JPH0414492B2 - - Google Patents

Info

Publication number
JPH0414492B2
JPH0414492B2 JP59168662A JP16866284A JPH0414492B2 JP H0414492 B2 JPH0414492 B2 JP H0414492B2 JP 59168662 A JP59168662 A JP 59168662A JP 16866284 A JP16866284 A JP 16866284A JP H0414492 B2 JPH0414492 B2 JP H0414492B2
Authority
JP
Japan
Prior art keywords
substrate
charge
electron beam
diamond
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59168662A
Other languages
Japanese (ja)
Other versions
JPS6146019A (en
Inventor
Kenji Sugishima
Hitoshi Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59168662A priority Critical patent/JPS6146019A/en
Publication of JPS6146019A publication Critical patent/JPS6146019A/en
Publication of JPH0414492B2 publication Critical patent/JPH0414492B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子ビーム露光方法に際し、基板に
蓄積される電荷を除去する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing charges accumulated on a substrate during an electron beam exposure method.

通常、基板に緻密な形状のパターニングを行う
場合には、基板表面にレジスト膜を被着し、その
部分にマスクを用いて光を投射するか、電子ビー
ムで描画する等の手段が用いられる。
Normally, when patterning a substrate into a precise shape, a method such as depositing a resist film on the substrate surface and projecting light onto that portion using a mask or drawing with an electron beam is used.

特に、高解像度のパターニングを必要とする半
導体基板では、その基板上に電子ビーム用のレジ
スト膜を被着し、その上に電子ビームを使用して
描画する方法が採用されるが、この場合にレジス
ト膜面に投射された電子ビームの電荷が、レジス
ト膜面と基板との双方に蓄積されるために、基板
表面の電位が変動することになり、その電位が電
子ビーム投射装置の偏向電極の電圧にまで影響を
与えて、電子ビーム走査が円滑に行われず、結果
的にパターニングが不十分になるという不具合が
ある。
In particular, for semiconductor substrates that require high-resolution patterning, a method is adopted in which a resist film for electron beams is deposited on the substrate, and then an electron beam is used to write on the resist film. Since the charge of the electron beam projected onto the resist film surface is accumulated on both the resist film surface and the substrate, the potential on the substrate surface fluctuates, and this potential is applied to the deflection electrode of the electron beam projection device. There is a problem that even the voltage is affected, and electron beam scanning cannot be performed smoothly, resulting in insufficient patterning.

そのために、電子ビームによるレジスト膜面に
蓄積される電荷を除去するための、電荷導電片が
使用されているが、従来これの寿命が短いという
欠点がある。
To this end, a charge conductive piece is used to remove the charge accumulated on the resist film surface due to the electron beam, but this conventionally has the disadvantage of having a short lifespan.

〔従来の技術〕[Conventional technology]

第2図は、半導体装置の製造工程における、レ
ジスト膜を被着した基板を電子ビーム露光法によ
り露光をする状態の模式断面図である。
FIG. 2 is a schematic cross-sectional view of a state in which a substrate coated with a resist film is exposed by an electron beam exposure method in the manufacturing process of a semiconductor device.

基板1があり、その上に酸化膜等の固い絶縁膜
2があつて、その絶縁膜2に所定のパターニング
を行うため、絶縁膜2の表面に電子ビーム用のレ
ジスト膜3を被着し、その表面を電子ビーム投射
装置4によつて、矢印のような電子ビームを投射
して、レジスト膜3を直接描画して露光する。
There is a substrate 1, on which is a hard insulating film 2 such as an oxide film, and in order to pattern the insulating film 2 in a predetermined manner, a resist film 3 for electron beams is deposited on the surface of the insulating film 2. An electron beam as shown by the arrow is projected onto the surface by an electron beam projection device 4 to directly write and expose the resist film 3.

電子ビーム投射装置4は、ビームの口径が
0.1μm×0.1μmから5μm×5μmの大きさに至るま
で大きさは広範囲に選択ができる。
The electron beam projection device 4 has a beam diameter of
The size can be selected from a wide range from 0.1 μm x 0.1 μm to 5 μm x 5 μm.

