JPH0414619A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0414619A
JPH0414619A JP11832390A JP11832390A JPH0414619A JP H0414619 A JPH0414619 A JP H0414619A JP 11832390 A JP11832390 A JP 11832390A JP 11832390 A JP11832390 A JP 11832390A JP H0414619 A JPH0414619 A JP H0414619A
Authority
JP
Japan
Prior art keywords
metal thin
film
thin film
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11832390A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11832390A priority Critical patent/JPH0414619A/en
Publication of JPH0414619A publication Critical patent/JPH0414619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having high reliability by washing the surface of a polymer film with jet flow of a solvent and then forming a ferromagnetic metal thin film thereon. CONSTITUTION:On a polymer film 1 such as polyethyleneterephthalate, polyethylenenaphthalate, etc., a fine particle coating layer 2 is formed by dispers ing a water-soluble polymer and fine particles, applying this dispersion liquid, drying and stretching. On the coating layer 2, one or more layers of ferromagnet ic metal thin films 3 such as Co-Ni, Co-Cr, etc., are formed by electron beam vapor deposition or sputtering into or more layers. Further on this metal thin film 3, a protective lubricating layer 4 comprising a combination of SiOx, TiOx, WCx, carbon or plasma polymn. film, and fatty acid and perfluoropolyether. Thereby, the obtd. medium is suitable for high-density recording/reproducing without signal dropout and with high reliability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film suitable for high-density magnetic recording.

従来の技術 近年、記録密度の向上は目覚しく、磁気記録層として強
磁性金属薄膜を用いることが進み[例えばアイイーイー
イー トランザクションズ オンマグネティクス(IE
EE  Transactions onMagnet
ics)Vol、MAG−20,ff15  PP82
4〜826(1984)]、ポリエチレンテレフタレー
トフィルム上にCo−Niを酸素雰囲気で斜め蒸着した
磁気テープがビデオ用途に実用化され注目されている。
Background of the Invention In recent years, recording density has improved dramatically, and ferromagnetic metal thin films have been increasingly used as magnetic recording layers [for example, IEE Transactions on Magnetics (IE
EE Transactions on Magnet
ics) Vol, MAG-20, ff15 PP82
4-826 (1984)], a magnetic tape in which Co--Ni is obliquely vapor-deposited on a polyethylene terephthalate film in an oxygen atmosphere has been put to practical use in video applications and is attracting attention.

発明が解決しようとする課題 しかしながら上記した磁気テープは、強磁性金属薄膜が
0.2μm程度の厚みしかないため、用いる高分子フィ
ルムに表面の形状をそのまま反映する。従って、高分子
フィルム表面に傷を入れないよう製膜することは勿論、
後工程でもクリーンルーム内での処理や、超音波エネル
ギーを用いて付着ダストを除去する等が行われている。
Problems to be Solved by the Invention However, in the magnetic tape described above, since the ferromagnetic metal thin film has a thickness of only about 0.2 μm, the surface shape is directly reflected in the polymer film used. Therefore, it is of course necessary to form a polymer film without damaging the surface.
Post-processing also involves processing in a clean room and using ultrasonic energy to remove adhering dust.

しかし、より高密度記録でのエラー率を確保できる水準
に全体の技術が到達していないことから、エラー原因の
除去技術の改善が望まれている。本発明は上記した事情
に鑑みなされたもので、高密度記録を行った時にもエラ
ー率の良好な磁気記録媒体を製造できる方法を提供する
ものである。
However, since the overall technology has not yet reached a level that can ensure a high error rate with higher density recording, there is a desire for improvement in the technology for eliminating the causes of errors. The present invention was made in view of the above-mentioned circumstances, and provides a method for manufacturing a magnetic recording medium with a good error rate even when performing high-density recording.

課題を解決するための手段 上記した課題を解決するため、本発明の磁気記録媒体の
製造方法は、高分子フィルムの表面を溶剤ジェット洗浄
した後、強磁性金属薄膜を形成するようにしたものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention is such that a ferromagnetic metal thin film is formed after solvent jet cleaning the surface of a polymer film. be.

