公
知の添加剀を反応容噚に添加しおも本発明の効果
は損なわれない。 本発明の方法は撹拌䞋で、重合反応枩床35〜80
℃の範囲で行うのが奜たしい。 次に本発明の実斜䟋を瀺すが、これらはいずれ
も本発明の範囲を限定するものではない。 尚、実斜䟋及び比范䟋に関する蚻を次に瀺す。 (1) 機械的性質枬定詊隓匕匵り詊隓および比
重枬定は塩化ビニル重量䜓を䜿甚しお次の方法
により実斜した。塩化ビニル重合䜓、無機質の
埮小䞭空球䜓第衚に蚘茉の重量郚数、
DOP100重量郚、有機スズラりレヌト系安定剀
日東化成、TVSTL−800重量郚、有機
スズ含有硫黄系安定剀日東化成、TVS
1350重量郚、PMMA系匷化剀重量郚
及びカヌボンブラツク重量郚を配合し150℃
で10分間混緎、成圢加工しお埗られた厚みmm
のシヌトを甚いお、比重枬定JISZ8807を
し、島接オヌトグラフJS2000JIS K6723、匕
匵速床200mmminによる匕匵詊隓を実斜し
匷床ず䌞びを枬定する。 (2) 成圢品の衚面の平滑性は次のような蚘号で瀺
した。 ◎平滑ですべすべしおいる。 ○平滑ではあるが郚分的に小さな凹凞があ
る。 △凹凞が倚い。 ×党面に倧きな凹凞がある。 (3) 原料の説明 フむラむト200日本フむラむト株匏䌚瀟
の補品の商暙。SiO2、Al2O3などを䞻成分ず
する埮小䞭空球䜓。 粒子埄分垃〜300Ό。平均比重0.7 実斜䟋  内容積200のステンレス補重合反応容噚に玔
æ°Ž100Kg、第衚に蚘茉の量の郚分ケン化ポリ酢
酞ビニル、αα′−アゟビス−−ゞメチル
バレロニトリルADN、γ−メタクリルオキシ
プロピルトリメトキシシランで衚面凊理した埮小
䞭空球䜓フむラむト200/7、ポリオキシ゚チレ
ンラりリル゚ヌテルHLB3.8で衚面凊理した
アゟゞカルボンアミド粒埄5Όおよび塩化ビ
ニル単量䜓を仕蟌み、攪拌しながら重合反応枩床
57℃に昇枩し、時間重合したのち未反応単量䜓
を排出しお重合䜓補品を取出しお也燥した。重合
䜓補品の粒子内郚に分散しお保持、たたは粒子衚
面に付着しおいるフむラむト200/7の量を第衚
に瀺す。 第衚には成圢品の性質を瀺す。 なお、γ−メタクリルオキシプロピルメトキシ
シラン(A)によるフむラむト200/7(B)の凊理方法に
぀いおは、B15Kgを玔氎50Kgに混合し、氷酢酞で
PHに調敎埌、A0.6Kgを添加し80℃に加枩し、
冷华埌、脱氎・也燥した。 たた、ポリオキシ゚チレンラりリル゚ヌテル(C)
によるアゟゞカルボンアミド(D)の凊理方法に぀い
おは、C0.05KgずD0.05Kgをよく混合した。 比范䟋  実斜䟋の方法においお、前蚘ポリオキシ゚チ
レンラりリル゚ヌテルHLB3.8の代りにポリ
オキシ゚チレンラりリル゚ヌテルHLB12.5
を䜿甚する他は、実斜䟋ず同様にしお重合䜓補
品を補造した。その結果を第衚、第衚に瀺
す。 比范䟋 〜 内容積200のステンレス補重合反応容噚に玔
æ°Ž100Kg、第衚に蚘茉の量の郚分ケン化ポリ酢
酞ビニルαα′−アゟビス−−ゞメチルバ
レロニトリクADN、実斜䟋ず同様にしおγ
−メタクリルオキシプロピルトリメトキシシラン
で衚面凊理したフむラむト200/7たたは衚面凊理
しおないフむラむト200/7、ポリオキシ゚チレン
ラりル゚ヌテルHLB3.8で衚面凊理したアゟ
ゞカルボンアミドたたは衚面凊理しおないアゟゞ
カルボンアミドおよび塩化ビニル単量䜓を仕蟌
み、攪拌しながら重合反応枩床57℃に昇枩し、
時間重合したのち未反応単量䜓を排出しお、重合
䜓補品を取出しお也燥した。重合䜓補品の粒子内
郚に分散しお保持され、たたは粒子衚面に付着し
おいるフむラむト200/7の量を第衚に瀺す。第
衚には成圢品の性質を瀺す。 比范䟋  実斜䟋においお、フむラむト200/7、γ−メ
タクリルオキシプロピルトリメトキシシラン、ポ
リオキシ゚チレンラりリル゚ヌテル及びアゟゞカ
ルボンアミドを䜿甚しない他は、実斜䟋ず同䞀
の条件で重合を行な぀た。その結果を第衚、第
衚に瀺す。
In the present invention, a powder filler is directly added to a reaction vessel before or during polymerization, and the specific gravity of the vinyl chloride polymer molded article is adjusted so that the mechanical strength and surface smoothness of the molded article are not deteriorated. The present invention relates to a method for producing a vinyl polymer composition. In recent years, research has been carried out in various fields to impart functions such as mechanical strength and heat resistance by combining inorganic and organic powder fillers with thermoplastic resins, and some have already been put into practical use. Regarding vinyl chloride resin, increasing the amount (reducing cost), adjusting specific gravity,