電子ビームの加速電圧は数10KV、電流密度は
数10A/cm2程度であるが、一方電子ビームを偏向
させる偏向電極電圧は精々数10ボルトであるため
に、基板上のレジスト膜に電荷が蓄積されて、そ
の部分の電位が上昇又は下降すると(レジスト膜
の電子が衝突された際の二次電子の放出により電
位は負又は正になる)、その電位が偏向電極の電
位に影響を与えて電子ビームの軌道が曲げられる
ために円滑な走査が不可能になる。
The accelerating voltage of the electron beam is several tens of KV and the current density is about several tens of A/ cm2 , but the deflection electrode voltage that deflects the electron beam is at most several tens of volts, so charges accumulate in the resist film on the substrate. When the potential of that part increases or decreases (the potential becomes negative or positive due to the emission of secondary electrons when the resist film is bombarded with electrons), that potential affects the potential of the deflection electrode. The trajectory of the electron beam is bent, making smooth scanning impossible.

このような理由から、レジスト膜と基板とに蓄
積された電荷を放出させる方法として、導電性の
ブロツクを用いて、レジスト膜を被着した基板に
圧着することにより、レジスト膜の蓄積電荷を除
去しているが、例えばシリコン基板上に多数の絶
縁膜が形成されていて、然もこれらの絶縁膜が厚
く且つ破壊強度が高いと、電荷導電片をかなり強
く圧着しても、蓄積電荷の除去は非常に困難にな
る。
For this reason, as a method to release the charges accumulated in the resist film and the substrate, the accumulated charges in the resist film are removed by using a conductive block and press-fitting it to the substrate on which the resist film is attached. However, for example, if a large number of insulating films are formed on a silicon substrate, and these insulating films are thick and have high breaking strength, even if a charge conductive piece is pressed very strongly, the accumulated charge cannot be removed. becomes very difficult.

従つて、レジスト膜の蓄積電荷を除去する方法
として、シリコン基板の周辺部の端部5には凹凸
が存在し、基板の表面又は裏面に比較して絶縁膜
の破壊が容易であるために、シリコン基板の周辺
部の端部5に電荷導電片6をバネ7により圧力を
80グラム程度で圧着して蓄積電荷を接地8により
除去する方法が行われている。
Therefore, as a method for removing the accumulated charges in the resist film, since there are irregularities at the peripheral edge 5 of the silicon substrate and the insulating film is more easily destroyed than on the front or back surface of the substrate, A charge conductive piece 6 is applied with pressure by a spring 7 to the peripheral edge 5 of the silicon substrate.
A method of crimping with about 80 grams and removing the accumulated charge by grounding 8 is used.

第3図は従来の電荷導電片6の斜視図であり、
材質はベリリウム−銅(BeCu)合金であつて、
形状が平型の先端部9を有し、先端部の幅が5
mm、厚さ5mmの金属であるが、これを基板1の周
辺部にバネで圧着されるが、電荷導電片が固い基
板に圧着されているために、僅かに数回の使用回
数で、電荷導電片6の先端部分9が破損するとい
う欠点があつた。
FIG. 3 is a perspective view of a conventional charge conductive piece 6.
The material is beryllium-copper (BeCu) alloy.
The tip has a flat tip 9, and the width of the tip is 5.
This metal is 5 mm thick and is crimped to the periphery of the board 1 with a spring, but since the charge conductive piece is crimped to the hard board, the charge can be removed after just a few uses. There was a drawback that the tip portion 9 of the conductive piece 6 was damaged.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の構成の電荷導電片ては、電荷導電片の材
質がベリリウム、銅合金であり、比較的脆弱な材
料であることが問題点であるので、これを改良す
る方法として硬度が高く、且つ導電性の優れた材
料の電荷導電片を製作することにある。
The problem with the charge conductive piece having the above structure is that the material of the charge conductive piece is beryllium or a copper alloy, which is a relatively brittle material. The objective is to manufacture a charge conductive piece made of material with excellent properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解消した電子ビーム用の
レジスト膜と基板に蓄積した電荷を除去するため
の電荷導電片を提供するもので、その手段は、レ
ジスト膜で被膜された基板を電子ビームで露光す
る際に、該基板の端面部にイオン注入をしたダイ
ヤモンドでなる電荷導電片を圧着して、該基板上
に蓄積された電荷を除去することを特徴とする電
子ビームの露光方法によつて達成できる。
The present invention provides a resist film for electron beams that solves the above-mentioned problems, and a charge conductive piece for removing the charges accumulated on the substrate. By an electron beam exposure method characterized in that, during exposure, a charge conductive piece made of ion-implanted diamond is crimped onto the end face of the substrate to remove the charge accumulated on the substrate. It can be achieved.

