JPH0414517B2 - - Google Patents

Info

Publication number
JPH0414517B2
JPH0414517B2 JP23508583A JP23508583A JPH0414517B2 JP H0414517 B2 JPH0414517 B2 JP H0414517B2 JP 23508583 A JP23508583 A JP 23508583A JP 23508583 A JP23508583 A JP 23508583A JP H0414517 B2 JPH0414517 B2 JP H0414517B2
Authority
JP
Japan
Prior art keywords
copolymer
temperature
mol
vinylidene fluoride
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23508583A
Other languages
Japanese (ja)
Other versions
JPS60127771A (en
Inventor
Kenichi Nakamura
Kakichi Teramoto
Naohiro Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP58235085A priority Critical patent/JPS60127771A/en
Publication of JPS60127771A publication Critical patent/JPS60127771A/en
Publication of JPH0414517B2 publication Critical patent/JPH0414517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高周波領域の周波数においても高い
圧電性能を有する高分子圧電体の製造方法に係
り、特に高性能の超音波トランスジユーサー用高
分子圧電体の製造方法に係る。 高い圧電性能を有する高分子圧電物質としては
例えば特公昭45−83771号公報においてポリフツ
化ビニリデン、また特公昭50−29159号公報にお
いてフツ化ビニリデン共重合体が報告されてい
る。しかもこれらの樹脂は高周波領域の周波数に
おいても高い圧電性能を有することが特公昭51−
23439号公報或いは特開昭56−111281号公報にお
いて報告されている。 このうちポリフツ化ビニリデンは、フイルム面
に垂直方向の電気機械結合係数ktが、0.20であ
り、成形性も良好であり、最も有用な超音波トラ
ンスジユーサー用の高分子材料と考えられてきた
が、超音波送、受波能のより一層の改善が望まれ
ている。 他方、前記特開昭56−111281号公報に記載のフ
ツ化ビニリデン共重合体、特にフツ化ビニリデン
と三フツ化エチレンとの共重合体については、例
えばフツ化ビニリデン75モル%、三フツ化エチレ
ン25モル%の組成において、ポリフツ化ビニリデ
ンを上廻るktが得られる。また、このような共重
合体成形物の厚さ方向の電気機械結合係数ktを高
めるために、ポーリングの電界強度を大きくする
とともに結晶転移温度(Tm′)−5(℃)の温度と
融点の間で熱処理後ポーリング処理をするか、こ
の温度域で熱処理と同時にポーリング処理をする
方法も開示されている。 本発明は、上述したようなフツ化ビニリデン系
共重合体から、厚さ方向の電気機械結合係数kt
一層向上し、超音波送、受波能の高い高分子圧電
体を、一層簡便に、製造する方法を提供すること
を主要な目的とする。 本発明者等は、上述の目的で研究した結果、フ
ツ化ビニリデン系共重合体の溶融物を、そのま
ま、融点に近い温度で結晶化した後、ポーリング
処理することがktの向上に有効であり、且つこれ
により改ためて熱処理する工程も不要となること
を見出した。 本発明の高分子圧電体の製造方法は、このよう
な知見に基づくものであり、より詳しくは、フツ
化ビニリデン60〜90モル%、三フツ化エチレン10
〜40モル%及びフツ化ビニル0〜20モル%からな
る共重合体の溶融物を、中間冷却することなく、
この共重合体の融点温度Tm未満、Tm−30℃以
上で定まる温度範囲で結晶化させた後に、ポーリ
ング処理することを特徴とするものである。 因に上記した特開昭56−111281号公報において
も、成形後、ポーリングに先立つて、融点近傍の
高い温度で熱処理を行なうことを開示している。
しかしながらこの従来技術においては、一旦、共
重合体を成形した後に、改ためて熱処理を行な
い、その後、あるいはこれと同時にポーリング処
理を行なうという工程結合を採用している。しか
しながら、このような方法は、成形のために一
旦、室温ないしその近傍まで冷却し、改ためて熱
処理を行なうため、工程が増加し且つ熱効率が著
しく悪くなるだけでなく、得られる圧電体の特
性、特にktの向上の観点でも好ましくないことが
明らかになつたのである。その理由は、必ずしも
明らかではないが、上記した従来技術のように、
融点近傍での熱処理に先立つて、室温まで中間冷
却して成形を行なうと、途中で急速な結晶化を促
進する温度域を通過し、かくして形成された部分
的な結晶構造が、その後の融点近傍での熱処理に
際しての結晶化を阻害し、あるいは不均質な結晶
構造が生成するものと考えられる。これに対し、
本発明のように、フツ化ビニリデン系共重合体の
溶融物を、中間冷却することなく、そのまま融点
近傍の温度で保持すると、緩やかに且つ一様な結
晶化が進み、ktの向上に望ましい均質な結晶構造
が発達するものと推定される。 以下、本発明を更に詳細に説明する 本発明法で用いるフツ化ビニリデン系共重合体
の主要構成単量体は、フツ化ビニリデンと三フツ
化エチレンの2種或いはフツ化ビニルを加えた3
種であり、この共重合体中フツ化ビニリデンは60
〜90モル%、好ましくは65〜85%であり、三フツ
化エチレンは10〜40モル%、好ましくは15〜35モ
ル%であり、フツ化ビニルは0〜20モル%、好ま
しくは0〜15モル%である。フツ化ビニリデン系
共重合体は、上記成分からなる二元または三元共
重合体であることが望ましいが、この他に少量、
例えば5モル%程度までの四フツ化エチレン、六
フツ化プロピレン、三フツ化塩化エチレン等のフ
ツ素含有単量体の1種または2種以上を構成単位
として加えてもよい。上記いずれの場合において
もフツ化ビニリデン、三フツ化エチレン及びフツ
化ビニルが上記範囲外になると、ktが小さくな
り、超音波送、受波能が小さくなつたり、柔軟性
を失う為に、上記構成単量体は上記組成範囲内と
するものである。このようなフツ化ビニリデン系
共重合体は、一般にポリフツ化ビニリデンの製造
のために知られている重合方法によつて得ること
ができる。 本発明においては、このフツ化ビニリデン系共
重合体の溶融物を結晶化し成形する際に、溶融物
を中間冷却することなく、この共重合体の融点温
度Tm未満、Tm−30℃以上の範囲で保持して結
晶化さる。ここで中間冷却とは、上述した結晶化
温度範囲を下回る温度に実質的に保持すること、
を意味する。前述したように、このような中間冷
却は、その過程で望ましくない結晶成長を起すの
で避けるべきである。結晶化温度は、上記範囲内
であればよいが、好ましくはTm−5℃〜Tm−
25℃、より好ましくはTm−10℃〜Tm−20℃の
範囲が採用される。上記温度範囲内で温度勾配を
付けることもできる。フツ化ビニリデン系共重合
体の溶融物を、上記範囲の温度に、5分以上、好
ましくは10分〜5時間程度保持することにより実
質的に結晶化を完了させる。このような溶融か
ら、結晶化ならびに成形に至る一連の工程を実施
するための方法は、必要な温度条件ならびに形状
保持条件が満たされる限りにおいて特に限定され
ないが、例えば、プレス成形法、吹込成形法、射
出成形法が好適に使用される。 次いで、このようにして得られたシートないし
フイルム状結晶化成形物に、両面電極を形成し、
直流電界を印加する等の方法によりポーリング処
理を施こすことにより、本発明による圧電体が得
られる。ポーリング処理条件は、ポリフツ化ビニ
リデン圧電膜に用いられるものと本質的には同じ
である。すなわち、印加する電界強度は、絶縁破
壊を生じない限度で高い程望ましく、電界印加時
間も長い程望ましいが、生産効率上から、通常は
300〜1000KV/cm、約10秒〜2時間の範囲が多
用される。また、ポーリング処理は、室温〜融点
の範囲の温度で行なわれるが、特に、結晶転移温
度(Tm′)−30℃〜Tm′で行なうことが好ましい。 このようにして本発明に従つて得られる分極体
(圧電体)のktは、通常の中間冷却過程での結晶
化を伴なう方法で得られた成形体を熱処理後ある
いは熱処理と同時にポーリングして得られる分極
体のktに比して大きいものが得られる。しかも、