Various fillers are used for purposes such as coloring, imparting electrical conductivity, and reinforcing effects. Examples of weight increasing and specific gravity adjusting agents include silica, clay, talc, calcium carbonate, titanium oxide, alumina, and minute hollow spheres thereof; coloring agents include carbon black, calcium carbonate, titanium oxide, etc.; Carbon black is used to provide antistatic properties; glass fiber, talc, etc. are used to stop elongation and increase the reinforcing effect; foaming agents include azodicarbonamide, dinitron pentamethylenetetramine, etc. are used respectively. These methods of use generally involve mixing the vinyl chloride resin, filler, and necessary stabilizers, lubricants, plasticizers, etc. in a mixer. If the compound is mixed for a long time in order to sufficiently disperse the filler, the thermal stability of the compound decreases, and the molded product is not only discolored but also heavily colored, resulting in a molded product with poor commercial value. Furthermore, when adjusting the specific gravity of the compound using inorganic microscopic hollow spheres, the microscopic hollow spheres are destroyed in the mixer, making it impossible to obtain a sufficiently lightweight compound. On the other hand, if mixing in the mixer is not sufficient, not only will the intended function of the filler not be achieved, but it will also cause roughening of the surface of the molded product and reduction in mechanical strength. Therefore, a method has been devised in which the filler is dispersed in a vinyl chloride resin compound without having to mix it in a mixer for a long time. A method is disclosed. However, according to the study results of the present inventors, even if a powdery inorganic filler that is "insoluble in water and monomers" is directly added to the reaction vessel and polymerized, the inside of the particles of the vinyl chloride resin product The amount of powdered inorganic filler dispersed in the
Most of the powdered inorganic filler is simply attached to the surface of the vinyl chloride resin particles. Even if a compound using such a vinyl chloride resin is molded, it is effective to exert the function of a filler to some extent, but it cannot be said to be sufficient. Therefore, in order to retain the powder filler almost completely inside the vinyl chloride resin particles,
When polymerizing vinyl chloride monomer or a monomer mixture mainly composed of vinyl chloride monomer using a monomer-soluble initiator in the presence of a suspending agent in an aqueous medium, at least one type of water and a monomer are used. It has been proposed to carry out polymerization by surface-treating a powdery filler insoluble in water with a silane coupling agent and directly adding it to the polymerization system before or during polymerization (Japanese Patent Laid-Open No. 192412-1982).