作用 本発明の磁気記録媒体の製造方法は上記した構成により
、従来除去されにくがった付着異物も除去され、エラー
発生の原因となる不要の突起の核が減少し、エラー発生
の少ない磁気記録媒体が製造できるようになる。
Operation The method for manufacturing a magnetic recording medium of the present invention has the above-described structure, so that adhered foreign matter that has been difficult to remove in the past can be removed, and the nucleus of unnecessary protrusions that can cause errors can be reduced, resulting in a magnetic recording medium with fewer errors. Recording media can now be manufactured.

実施例 以下、本発明の実施例について詳しく説明する。Example Examples of the present invention will be described in detail below.

E実施例IJ 第1図は本発明によって製造される代表的な磁気記録媒
体の拡大断面図である。第1図で1は、ポリエチレンテ
レフタレート2ポリエチレンナフタレート、ポリフェニ
レンサルファイド、ポリエーテルエーテルケトン、ポリ
イミド等の高分子フィルムで、2は、微粒子塗布層で、
水溶性高分子と微粒子を混合分散させ、製膜時に塗布乾
燥延伸により形状形成したものがよく用いられるが、特
にそれに限らず高分子フィルム上に別工程で製膜後塗布
して形状形成してもよいのは勿論である。
E Example IJ FIG. 1 is an enlarged cross-sectional view of a typical magnetic recording medium manufactured according to the present invention. In FIG. 1, 1 is a polymer film such as polyethylene terephthalate, 2 polyethylene naphthalate, polyphenylene sulfide, polyether ether ketone, polyimide, etc., and 2 is a fine particle coating layer.
A mixture of a water-soluble polymer and fine particles mixed and dispersed and formed into a shape by coating, drying and stretching during film formation is often used, but it is not limited to this. Of course, it is also good.

3は電子ビーム蒸着法、スパッタリング法等により形成
したCo−Ni、Co−Cr、Co−0,Co−C。
3 is Co--Ni, Co--Cr, Co-0, Co--C formed by electron beam evaporation, sputtering, or the like.

Co−Ti、Co−Mo、Co−Pt、Co−B、C。Co-Ti, Co-Mo, Co-Pt, Co-B, C.

Ni−0等の強磁性金属薄膜で1層構成に限らず多層構
成でもよいし、磁化容易軸の方向についても特にIIJ
限は受けない。4は保護潤滑層で、SiOx。
A ferromagnetic metal thin film such as Ni-0 is not limited to a single-layer structure, but may have a multi-layer structure, and the direction of the easy axis of magnetization can also be adjusted in particular to IIJ.
There are no limits. 4 is a protective lubricating layer, which is SiOx.

TiOx、T1Cx、WCx、カーボン、ブラブマ重合
膜や脂肪酸、パーフルオロポリエーテル等を適宜組み合
わせたもので、バックコート層の配設や磁気テープ、磁
気ディスクの形態により、両面アクセス可能な構成とし
てもよいのは勿論である。
It is a suitable combination of TiOx, T1Cx, WCx, carbon, Brahma polymer film, fatty acids, perfluoropolyether, etc., and can be configured to be accessible on both sides by providing a back coat layer and the form of the magnetic tape or magnetic disk. Of course.

本発明により上記した構成の磁気記録媒体を製造する上
で、従来用いられてきた清浄空気流での付着異物除去や
、イオンと超音波振動を組み合わせてのり1ノーニング
を補助的に行うことを拒むものではない。
In manufacturing the magnetic recording medium having the above-described configuration according to the present invention, it is necessary to avoid the conventional methods of removing attached foreign matter using a clean air stream and performing auxiliary glue noning using a combination of ions and ultrasonic vibrations. It's not a thing.

次に溶剤ジェット洗浄について詳述する。Next, solvent jet cleaning will be explained in detail.