上記したところから明らかなように、本発明の方
法においては、一旦成形後に再び熱処理を行なう
必要がないために、少ない工程で簡単に且つ熱効
率良く圧電体を製造することができる。 本発明により得られる分極体は大きい電気−機
械結合係数ktを有する故、特に超音波トランスジ
ユーサーとして有用である。また、この分極体は
伸びの圧電性、焦電性等、ポリフツ化ビニリデン
の分極体において知られる諸特性を有し、ポリフ
ツ化ビニリデンの配向分極体と同様な用途に用い
られる。 以下、本発明を、実施例、比較例により更に具
体的に説明する。 実施例 1 攪拌器付ステンレスオートクレーブ内にメチル
セルロースを懸濁剤とする水溶液を入れ、5℃に
冷却後に、重合開始剤としてn−プロピルパーオ
キシジカーボネートその他重合助剤を添加し、
N2置換後よく攪拌した。この後、オートクレー
ブをメタノール−ドライアイス系で外部より冷却
し、オートクレーブ内にフツ化ビニリデン、三フ
ツ化エチレン、フツ化ビニルをそれぞれモル比で
70%、20%、10%になる様にボンベより圧入し
た。次いで、オートクレーブ内温度を上昇させ、
重合させた後、オートクレーブ外温を約25℃に保
つて重合を継続させた。重合初期圧は36Kg/cm2
経時的に圧力低下が認められ、最終的に約8Kg/
cm2の段階で残圧をパージし、重合を終了させ、重
合物を分離後、よく水洗いし乾燥して白色の共重
合体パウダーを得た。収率は90%以上であり、ほ
ぼ仕込組成の共重合体が得られた。 この共重合体のインヒーレントビスコシテイ
ηinhは、濃度を0.4g/dl、温度を25℃、溶媒を
ジメチルホルムアミドとする測定条件下で、0.92
dl/gであつた。又この共重合体の差動走査型熱
量計(パーキンエルマー社製DSC2B型)で測定
したときに観測される融解曲線の極大値を与える
温度(すなわち本明細書で云う融点)Tmは150
℃であつた。 この共重合体を通常のホツトプレス装置を用
い、200℃で溶融プレスを行い、加圧した状態で
138℃迄冷却し、138℃で2時間保持した後に、室
温迄冷却し60μm程度の厚さのプレスシートを得
た。このプレスシートにアルミニウム蒸着によつ
て電極を形成し、90℃で電界強度650KV/cmの
直流電圧を30分間印加し、電圧印加のまま室温迄
冷却し、ポーリング処理を施した。 得られたフイルムの圧電定数d31を、東洋精機
製レオログラフを用い10Hzで測定した結果、d31
=12.7pC/Nであつた。なお、ここで用いている
試料は未延伸の高分子をポーリング処理している
ので、d31=d32である。なお圧電定数d31,d32
次のように定義する。即ち圧電性を示す高分子の
場合は一般に延伸方向にx軸、それに直角にy
軸、フイルム面に垂直にz軸をとり、x,y,z
軸を決定し、x軸方向に応力を印加したときのz
軸方向の分極を示す圧電定数をd31、y軸方向及
びz軸方向に応力を加したときのz軸方向の分極
を示す圧電定数を、それぞれd32,d33とする。 電気機械総合係数kt(z−z軸方向)は圧電体
フイルムの自由共振点付近の電気アドミツタンス
と位相角の周波数依存性を解析することによつて
求めた結果kt=0.273であつた。 実施例 2 実施例1に準じた方法で、フツ化ビニリデン75
モル%、三フツ化エチレン25モル%からなる二元
共重合体を得た。この共重合体のTmは、149℃
でηinhは1.29dl/gであつた。この共重合体のプ
レスシートを実施例1と全く同じ条件で製作し、
同一条件でポーリング処理した結果、d31定数は
11.5pC/Nであり、ktは0.261であつた。 比較例1及び2 実施例1及び2で用いた三元及び二元の共重合
体を、実施例1で用いたホツトプレス装置を用
い、200℃で溶融プレスを行つた後、冷却用プレ
スに移して室温まで冷却し、60μm程度の厚さの
プレスシートを得た。これらの未処理プレスシー
トを138℃で空気中で2時間熱処理した後、アル
ミニウム蒸着によつて電極を形成し、その後、実
施例1,2と全く同一条件でポーリング処理を施
し、d31及びktを測定したところ、次表の結果を
得た。
The present invention relates to a method for manufacturing a polymeric piezoelectric material having high piezoelectric performance even in a high frequency range, and particularly to a method for manufacturing a polymeric piezoelectric material for a high-performance ultrasonic transducer. As polymeric piezoelectric materials having high piezoelectric performance, for example, polyvinylidene fluoride has been reported in Japanese Patent Publication No. 45-83771, and vinylidene fluoride copolymer has been reported in Japanese Patent Publication No. 50-29159. Moreover, these resins have been shown to have high piezoelectric performance even in the high frequency range, as reported in the 51st Japanese Patent Publication.
It is reported in JP-A No. 23439 or Japanese Patent Application Laid-open No. 111281-1981. Among these, polyvinylidene fluoride has an electromechanical coupling coefficient k t of 0.20 in the direction perpendicular to the film surface and has good formability, and has been considered the most useful polymer material for ultrasonic transducers. However, further improvements in ultrasonic transmission and reception capabilities are desired. On the other hand, regarding the vinylidene fluoride copolymer described in JP-A-56-111281, especially the copolymer of vinylidene fluoride and ethylene trifluoride, for example, 75 mol% of vinylidene fluoride, ethylene trifluoride At a composition of 25 mol %, a k t exceeding that of polyvinylidene fluoride is obtained. In addition, in order to increase the electromechanical coupling coefficient k t in the thickness direction of such a copolymer molded product, the intensity of the Pauling electric field is increased, and the temperature of the crystal transition temperature (Tm') -5 (℃) and the melting point are increased. A method is also disclosed in which a poling treatment is performed after heat treatment in the temperature range, or a poling treatment is performed simultaneously with the heat treatment in this temperature range. The present invention further improves the electromechanical