issue). When using inorganic micro hollow spheres whose surface has been treated with a silane coupling agent as a filler,
The surface of the micro hollow sphere and the vinyl chloride resin are strongly bonded, and the surface is reinforced by creating an outer shell of the vinyl chloride resin, and the micro hollow sphere is less likely to break during molding. mosquito,
The resulting vinyl chloride resin can be made lighter and has improved mechanical properties (tensile strength, Kg/mm 2 ). However, when this filler is blended with vinyl chloride resin, there is a drawback that the surface of the molded product becomes uneven. As a result of intensive research to improve this drawback, the inventors of the present invention found that, together with inorganic micro hollow spheres whose surface was treated with a silane coupling agent, a small amount of a blowing agent whose surface was treated with a nonionic surfactant with an HLB of 10 or less was used at the same time. The present invention was achieved by discovering that when used, the surface unevenness of the molded product is eliminated and the surface smoothness is significantly improved without deteriorating the mechanical properties (tensile strength [Kg/mm 2 ]). did. When a vinyl chloride monomer is polymerized according to the method of the present invention, a vinyl chloride resin polymer composition in which inorganic micro hollow spheres are almost completely dispersed and held in the resulting polymer particles. The vinyl chloride resin molded product obtained therefrom has a specific gravity adjusted as desired without a decrease in mechanical properties (tensile strength, Kg/mm 2 ), and a smooth surface. The amount of at least one type of water- and monomer-insoluble inorganic micro hollow spheres added directly to the reaction vessel before or during polymerization is 0.001 to 500 parts by weight, preferably 0.01 to 500 parts by weight, based on 100 parts by weight of monomers. A suitable amount is 250 parts by weight, more preferably 0.1 to 100 parts by weight. If the amount added is less than 0.001 parts by weight, no reinforcing effect on the mechanical properties of the resin molded product will be observed, and if the amount added exceeds 500 parts by weight, it will be difficult to completely disperse it inside the resulting vinyl chloride polymer particles. . As a rough guide, the required amount of silane coupling agent for surface treatment of inorganic micro hollow spheres is as follows: Silane coupling agent (g) = Amount of inorganic micro hollow spheres used (g) x Specific surface area of inorganic micro hollow spheres (m 2 / g)/specific wetted area of silane coupling agent (m 2 /g).
A suitable range is 0.001 to 1000 parts by weight, preferably 0.01 to 100 parts by weight, and more preferably 0.1 to 10 parts by weight per 100 parts by weight. If the amount is less than 0.001 part by weight, it is difficult to sufficiently treat the surface of the inorganic micro hollow spheres. If the amount exceeds 1000 parts by weight, the surface treatment effect will decrease. Add to the reaction vessel at the same time as inorganic microscopic hollow spheres whose surface has been treated with a silane coupling agent.
The amount of organic blowing agent used is 0.001 to 100 parts by weight of the monomer charged in organic blowing agents whose surface has been treated with a nonionic surfactant with an HLB of 10 or less.
A suitable range is 2 parts by weight, preferably 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.2 parts by weight. If the amount used is less than 0.001 parts by weight, the effect of smoothing the surface by eliminating unevenness on the surface of the molded product is insufficient, and if the amount used exceeds 2 parts by weight, the mechanical properties (tensile strength [Kg/ mm 2 ]). The amount of nonionic surfactant used to treat organic blowing agents is 0.1 parts by weight per 100 parts by weight of organic blowing agents.