洗浄対象のフィルムを巻出し側がら巻取り側へ移動する
間に、溶剤ジェットを吹きつけ、必要ならば乾燥エアを
吹きつけることで達成される溶剤ジェット洗浄に用いら
れる溶剤はアルコール類。
The solvent used for solvent jet cleaning is alcohol, which is achieved by spraying a solvent jet and, if necessary, drying air, while moving the film to be cleaned from the unwinding side to the winding side.

ケトン類、フロン類等で、噴射圧力は2〜1゜(kg 
/ c! )が好ましい。溶剤回収や燃焼処理等は現在
又は改良される公害防止技術により行えばよい。溶剤噴
射ジェットは1段に限らず複数段としてもよ(、当然ク
リーンルーム内で行われるものである。
For ketones, fluorocarbons, etc., the injection pressure is 2 to 1° (kg
/ c! ) is preferred. Solvent recovery, combustion treatment, etc. may be performed using current or improved pollution prevention technology. The solvent injection jet is not limited to one stage, but may be multiple stages (of course, it is performed in a clean room).

以下、更に具体的に本発明の実施例について比較例との
対比で説明する。
Examples of the present invention will now be described in more detail in comparison with comparative examples.

厚み10μmのポリエチレンテレフタレートフィルム上
にフィルム製膜時に、水溶性高分子に直径20OAのS
 i O2微粒子を分散させ塗布した後乾燥延伸し、ミ
ミズ状の形状に加えて粒子状突起を平均20(ケ/μ2
)配したものを用い、直径0.15mφの小孔を1備間
隔に配した横長(長さ70 cm >のノズルを溶剤シ
ェツト噴射ノズルとして配し、乾燥空気を110℃、2
0i/minで吹きつける方法で、溶剤条件とノズル段
数を変えて洗浄を行った。
When forming a film on a polyethylene terephthalate film with a thickness of 10 μm, S of 20 OA in diameter was added to the water-soluble polymer.
i After dispersing and applying O2 fine particles, it is dried and stretched, and in addition to the earthworm-like shape, particulate protrusions are formed on average at 20 (ke/μ2).
), a horizontally long nozzle (70 cm in length) with small holes of 0.15 mφ in diameter arranged at intervals was used as a solvent jet nozzle, and dry air was sprayed at 110°C for 2 hours.
Cleaning was performed by spraying at a rate of 0 i/min while changing the solvent conditions and the number of nozzle stages.

尚溶剤は、0.2μrnを最終段フィルタとし、乾燥空
気は0.3μmを最終段フィルタとし、異物除去を行っ
たものを用いた。又比較例は、超音波イオン風クリーナ
ーで処理したものと、未処理のものを用いた。
The solvent used was a 0.2 μrn final filter, and the dry air was filtered using a 0.3 μm final filter to remove foreign substances. Comparative examples used one treated with an ultrasonic ionic cleaner and one untreated.

実施例、比較例共に、直径1mの円筒キャンに治わせて
、Co−Ni (Co  80wt%)をo、15μm
、 8 X 10−5(Torr)の酸素中で、最小入
射角35度で電子ビーム蒸着し、更にその上にデュポン
社製(7)KRYTOX143ACを35 (u/nf
 )塗布し、064μmの0.07μm径のカーボンを
フィラーとして6重量%含むポリウレタン系のバックコ
ート層を配し、8ミリ幅の磁気テープとした。夫々のテ
ープをハイバンド8ミリビデオ(/ニーN製EV−89
00)(7)LPモードでPCMの゛エラー率を比較し
た結果を第1表に示した。
In both Examples and Comparative Examples, a cylindrical can with a diameter of 1 m was cured, and Co-Ni (Co 80 wt%) was coated with a thickness of 15 μm.
, 8 X 10-5 (Torr) of oxygen at a minimum incident angle of 35 degrees, and on top of that, DuPont's (7) KRYTOX143AC was deposited at 35 (u/nf).
), and a polyurethane-based back coat layer containing 6% by weight of carbon with a diameter of 0.07 μm and 0.064 μm as a filler was provided to obtain a magnetic tape with a width of 8 mm. Each tape was recorded on a high band 8mm video (NiN EV-89
00) (7) Table 1 shows the results of comparing the error rates of PCM in LP mode.