coupling coefficient k t in the thickness direction from the above-mentioned vinylidene fluoride copolymer, and makes it easier to produce a polymeric piezoelectric material with high ultrasonic transmitting and receiving capabilities. The main objective is to provide a method for manufacturing. As a result of research for the above-mentioned purpose, the present inventors have found that it is effective to improve k t by crystallizing a molten vinylidene fluoride copolymer as it is at a temperature close to its melting point and then subjecting it to poling treatment. It has been found that this method eliminates the need for another heat treatment step. The method for producing a polymeric piezoelectric material of the present invention is based on such knowledge.
A melt of a copolymer consisting of ~40 mol% and vinyl fluoride 0 to 20 mol% is processed without intermediate cooling.
This copolymer is characterized by being crystallized in a temperature range determined by less than the melting point temperature Tm and more than Tm -30°C, and then subjected to a poling treatment. Incidentally, the above-mentioned Japanese Patent Application Laid-open No. 56-111281 also discloses that after molding and prior to poling, heat treatment is performed at a high temperature near the melting point.
However, in this prior art, a combination of processes is employed in which, after the copolymer is once molded, it is subjected to another heat treatment, and thereafter, or at the same time, a poling treatment is performed. However, this method requires cooling to room temperature or its vicinity for molding, and then heat treatment again, which not only increases the number of steps and significantly reduces thermal efficiency, but also impairs the properties of the resulting piezoelectric material. It has become clear that this is not preferable, especially from the viewpoint of improving k t . The reason for this is not necessarily clear, but as in the prior art described above,
Prior to heat treatment near the melting point, when forming is performed by intermediate cooling to room temperature, the temperature range that promotes rapid crystallization is passed through, and the partial crystal structure thus formed is then formed near the melting point. It is thought that this may inhibit crystallization during heat treatment or produce a non-uniform crystal structure. On the other hand,
As in the present invention, if the melted vinylidene fluoride copolymer is maintained at a temperature near its melting point without intermediate cooling, crystallization proceeds slowly and uniformly, which is desirable for improving k t . It is estimated that a homogeneous crystal structure will develop. The present invention will be explained in more detail below. The main constituent monomers of the vinylidene fluoride copolymer used in the method of the present invention are vinylidene fluoride and ethylene trifluoride, or trifluoride containing vinylidene fluoride.
Vinylidene fluoride in this copolymer contains 60
~90 mol%, preferably 65-85%, trifluoroethylene 10-40 mol%, preferably 15-35 mol%, and vinyl fluoride 0-20 mol%, preferably 0-15 mol%. It is mole%. The vinylidene fluoride copolymer is preferably a binary or ternary copolymer consisting of the above components, but in addition, a small amount of
For example, up to about 5 mol % of one or more fluorine-containing monomers such as tetrafluoroethylene, hexafluoropropylene, and trifluorochloroethylene may be added as a structural unit. In any of the above cases, if vinylidene fluoride, ethylene trifluoride, and vinyl fluoride are outside the above range, k t becomes small, and the ultrasonic transmitting and receiving ability becomes small, and flexibility is lost. The above-mentioned constituent monomers are within the above-mentioned composition range. Such a vinylidene fluoride copolymer can be obtained by a polymerization method generally known for producing polyvinylidene fluoride. In the present invention, when the melt of the vinylidene fluoride copolymer is crystallized and molded, the melting point temperature of the copolymer is within a range of less than Tm and Tm - 30°C or more without intercooling the melt. It is held and crystallized. Intermediate cooling here refers to substantially maintaining the temperature below the crystallization temperature range mentioned above;