A suitable range is from 10,000 parts by weight, preferably from 1 to 1,000 parts by weight, and more preferably from 10 to 500 parts by weight. If the amount is less than 0.1 parts by weight, it is difficult to completely disperse and retain the organic blowing agent inside the product vinyl chloride resin particles, and even if the amount exceeds 10,000 parts by weight, the dispersion and retention effect will not change. The inorganic micro hollow spheres include alumina, silica, zirconia, magnesia, composites thereof, glass, shirasu, fly ash,
Examples include micro hollow spheres made of carbon, sodium silicate, calcium silicate, borate or phosphate polymers, or mixtures thereof. Silane coupling agents for treating inorganic microhollow spheres generally have at least one hydrolyzable group on the silicon atom and at least one functional group reactive with or having an affinity for vinyl chloride monomers or polymers. It can be said to be a compound having a group containing 0 to 2 inert groups, or a compound in which a plurality of such silicon compounds are connected. The hydrolyzable groups include chlorine, alkoxy groups, primary amino groups, acyloxy groups, etc., and the functional groups that are reactive or have affinity with vinyl chloride monomers or polymers include primary amino groups, secondary amino groups, etc. These include amino groups, epoxy groups, vinyl groups, mercapto groups, chlorine, methacryloxy groups, peroxy groups (including in peresters and dicarbonates), and the like. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, vinyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-aminopropylsilane. rutriethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane , γ-methacryloxypropyltrimethoxysilane, allyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, bis[3-(triethoxysilyl)
propyl]amine, bis[3-(trimethoxysilyl)propyl]ethylenediamine, 2-chloroethyltriethoxysilane, chloromethyltriethoxysilane, chlorophenyltriethoxysilane, 1-(dimethylchlorosilyl)-2(p, m −
chloromethylphenyl)ethane, mercaptoethyltriethoxysilane, methacryloxyethyldimethyl(3-trimethoxysilylpropyl)ammonium chloride, methyl-3-[2-(3-
Trimethoxysilylpropylamino)ethylamino]-3-propionate, 3-(N-styrylmethyl-2-aminoethylamino)-propyltrimethoxysilane hydrochloride, 1-trichlorosilyl-
2-(p,m-chloromethylphenyl)ethane,
Triethoxysilylpropylethyl carbamate, N-(triethoxysilylpropyl)urea,
1-trimethoxysilyl-2-1(p,m-aminomethyl)phenylethane, 1-trimethoxysilyl-2-(p,m-chloromethyl)phenylethane, trimethoxysilylpropylallylamine, trimethoxysilylpropyldiethylenetriamine, vinyltris (t-butylperoxy)
Examples include silane, P-aminophenyltrimethoxysilane, 2-styrylethyltrimethoxysilane, and aminoethylaminomethylphenethyltrimethoxysilane. In the present invention, as a method for surface treating inorganic microscopic hollow spheres with a silane coupling agent, (1) While forcibly stirring the filler using a V-blender, etc., the aqueous solution of the silane coupling agent is mixed with dry air or
Method of atomizing with N2 gas. (2) A method in which inorganic micro hollow spheres are dispersed in water, a silane coupling agent aqueous solution is added to the slurry, and after stirring, the mixture is allowed to stand, and the hollow spheres are separated by sedimentation and dried. and other methods. Examples of the above-mentioned organic blowing agents include 2,2'-azoisobutyronitrile, azohexahydrobenzonitrile, azodicarbonamide, diazoaminobenzene, benzene sulfohydrazide, benzene-1,3-disulfohydrazide, and diphthalamic acid. enylsulfone-3,3'-disulfohydrazide, diphenyloxide-4,4'-disulfohydrazide, N,
N'-dinitropentamethylenetetramine, N,
Examples include N'-dinitroso-N,N'-dimethylterephthalamide, terephthalazide and other organic decomposable blowing agents. Examples of nonionic surfactants for surface treatment of organic blowing agents include polyoxyethylene cetyl ether, polyoxyethylene lauryl ether,
Polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene oxylphenyl ether, polyoxyethylene lauryl amino ether, polyoxyethylene stearyl amino ether, polyethylene glycol dilaurate, polyethylene glycol distear rate, polyethylene glycol oleate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, polyoxyethylene nonyl phenyl stearate,
You can choose from polypropylene glycol dilaurate and others with HLB 1.0 to 10.0. In the present invention, the organic blowing agent is HLB1.0~