(以 下 余 白) [実施例21 課題を解決するための別の手段は、高分子フィルム上に
第1の強磁性金属薄膜を形成した後、バニッシング処理
し、その上に第2の強磁性金属薄膜を形成するようにし
たものである。本発明の磁気記録媒体の製造方法は上記
した構成により、強磁性金属薄膜がエラーとなる突起を
もたな(なると共に、第2の強磁性金属薄膜により、ピ
ンホールの発生がおさえられることで従来の強磁性金属
薄膜形成後、バニッシング処理するのと比較してエラー
発生源を最小とすることができる。以下、更に詳しく本
発明の実施例について説明する。
(Margins below) [Example 21 Another means for solving the problem is to form a first ferromagnetic metal thin film on a polymer film, perform a burnishing treatment, and apply a second ferromagnetic metal thin film on top of the burnishing process. A thin metal film is formed. The method for manufacturing a magnetic recording medium of the present invention has the above-described structure, so that the ferromagnetic metal thin film does not have protrusions that cause errors (at the same time, the second ferromagnetic metal thin film suppresses the occurrence of pinholes). Compared to the conventional burnishing process performed after forming a ferromagnetic metal thin film, the source of error can be minimized.Hereinafter, embodiments of the present invention will be described in more detail.

ポリエチレンテレフタレート、ポリエチレンナフタレー
ト等の高分子フィルムに強磁性金属薄膜を形成する。
A ferromagnetic metal thin film is formed on a polymer film such as polyethylene terephthalate or polyethylene naphthalate.

強磁性金属薄膜の形成は、高周波スパッタリング法、電
子ビーム蒸着法、イオンブレーティング法等で行えばよ
く、薄膜としてはCo−0,Co−Ni、Co−Cr、
Co−Ta、Co−W、Co−Mo。
The ferromagnetic metal thin film may be formed by a high frequency sputtering method, an electron beam evaporation method, an ion blating method, etc. The thin film may be Co-0, Co-Ni, Co-Cr,
Co-Ta, Co-W, Co-Mo.

Co−Pt’−0,Co−Ni−0,Co−B−Pt−
0等いずれでもよい。薄膜は500Aから150OAの
範囲とするのが好ましい。薄膜形成後、研磨材により、
いわゆるバニッシング処理を行う。処理雰囲気は減圧中
でも大気中でもよ(、研磨材は独自に構成してもよいが
、市販されてるものを用いる場合は、5000番以上の
細かいものがよい。押圧と相対運動速度は、条件検討に
より選べる。バニッシング処理した後、もう−原簿膜形
成を行う。膜厚、材質、製法は、先に述べたものの中よ
り選べる。次に、保護潤滑層、必要ならバックコート層
を配し、所定のテープ又はディスク形状に加工すればよ
い。
Co-Pt'-0, Co-Ni-0, Co-B-Pt-
Any value such as 0 is acceptable. Preferably, the thin film ranges from 500A to 150OA. After forming the thin film, use an abrasive to
A so-called vanishing process is performed. The processing atmosphere may be under reduced pressure or in the air (the abrasive material may be composed of your own, but if you use a commercially available abrasive material, it is best to use a finer material of 5000 or more. You can choose. After the vanishing treatment, the original film is formed. The film thickness, material, and manufacturing method can be selected from those mentioned above. Next, a protective lubricating layer and, if necessary, a back coat layer are applied. It may be processed into a tape or disk shape.

上記した方法により、第2の強磁性金属薄膜はエラーの
原因となる大きな突起を含まないのと、バニッシングで
除去された強磁性金属薄膜部分は1/2程度の磁気記録
層厚みになることでよりエラーも少なくできることにな
る。
By using the above method, the second ferromagnetic metal thin film does not contain large protrusions that may cause errors, and the ferromagnetic metal thin film portion removed by burnishing becomes approximately 1/2 the thickness of the magnetic recording layer. This will result in fewer errors.