means. As mentioned above, such intercooling should be avoided since it causes undesirable crystal growth in the process. The crystallization temperature may be within the above range, but preferably Tm-5°C to Tm-
The temperature is preferably 25°C, more preferably Tm-10°C to Tm-20°C. A temperature gradient can also be applied within the above temperature range. Crystallization is substantially completed by maintaining the melted vinylidene fluoride copolymer at a temperature within the above range for 5 minutes or more, preferably about 10 minutes to 5 hours. The method for performing a series of steps from melting to crystallization and molding is not particularly limited as long as the necessary temperature conditions and shape retention conditions are met, but examples include press molding, blow molding, etc. , injection molding method is preferably used. Next, double-sided electrodes are formed on the sheet or film-like crystallized product thus obtained,
A piezoelectric body according to the present invention can be obtained by performing a poling process using a method such as applying a DC electric field. The poling conditions are essentially the same as those used for polyvinylidene difluoride piezoelectric films. In other words, the higher the applied electric field strength is, the more desirable it is as long as it does not cause dielectric breakdown, and the longer the electric field application time is, the better, but from the viewpoint of production efficiency, it is usually
The range of 300 to 1000 KV/cm and about 10 seconds to 2 hours is often used. Further, the poling treatment is carried out at a temperature ranging from room temperature to the melting point, and is particularly preferably carried out at a crystal transition temperature (Tm') of -30°C to Tm'. The k t of the polarized body (piezoelectric body) thus obtained according to the present invention can be determined by poling a molded body obtained by a method that involves crystallization during a normal intercooling process after or simultaneously with heat treatment. A larger k t can be obtained than that of the polarized body obtained by Moreover,
As is clear from the above, in the method of the present invention, there is no need to perform heat treatment again after molding, so piezoelectric bodies can be manufactured simply and with high thermal efficiency with a small number of steps. Since the polarized body obtained by the present invention has a large electro-mechanical coupling coefficient kt , it is particularly useful as an ultrasonic transducer. Further, this polarized body has various properties known in polarized bodies of polyvinylidene fluoride, such as elongation piezoelectricity and pyroelectricity, and is used for the same purposes as oriented polarized bodies of polyvinylidene fluoride. Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 An aqueous solution containing methylcellulose as a suspending agent was placed in a stainless steel autoclave equipped with a stirrer, and after cooling to 5°C, n-propyl peroxydicarbonate and other polymerization aids were added as a polymerization initiator,
After replacing with N2 , the mixture was stirred well. After this, the autoclave was cooled from the outside with a methanol-dry ice system, and vinylidene fluoride, ethylene trifluoride, and vinyl fluoride were added to the autoclave in molar ratios.