As a method for surface treatment with a nonionic surfactant of 10.0, it is sufficient to thoroughly mix the foaming agent and the surfactant or an alcoholic solution of the surfactant. In the present invention, a PH regulator, a chain transfer agent, a polymerization inhibitor, etc. can be used as necessary. Furthermore, it does not depart from the scope of the present invention even if a trace amount of an inorganic substance is added to the reaction vessel to the extent that it does not impede the effects of the present invention. The present invention is mainly applied to the polymerization of vinyl chloride monomers, but it is also applicable to copolymerization with vinyl monomers that can be copolymerized with vinyl chloride monomers containing 50% or more of vinyl chloride monomers. be able to. Vinyl monomers that can be copolymerized with vinyl chloride monomers include:
Alkyl vinyl esters such as vinyl acetate, alkyl vinyl ethers such as cetyl vinyl ether, α-monoolefinic monomers such as ethylene or propylene, acrylic acid alkyl esters such as methyl acrylate, or methyl methacrylate. Examples include methacrylic acid alkyl esters. Furthermore, it can also be applied to graft polymerization of vinyl chloride monomer onto ethylene-vinyl acetate copolymer or ethylene-propylene copolymer. In the suspension polymerization in the present invention, suspending agents used in suspension polymerization, such as ordinary vinyl chloride monomers, can be used. As a suspending agent, one or more synthetic polymer substances such as polyvinyl alcohol (including partially saponified polyvinyl acetate), cellulose derivatives such as methylcellulose, polyvinylpyrrolidone, and maleic anhydride-vinyl acetate copolymer are used. Mixtures can be used. Examples of initiators include lauroyl peroxide, benzoyl peroxide, tert-butyl peroxypiparate, diisopropyl peroxydicarbonate, di-3,5,5-trimethylhexanoyl peroxide, bis(4-tert-butylcyclohexyl) peroxide. Oxydicarbonate, di3-
Methoxybutyl peroxycarbonate, di3-
Organic peroxides and α, α′-
azobis-2,4-dimethylvaleronitrile,
One or a mixture of two or more azo compounds such as α,α'-azobis-4-methoxy-2,4-dimethylvaleronitrile and α,α'-azobisisobutyronitrile can be used. The initiator may be added to the water charged before the polymerization operation, or may be added at any other time. The initiator may be added after heating to a predetermined polymerization reaction temperature, or one or more initiators may be divided and added at various times. The effects of the present invention are not impaired even if known additives used with suspending agents are added to the reaction vessel. The method of the present invention is carried out under stirring at a polymerization reaction temperature of 35 to 80°C.
Preferably, the temperature is within the range of °C. Examples of the present invention will be shown next, but these are not intended to limit the scope of the present invention. Notes regarding the Examples and Comparative Examples are as follows. (1) Mechanical property measurement tests (tensile tests) and specific gravity measurements were carried out using vinyl chloride weights in the following manner. Vinyl chloride polymer, inorganic microscopic hollow spheres (parts by weight listed in Table 2),
100 parts by weight of DOP, 2 parts by weight of organotin laurate stabilizer (Nitto Kasei, TVS#TL-800), 2 parts by weight of organotin-containing sulfur stabilizer (Nitto Kasei, TVS
#1350) 1 part by weight, 5 parts by weight of PMMA reinforcing agent and 2 parts by weight of carbon black were mixed and heated at 150°C.
2mm thick after kneading and molding for 10 minutes.
Using the sheet, measure the specific gravity (JISZ8807) and perform a tensile test using Shimadzu Autograph JS2000 (JIS K6723, tensile speed 200mm/min) to measure strength and elongation. (2) The smoothness of the surface of the molded product is indicated by the following symbol. ◎: Smooth and smooth. ○: Smooth, but with small unevenness partially. △: There are many unevenness. ×: There are large irregularities on the entire surface. (3) Description of raw materials Filite 200/7: A trademark of Nippon Filite Co., Ltd.'s product. Microscopic hollow spheres whose main components are SiO 2 and Al 2 O 3 . Particle size distribution 5-300ÎŒ. Average specific gravity 0.7 Example 1 In a stainless steel polymerization reaction vessel with an internal volume of 200 kg, 100 kg of pure water, partially saponified polyvinyl acetate and α,α′-azobis-2,4-dimethylvaleronitrile ( ADN), micro hollow spheres (Filite 200/7) surface treated with γ-methacryloxypropyltrimethoxysilane, azodicarbonamide (particle size 5ÎŒ) and vinyl chloride surface treated with polyoxyethylene lauryl ether (HLB3.8) Charge the monomers and adjust the polymerization reaction temperature while stirring.