〔作用〕[Effect]

本発明は、極めて硬度の高い単結晶のダイヤモ
ンドにイオン注入することにより、その部分の単
結晶のダイヤモンドをアモルフアス化することに
より、ダイヤモンドに導電性を与えることによ
り、高い硬度で且つ導電性を有する電荷導電片を
提供するものである。
The present invention achieves high hardness and conductivity by implanting ions into extremely hard single-crystal diamond, making the single-crystal diamond in that part amorphous, and giving conductivity to the diamond. A charge conductive piece is provided.

〔実施例〕〔Example〕

第1図に、本発明の電荷除去片の実施例を斜視
図で示したものである。
FIG. 1 shows a perspective view of an embodiment of the charge removal piece of the present invention.

最も硬度が大きい材料としてダイヤモンドがあ
げられるが、周知のようにダイヤモンドは単結晶
で電気的に絶縁体であり、従つて、このダイヤモ
ンド材料に導電性を付与することができれば、電
荷導電片として使用することができるわけで、そ
のためには結晶構造が整然としている単結晶ダイ
ヤモンド構造を、アモルフアス化することにより
電気伝導性を付与することが可能になる。
Diamond is cited as the material with the greatest hardness, but as is well known, diamond is a single crystal and is an electrical insulator. Therefore, if it is possible to impart conductivity to this diamond material, it can be used as a charge-conducting piece. To achieve this, it becomes possible to impart electrical conductivity to a single crystal diamond structure, which has an ordered crystal structure, by making it amorphous.

ダイヤモンドをアモルフアス化するために、ダ
イヤモンドにイオン注入方法で不純物を注入する
ことができ、この際の注入材料は、イオン化する
殆んどの物質が使用可能であつて、例えば、ボロ
ン(B)、燐(P)、アルゴン(Ar)、窒素(N)等
を使用することができる。
In order to make diamond amorphous, impurities can be implanted into the diamond using an ion implantation method. In this case, the implantation material can be almost any substance that ionizes, such as boron (B), phosphorus, etc. (P), argon (Ar), nitrogen (N), etc. can be used.

ダイヤモンドで電荷除去片を製作する方法とし
ては、金属ブロツク21の先端部に、ダイヤモン
ド22を使用するものとし、金属ブロツク21と
ダイヤモンド22との接続部23は銀蝋によつて
接続するものとする。
As for the method of manufacturing the charge removal piece using diamond, the diamond 22 is used at the tip of the metal block 21, and the connection part 23 between the metal block 21 and the diamond 22 is connected with silver wax. .

イオン注入して使用されるダイヤモンドは、先
端部24の角度θは120〜130度であり、ダイヤモ
ンドの結晶方位は〔100〕又は〔111〕の何れかを
選び、イオン注入は150KVの注入電圧で、ドー
ズ量を1×1016程度にする。
The angle θ of the tip 24 of the diamond used by ion implantation is 120 to 130 degrees, the crystal orientation of the diamond is either [100] or [111], and the ion implantation is performed at an injection voltage of 150 KV. , set the dose to about 1×10 16 .

この結果、最初無限大の抵抗であるダイヤモン
ドは、イオン注入がなされてアモルフアス化され
ることにより、電気抵抗が10KΩ程度の電気導電
性が付与される。
As a result, diamond, which initially has an infinite resistance, is ion-implanted and becomes amorphous, giving it electrical conductivity with an electrical resistance of about 10KΩ.