It was press-fitted from the cylinder so that it was 70%, 20%, and 10%. Next, increase the temperature inside the autoclave,
After polymerization, the outside temperature of the autoclave was maintained at about 25°C to continue polymerization. The initial polymerization pressure was 36Kg/ cm2 , and a decrease in pressure was observed over time, and the final pressure was about 8Kg/cm2.
The residual pressure was purged at the cm 2 stage to terminate the polymerization, and the polymer was separated, thoroughly washed with water, and dried to obtain a white copolymer powder. The yield was 90% or more, and a copolymer having almost the composition as charged was obtained. The inherent viscocity ηinh of this copolymer was 0.92 under the measurement conditions of a concentration of 0.4 g/dl, a temperature of 25°C, and dimethylformamide as a solvent.
It was dl/g. In addition, the temperature (i.e., the melting point referred to herein) Tm at which the maximum value of the melting curve observed when this copolymer is measured with a differential scanning calorimeter (Model DSC2B manufactured by PerkinElmer) is 150.
It was warm at ℃. This copolymer was melt-pressed at 200℃ using a normal hot press equipment, and then
The mixture was cooled to 138°C, held at 138°C for 2 hours, and then cooled to room temperature to obtain a pressed sheet with a thickness of about 60 μm. Electrodes were formed on this press sheet by aluminum vapor deposition, a DC voltage with an electric field strength of 650 KV/cm was applied at 90° C. for 30 minutes, and the sheet was cooled to room temperature while the voltage was being applied to perform a poling treatment. The piezoelectric constant d 31 of the obtained film was measured at 10Hz using a rheolograph made by Toyo Seiki. As a result, d 31
=12.7pC/N. Note that since the sample used here is an unstretched polymer that has been subjected to a poling treatment, d 31 =d 32 . Note that the piezoelectric constants d 31 and d 32 are defined as follows. In other words, in the case of polymers that exhibit piezoelectricity, the x-axis is generally in the stretching direction, and the y-axis is perpendicular to the stretching direction.
axis, the z-axis is taken perpendicular to the film surface, and x, y, z
z when the axis is determined and stress is applied in the x-axis direction
A piezoelectric constant indicating polarization in the axial direction is d 31 , and piezoelectric constants indicating polarization in the z-axis direction when stress is applied in the y-axis direction and the z-axis direction are d 32 and d 33 , respectively. The electromechanical comprehensive coefficient k t (in the z-z axis direction) was found to be k t =0.273 by analyzing the frequency dependence of the electrical admittance and phase angle near the free resonance point of the piezoelectric film. Example 2 Vinylidene fluoride 75
A binary copolymer containing 25 mol% of ethylene trifluoride was obtained. The Tm of this copolymer is 149℃
ηinh was 1.29 dl/g. A press sheet of this copolymer was produced under exactly the same conditions as in Example 1,
As a result of polling under the same conditions, the d 31 constant is
It was 11.5 pC/N, and k t was 0.261. Comparative Examples 1 and 2 The ternary and binary copolymers used in Examples 1 and 2 were melt-pressed at 200°C using the hot press equipment used in Example 1, and then transferred to a cooling press. The mixture was cooled to room temperature to obtain a pressed sheet with a thickness of about 60 μm. After heat-treating these untreated press sheets in air at 138°C for 2 hours, electrodes were formed by aluminum vapor deposition, and then poling was performed under the same conditions as in Examples 1 and 2 to obtain d 31 and k. When we measured t , we obtained the results shown in the following table.