After raising the temperature to 57°C and polymerizing for 8 hours, unreacted monomers were discharged and the polymer product was taken out and dried. Table 1 shows the amount of phyllite 200/7 dispersed and retained inside the particles of the polymer product or attached to the particle surface. Table 2 shows the properties of the molded products. Regarding the treatment of phyllite 200/7 (B) with γ-methacryloxypropylmethoxysilane (A), mix 15 kg of B with 50 kg of pure water and treat with glacial acetic acid.
After adjusting the pH to 4, add 0.6 kg of A and heat to 80℃.
After cooling, it was dehydrated and dried. Also, polyoxyethylene lauryl ether (C)
Regarding the treatment method of azodicarbonamide (D), 0.05 kg of C and 0.05 kg of D were mixed well. Comparative Example 1 In the method of Example 1, polyoxyethylene lauryl ether (HLB12.5) was used instead of the polyoxyethylene lauryl ether (HLB3.8).
A polymer product was produced in the same manner as in Example 1, except that . The results are shown in Tables 1 and 2. Comparative Examples 2 to 6 100 kg of pure water was placed in a stainless steel polymerization reaction vessel with an internal volume of 200 mm, and partially saponified polyvinyl acetate α,α'-azobis-2,4-dimethylvaleronitric (ADN) was added in the amounts listed in Table 1. ), γ in the same manner as in Example 1
- Filite 200/7 surface treated with methacryloxypropyltrimethoxysilane or untreated Filite 200/7, azodicarbonamide surface treated with polyoxyethylene laur ether (HLB3.8) or azo without surface treatment Dicarbonamide and vinyl chloride monomer were charged, and the polymerization reaction temperature was raised to 57°C while stirring.
After polymerization for a period of time, unreacted monomers were discharged, and the polymer product was taken out and dried. Table 1 shows the amount of phyllite 200/7 retained dispersed within the particles of the polymer product or attached to the particle surface. Table 2 shows the properties of the molded articles. Comparative Example 7 In Example 1, polymerization was carried out under the same conditions as in Example 1, except that filite 200/7, γ-methacryloxypropyltrimethoxysilane, polyoxyethylene lauryl ether, and azodicarbonamide were not used. . The results are shown in Tables 1 and 2.

【衚】【table】

【衚】 第衚に瀺すように、シランカツプリング剀
γ−メタクリルオキシプロピルトリメトキシシ
ランで衚面凊理した埮小䞭空球䜓フむラむト
ずHLB3.8のポリオキシ゚チレンラりリ
ル゚ヌテルで衚面凊理したアゟゞカルボンアミド
を同時に䜿甚するこずで、塩化ビニル系暹脂成圢
品の機械的性質匕匵り匷さを䜎䞋するこずな
く軜量化が可胜であり、か぀成圢品の衚面平滑化
が可胜であるこずがわかる。
[Table] As shown in Table 2, micro hollow spheres (Filite 200/7) whose surface was treated with a silane coupling agent (γ-methacryloxypropyltrimethoxysilane) and a surface treated with polyoxyethylene lauryl ether of HLB 3.8. By using treated azodicarbonamide at the same time, it is possible to reduce the weight of vinyl chloride resin molded products without reducing their mechanical properties (tensile strength), and it is also possible to smooth the surface of the molded products. I understand that.