本発明によるダイヤモンドの電荷除去片を、基
板が酸化シリコン膜、又は窒化シリコン膜等で被
覆された基板に使用し、圧着の圧力が50〜100グ
ラム重にして、実際に使用した実績では、数千回
の使用が可能であり、高い耐久性を有することが
確認された。
In actual use, the diamond charge removal piece according to the present invention is used on a substrate coated with a silicon oxide film or a silicon nitride film, etc., and the pressure of crimping is 50 to 100 grams. It was confirmed that it can be used 1,000 times and has high durability.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように本発明の、電子ビ
ーム露光に使用される電荷除去片は、著しく耐久
性があり、経済効果があると共に、製造工程にお
ける電荷除去片の交換作業等の効率化を高め効果
大なるものがある。
As described above in detail, the charge removal piece of the present invention used for electron beam exposure is extremely durable and has economical effects, and it also improves the efficiency of the work of replacing the charge removal piece in the manufacturing process. There are some things that are very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電荷除去片の実施例を示す
斜視図、第2図は、レジスト膜を被着した基板の
電子ビーム露光の模式断面図、第3図は、従来の
電荷導電片の斜視図、 図において、21は金属ブロツク、22は先端
部のダイヤモンド、23は接続部、24は先端部
である。
FIG. 1 is a perspective view showing an embodiment of the charge removing piece of the present invention, FIG. 2 is a schematic cross-sectional view of a substrate coated with a resist film exposed to an electron beam, and FIG. 3 is a conventional charge conductive piece. In the figure, 21 is a metal block, 22 is a diamond at the tip, 23 is a connecting portion, and 24 is a tip.

Claims (1)

【特許請求の範囲】[Claims] 1 レジスト膜で被膜された基板を電子ビームで
露光する際に、該基板の端面部にイオン注入をし
たダイヤモンドでなる電荷導電片を圧着して、該
基板上に蓄積された電荷を除去することを特徴と
する電子ビーム露光方法。
1. When exposing a substrate coated with a resist film to an electron beam, a charge conductive piece made of ion-implanted diamond is pressed onto the end face of the substrate to remove the charge accumulated on the substrate. An electron beam exposure method characterized by:
JP59168662A 1984-08-10 1984-08-10 Electron beam exposure Granted JPS6146019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168662A JPS6146019A (en) 1984-08-10 1984-08-10 Electron beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168662A JPS6146019A (en) 1984-08-10 1984-08-10 Electron beam exposure

Publications (2)

Publication Number Publication Date
JPS6146019A JPS6146019A (en) 1986-03-06
JPH0414492B2 true JPH0414492B2 (en) 1992-03-13

Family

ID=15872174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168662A Granted JPS6146019A (en) 1984-08-10 1984-08-10 Electron beam exposure

Country Status (1)

Country Link
JP (1) JPS6146019A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179411A (en) * 2002-11-27 2004-06-24 Toppan Printing Co Ltd Membrane mask and method for exposure
JP2004179410A (en) * 2002-11-27 2004-06-24 Toppan Printing Co Ltd Stencil mask and method for exposure
JP2004296146A (en) * 2003-03-25 2004-10-21 Toshiba Corp Heater structure and functional device

Also Published As

Publication number Publication date
JPS6146019A (en) 1986-03-06

Similar Documents

Publication Publication Date Title
US4498952A (en) Batch fabrication procedure for manufacture of arrays of field emitted electron beams with integral self-aligned optical lense in microguns
JP2742749B2 (en) Field emission electron emitter and method of forming the same
EP0184868A1 (en) Electron-beam device and semiconducteur device for use in such an electron-beam device
JPH0145694B2 (en)
CA2071065A1 (en) Field emission electron source empolying a diamond coating and method for producing same
KR950014607B1 (en) Leflection mask and electrically charged beam exposition apparatus using the refelection mask
JP3359677B2 (en) Apparatus that enables shape control of charged particle beam
EP0633594A1 (en) Field-emission element having a cathode with a small radius and method for fabricating the element
JPH0414492B2 (en)
US5031200A (en) Cathode for an X-ray tube and a tube including such a cathode
EP0432337B1 (en) Delta-phi microlens for low-energy particle beams
JP2904263B2 (en) Sputtering equipment
JP4435987B2 (en) Method and apparatus for exposing a substrate
US3687665A (en) Method of manufacturing cathode ray storage tube target
CA1074852A (en) Method of manufacturing a post-deflection focusing colour selection electrode
Ko et al. Fabrication and simulation of a gated thin film emitter
US4282456A (en) Faceplate for an electrostatic printing tube and method of making same
EP0288616B1 (en) Field emission device
CA1159876A (en) Electron gun having spring-loaded resistive lens structure
US4458129A (en) Discharge device and method for use in processing semiconductor devices
JPH0378740B2 (en)
JP2805795B2 (en) Ion beam irradiation equipment
JPH01283824A (en) Positive photoresist
JPS6129534B2 (en)
JP3499141B2 (en) Cathode ray tube