【表】 上記比較例1および2の結果を、前記実施例1
および2の結果と比較すれば、本発明法により得
られた圧電体が、同一組成の重合体から従来の製
造法により得たものに比べて、d31及びktのいず
れの面でも優れていることが理解できよう。
[Table] The results of Comparative Examples 1 and 2 are summarized in Example 1.
Comparing the results of 2 and 2, the piezoelectric material obtained by the method of the present invention is superior in both aspects of d 31 and k t to that obtained by the conventional manufacturing method from a polymer of the same composition. I understand that there are.

Claims (1)

【特許請求の範囲】[Claims] 1 フツ化ビニリデン60〜90モル%、三フツ化エ
チレン10〜40モル%及びフツ化ビニル0〜20モル
%からなる共重合体の溶融物を、中間冷却するこ
となく、この共重合体の融点温度Tm未満、Tm
−30℃以上で定まる温度範囲で実質的に結晶化を
完了化させた後に、ポーリング処理することを特
徴とする高分子圧電体の製造方法。
1. A melt of a copolymer consisting of 60 to 90 mol% of vinylidene fluoride, 10 to 40 mol% of ethylene trifluoride, and 0 to 20 mol% of vinyl fluoride is heated to the melting point of this copolymer without intermediate cooling. Temperature below Tm, Tm
1. A method for producing a polymer piezoelectric material, which comprises performing a poling treatment after substantially completing crystallization in a temperature range determined by -30° C. or higher.
JP58235085A 1983-12-15 1983-12-15 Manufacture of polymer piezoelectric unit Granted JPS60127771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235085A JPS60127771A (en) 1983-12-15 1983-12-15 Manufacture of polymer piezoelectric unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235085A JPS60127771A (en) 1983-12-15 1983-12-15 Manufacture of polymer piezoelectric unit