Claims (1)

【特蚱請求の範囲】  氎性媒䜓䞭で、単量䜓可溶性開始剀を甚いお
塩化ビニル単量䜓たたは塩化ビニル単量䜓を䞻䜓
にこれず共重合しうる他のビニル系単量䜓の混合
物を重合反応容噚䞭で懞濁重合する際に、少なく
ずも皮類の氎および単量䜓に䞍溶性の無機質の
埮小䞭空球䜓であ぀おシランカツプリング剀で凊
理したものずHLB10以䞋の非むオン掻面掻性剀
で凊理した有機質の発泡剀を重合前たたは途䞭に
前蚘重合反応容噚に盎接添加しお前蚘重合を行な
うこずを特城ずする塩化ビニル系暹脂組成物の補
造方法。  第項に蚘茉の方法においお、前蚘無機質の
埮小䞭空球䜓が比重0.15〜0.80、粒子埄〜300ÎŒ
であるこずを特城ずする前蚘方法。
[Claims] 1. A vinyl chloride monomer or a mixture of vinyl chloride monomers and other vinyl monomers that can be copolymerized therewith in an aqueous medium using a monomer-soluble initiator. When carrying out suspension polymerization in a polymerization reaction vessel, at least one type of water- and monomer-insoluble inorganic micro hollow spheres treated with a silane coupling agent and a nonionic surface activity with an HLB of 10 or less are used. 1. A method for producing a vinyl chloride resin composition, characterized in that the polymerization is carried out by directly adding an organic blowing agent treated with an organic blowing agent to the polymerization reaction vessel before or during the polymerization. 2. In the method according to item 1, the inorganic micro hollow spheres have a specific gravity of 0.15 to 0.80 and a particle size of 5 to 300Ό.
The method characterized in that
JP8242984A 1984-04-24 1984-04-24 Production of vinyl chloride polymer composition Granted JPS60228506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8242984A JPS60228506A (en) 1984-04-24 1984-04-24 Production of vinyl chloride polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8242984A JPS60228506A (en) 1984-04-24 1984-04-24 Production of vinyl chloride polymer composition

Publications (2)

Publication Number Publication Date
JPS60228506A JPS60228506A (en) 1985-11-13
JPH0414682B2 true JPH0414682B2 (en) 1992-03-13

Family

ID=13774331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8242984A Granted JPS60228506A (en) 1984-04-24 1984-04-24 Production of vinyl chloride polymer composition

Country Status (1)

Country Link
JP (1) JPS60228506A (en)

Also Published As

Publication number Publication date
JPS60228506A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
JP5827369B2 (en) Hybrid particles made from polymers and nanoparticles
JPS60127371A (en) Inorganic coating material composed mainly of colloidal silica
JPS6123925B2 (en)
JPS59152972A (en) Water-resistant coating composition
JPH0414682B2 (en)
JPS6410004B2 (en)
JP3509085B2 (en) Synthetic resin powder for plastisol and method for producing the same
JPH0832729B2 (en) Method for polymerizing vinyl monomer and method for producing porous polyvinyl chloride resin particles
EP0659817B1 (en) Method for the preparation of an acrylic rubber-based composition
JPH0430963B2 (en)
JPS60228505A (en) Production of vinyl chloride copolymer composition
JP3149487B2 (en) Method for producing methacrylic resin particles
JPH0417907B2 (en)
JPH0673221A (en) Latex for foamed rubber, and foamed rubber
JPH0657007A (en) Method for delustering resin
JPH0123579B2 (en)
André et al. “Emulsifier-free” emulsion copolymerization of styrene and butylacrylate: particle size control with synthesis parameters
JP3239613B2 (en) Method for producing vinyl chloride polymer
JPH0372645B2 (en)
JP2976789B2 (en) Method for producing curable polymer emulsion
JP2734046B2 (en) Method for producing emulsion polymer
JPS6129603B2 (en)
JP3112732B2 (en) Method for producing chlorinated vinyl chloride resin
JPH09165519A (en) Thermoplastic resin composition and molded product using the same
JPH11286503A (en) Production of water-based polymer emulsion