以下、更に具体的に本発明の第2の実施例について比較
例との対比で説明する。
The second embodiment of the present invention will be described in more detail below in comparison with a comparative example.

厚み81μmのポリエチレンナフタレートフィルムの上
に直径12OAの5i02微粒子を20ケ/μ2塗布し
、その上に直径1mの円筒キャンに沿わせて、Co−N
i (Co :80wt%)を最小入射角40度、8 
X 10−5(Torr )の酸素中で膜厚条件を変え
て電子ビーム蒸着した。その後、研磨材でバニッシング
処理を行った。条件Aは、9000番の研磨材を、速度
0.4(m/win)、押圧0.5 (kg/csf)
 、接触面積50cd、条件Bは、15000番の研磨
材とした以外は条件Aと同じとし、条件Cは、条件Bで
、押圧を0.7(kg/cat)、接触面積を80cj
としたもので、いずれも、幅40(!IIの蒸着膜を配
したフィルムを70(m/−1n)で移動しながらの処
理である。バニッシング処理した後、同じく、Co−N
1(Co:80wt%)を最小入射角44度、6X10
−5(Torr)の酸素中で、膜厚条件を変えて電子ビ
ーム蒸着を行い、その後モンテジソン社製のパーフルオ
ロポリエーテル“フォンブリンz−25”を35 (w
/d )塗布し、ポリエステル樹脂100重量部に対し
、16重量部カーボンブラックを配したバックコート層
を0.45μm配し、夫々8ミリ幅の磁気テープとした
20 pieces/μ2 of 5i02 particles with a diameter of 12OA were applied onto a polyethylene naphthalate film with a thickness of 81 μm, and Co-N was applied along a cylindrical can with a diameter of 1 m.
i (Co: 80wt%) with a minimum incident angle of 40 degrees, 8
Electron beam evaporation was performed in oxygen at X 10-5 (Torr) while changing film thickness conditions. After that, a burnishing process was performed using an abrasive. Condition A is the use of No. 9000 abrasive at a speed of 0.4 (m/win) and a pressure of 0.5 (kg/csf).
, contact area 50 cd, condition B is the same as condition A except that the abrasive of No. 15000 is used, and condition C is the same as condition B, with a pressing force of 0.7 (kg/cat) and a contact area of 80 cj.
In both cases, a film with a vapor-deposited film having a width of 40 (!II) was moved at a speed of 70 (m/-1n).
1 (Co: 80wt%) at a minimum incidence angle of 44 degrees, 6X10
Electron beam evaporation was performed in oxygen at -5 (Torr) with varying film thickness conditions, and then perfluoropolyether "Fomblin Z-25" manufactured by Montegisson was deposited at 35 (w)
/d) was coated, and a back coat layer of 0.45 μm in which 16 parts by weight of carbon black was applied to 100 parts by weight of polyester resin was arranged to form magnetic tapes each having a width of 8 mm.

比較例は、バニッシング処理は、2回の蒸着を行った後
に施したものと、未処理のものを用いた。条件とLPモ
ードでのドロップアウトを第2表に示した。
In the comparative example, the burnishing treatment was performed after two vapor depositions, and the burnishing treatment was not performed. Table 2 shows the conditions and dropout in LP mode.

(以 下 余 白) 第2表に示したデータは、実施例1と組み合わせること
て更に改善されることは勿論で、より高密度化した時に
は有効性が明確になる。
(Margins below) Of course, the data shown in Table 2 can be further improved by combining it with Example 1, and its effectiveness becomes clear when the density is increased.

発明の効果 以上のように本発明によれば、高密度記録再生に供して
も信号欠落の極めて少ない、信頼性の高い磁気記録媒体
が得られるといった優れた効果がある。
Effects of the Invention As described above, the present invention has the excellent effect of providing a highly reliable magnetic recording medium with extremely few signal dropouts even when subjected to high-density recording and reproduction.

断面図である。FIG.