Publications (2)

Publication Number Publication Date
JPS60127771A JPS60127771A (en) 1985-07-08
JPH0414517B2 true JPH0414517B2 (en) 1992-03-13

Family

ID=16980841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235085A Granted JPS60127771A (en) 1983-12-15 1983-12-15 Manufacture of polymer piezoelectric unit

Country Status (1)

Country Link
JP (1) JPS60127771A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004212A1 (en) * 2017-06-27 2019-01-03 味の素株式会社 POLYSACCHARIDE COMPOSITION FOR MANUFACTURING PIEZOELECTRIC FILM HAVING d14 PIEZOELECTRIC CONSTANT, AND METHOD FOR MANUFACTURING PIEZOELECTRIC FILM HAVING d14 PIEZOELECTRIC CONSTANT

Also Published As

Publication number Publication date
JPS60127771A (en) 1985-07-08

Similar Documents

Publication Publication Date Title
US6605246B2 (en) Ferroelectric relaxor polymer method
US4784915A (en) Polymer piezoelectric film
JPH05152638A (en) High polymer piezo-electric material
US4863648A (en) Process for making polarized material
US4204135A (en) Piezoelectric elements of organic high molecular weight materials
US4543293A (en) Polarized, shaped material of copolymer of vinylidene fluoride
JPH0473282B2 (en)
EP3583138B1 (en) Ferroelectric polymers from dehydrofluorinated pvdf
US4692285A (en) Process of preparing nonfibrous, piezoelectric polymer sheet of improved activity
US4830795A (en) Process for making polarized material
JPH0414517B2 (en)
JP3470471B2 (en) Polymer electret material and method for producing the same
JPS6047034A (en) Production of piezoelectric vinylidene fluoride copolymer film
JPH0414515B2 (en)
JPH11333924A (en) Ferroelectric vinylidene fluoride polymer film and its production
GB2184737A (en) Manufacture of fluorinated copolymers
JPS62263679A (en) High-molecular piezoelectric material
JPS6364008B2 (en)
JPS6318869B2 (en)
Wang et al. Multiple relaxation in uniaxially stretched P (VDF-TrFE) films after crosslinking
JPS61167527A (en) Fluorine series polymer oriented film and its manufacture
JP2016008264A (en) Thermoplastic polyurea thin film, laminate of the same, and methods for producing these
US5204013A (en) Polarized products
JPH0117274B2 (en)
JPS60217674A (en) Manufacture of high-molecular piezoelectric body having excellent heat resistance