1・・・・・・高分子フィルム、2・・・・・・微粒子
塗布層、3・・・・・・強磁性金属薄膜、4・・・・・
・保護潤滑層。
1...Polymer film, 2...Fine particle coating layer, 3...Ferromagnetic metal thin film, 4...
・Protective lubricant layer.

Claims (2)

【特許請求の範囲】[Claims] (1)高分子フィルムの表面を溶剤ジェット洗浄した後
、強磁性金属薄膜を形成することを特徴とする磁気記録
媒体の製造方法。
(1) A method for producing a magnetic recording medium, which comprises forming a ferromagnetic metal thin film after cleaning the surface of a polymer film with a solvent jet.
(2)高分子フィルム上に第1の強磁性金属薄膜を形成
した後バニッシング処理しその上に第2の強磁性金属薄
膜を形成することを特徴とする磁気記録媒体の製造方法
(2) A method for manufacturing a magnetic recording medium, which comprises forming a first ferromagnetic metal thin film on a polymer film, performing a burnishing treatment, and then forming a second ferromagnetic metal thin film thereon.
JP11832390A 1990-05-07 1990-05-07 Production of magnetic recording medium Pending JPH0414619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11832390A JPH0414619A (en) 1990-05-07 1990-05-07 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11832390A JPH0414619A (en) 1990-05-07 1990-05-07 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0414619A true JPH0414619A (en) 1992-01-20

Family

ID=14733828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11832390A Pending JPH0414619A (en) 1990-05-07 1990-05-07 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0414619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2167299A2 (en) * 2007-06-21 2010-03-31 3M Innovative Properties Company Articles and methods for replication of microstructures and nanofeatures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313322A (en) * 1987-06-17 1988-12-21 Toshiba Corp Production of magnetic recording medium
JPS6453344A (en) * 1987-08-25 1989-03-01 Konishiroku Photo Ind Method and apparatus for producing magnetic recording medium
JPH01182925A (en) * 1988-01-13 1989-07-20 Canon Inc Production of magnetic recording medium
JPH02110828A (en) * 1988-10-20 1990-04-24 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313322A (en) * 1987-06-17 1988-12-21 Toshiba Corp Production of magnetic recording medium
JPS6453344A (en) * 1987-08-25 1989-03-01 Konishiroku Photo Ind Method and apparatus for producing magnetic recording medium
JPH01182925A (en) * 1988-01-13 1989-07-20 Canon Inc Production of magnetic recording medium
JPH02110828A (en) * 1988-10-20 1990-04-24 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2167299A2 (en) * 2007-06-21 2010-03-31 3M Innovative Properties Company Articles and methods for replication of microstructures and nanofeatures
EP2167299A4 (en) * 2007-06-21 2010-12-01 3M Innovative Properties Co Articles and methods for replication of microstructures and nanofeatures

Similar Documents

Publication Publication Date Title
JPH0414619A (en) Production of magnetic recording medium
JPH0210518A (en) Magnetic recording medium and magnetic recorder
JP2506813B2 (en) Magnetic recording media
JPS60219626A (en) Magnetic recording medium
JP2953271B2 (en) Manufacturing method of magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JP2594380B2 (en) Magnetic recording media
JP2553622B2 (en) Magnetic recording media
JPH0576087B2 (en)
JP2512005B2 (en) Magnetic recording media
JPH0354719A (en) Magnetic recording medium
JPH01125715A (en) Magnetic recording medium
JPH0562150A (en) Magnetic recording medium and its manufacture
JPH01287821A (en) Magnetic recording medium
JPS60219624A (en) Magnetic recording medium
JPH0227518A (en) Magnetic recording medium
JPH0528486A (en) Production of magnetic recording medium
JPH0562187A (en) Manufacture of magnetic recording medium
JPS62241123A (en) Magnetic recording medium
JPS6199924A (en) Magnetic recording medium
JPH02281417A (en) Magnetic recording tape
JPS60219623A (en) Magnetic recording medium
JPH09180173A (en) Magnetic recording medium
JPH0740357B2 (en) Method of manufacturing magnetic recording medium
JPS60211617A (en) Magnetic recording medium