JPH0414448B2 - - Google Patents

Info

Publication number
JPH0414448B2
JPH0414448B2 JP59129614A JP12961484A JPH0414448B2 JP H0414448 B2 JPH0414448 B2 JP H0414448B2 JP 59129614 A JP59129614 A JP 59129614A JP 12961484 A JP12961484 A JP 12961484A JP H0414448 B2 JPH0414448 B2 JP H0414448B2
Authority
JP
Japan
Prior art keywords
conductor
electrodeposition
foil
layer
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59129614A
Other languages
Japanese (ja)
Other versions
JPS617509A (en
Inventor
Sadao Nakao
Eiji Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP12961484A priority Critical patent/JPS617509A/en
Publication of JPS617509A publication Critical patent/JPS617509A/en
Publication of JPH0414448B2 publication Critical patent/JPH0414448B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、箔状導体の片面が電着層で絶縁され
た片面絶縁体の製造方法に関するものである。得
られた片面絶縁導体は、可とう性プリント配線用
基板、電極シールド材などとして用いられる。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a single-sided insulator in which one side of a foil-like conductor is insulated with an electrodeposited layer. The obtained single-sided insulated conductor is used as a flexible printed wiring board, an electrode shield material, etc.

背景技術 従来、片面絶縁導体の製造方法における電着層
形成方式としては、マスキングフイルム接着方式
が知られていた。この方式は、箔状導体の絶縁し
ない面にマスキングフイルムを接着し、これを電
着浴に浸漬導入して実質的に片面のみに電着層を
形成したのち該フイルムを取り除くものである。
しかしながら、この方式には、マスキングフイル
ム、その接着工程、取り除き工程などを必要とす
る欠点があつた。
BACKGROUND ART Conventionally, a masking film adhesion method has been known as an electrodeposited layer forming method in a method for producing a single-sided insulated conductor. In this method, a masking film is adhered to the non-insulated surface of a foil-like conductor, and the film is immersed in an electrodeposition bath to form an electrodeposition layer on only one side, and then the film is removed.
However, this method has the disadvantage that it requires a masking film, its adhesion process, and removal process.

一方、本発明者らが属するグループは、上記の
欠点を克服した方式を先に提案している。それ
は、ロール密接方式と2枚重合せ方式である。前
者は、電着浴に一部を浸漬させたロールに箔状導
体を密接するように導入して電着浴内を通過させ
電着層を他面に形成するものであり、後者は箔状
導体の2枚を重合せて電着浴に浸漬導入し、重合
せ面以外の面に電着層を形成するものである。
On the other hand, the group to which the present inventors belong has previously proposed a method that overcomes the above drawbacks. These are the roll close-contact method and the two-layer overlapping method. In the former method, a foil-like conductor is closely introduced into a roll partially immersed in an electrodeposition bath, and passed through the electrodeposition bath to form an electrodeposited layer on the other side. In this method, two conductor sheets are overlapped and introduced into an electrodeposition bath by immersion, and an electrodeposition layer is formed on the surface other than the overlapped surface.

本発明は、電着層の形成を電着塗料片面接触方
式で行うことを特徴とする片面絶縁導体の製造方
法を提供するものである。これは、本質的にマス
キング方式に属さないものの開発を目的としてな
したものである。
The present invention provides a method for manufacturing a single-sided insulated conductor, characterized in that the electrodeposition layer is formed by contacting one side of the electrodeposition paint. This was done for the purpose of developing something that does not essentially belong to masking methods.

発明の開示 本発明の片面絶縁導体の製造方法は、両面が非
マスク状態にある一枚の箔状導体をその片面のみ
が電着浴の電着塗料に接触する状態に連続的に導
入し、箔状導体が前記電着浴部を通過する間に電
着処理して箔状導体の片面に電着層を形成し、得
られた電着層形成導体を焼付け処理することを内
容とする。
DISCLOSURE OF THE INVENTION The method for producing a single-sided insulated conductor of the present invention involves continuously introducing a sheet of foil-like conductor with both sides unmasked into a state in which only one side is in contact with an electrodeposition paint in an electrodeposition bath, While the foil conductor passes through the electrodeposition bath section, it is subjected to electrodeposition treatment to form an electrodeposition layer on one side of the foil conductor, and the obtained electrodeposition layer-formed conductor is subjected to a baking treatment.

本発明において用いられる箔状導体としては、
例えば厚さ5〜500μm、好ましくは10〜200μm、
特に好ましくは15〜100μmの銅箔、アルミニウム
箔、鉄箔のような金属箔などをあげることができ
る。その幅は、5〜200cmが一般的であるが、こ
れに限定されない。
The foil conductor used in the present invention includes:
For example, the thickness is 5 to 500 μm, preferably 10 to 200 μm,
Particularly preferred are metal foils such as copper foil, aluminum foil, and iron foil with a thickness of 15 to 100 μm. The width is generally 5 to 200 cm, but is not limited to this.

また、電着塗料としては、例えば水あるいは水
と有機溶剤との混合溶剤を用いた分散型ないし溶
液型のアニオン系又はカチオン系塗料をあげるこ
とができる。すなわち、その例としてはアクリロ
ニトリル、メタクリロニトリル、アクリル酸エス
テル、メタクリル酸エステル、アクロレインなど
からなる群の1種又は2種以上と、グリシジルア
クリレート、グリシジルメタクリレート、アリル
グリシジルエーテル、アクリルアミド、メチロー
ルアクリルアミド、エチロールアクリルアミドな
どからなる群の1種又は2種以上と、アクリル
酸、メタクリル酸、エチルアクリル酸、クロトン
酸、マレイン酸、フマール酸などからなる群の1
種又は2種以上とを適宜に反応させて共重合させ
た、あるいはさらにスチレン又はアルキルスチレ
ン、ジビニルベンゼン、クロロスチレンのような
スチレン誘導体を配合した重合度が10000〜
1000000の樹脂を水に分散させた焼付け処理によ
り橋かけ構造形成能を有するワニスなどをあげる
ことができる。もちろん、電着塗料は上記のもの
に限定されるものでない。
Examples of electrodeposition paints include dispersion-type or solution-type anionic or cationic paints using water or a mixed solvent of water and an organic solvent. Examples include one or more of the group consisting of acrylonitrile, methacrylonitrile, acrylic esters, methacrylic esters, acrolein, etc., and glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, acrylamide, methylol acrylamide, and ethyl acrylamide. One or more of the group consisting of rollacrylamide, etc., and one of the group consisting of acrylic acid, methacrylic acid, ethyl acrylic acid, crotonic acid, maleic acid, fumaric acid, etc.
The degree of polymerization is 10,000 to 10,000, which is copolymerized by appropriately reacting a species or two or more species, or is further blended with styrene or a styrene derivative such as alkylstyrene, divinylbenzene, or chlorostyrene.
Examples include varnish that has the ability to form a cross-linked structure by baking a resin dispersed in water. Of course, the electrodeposition paint is not limited to those mentioned above.

本発明の方法においては、まず電着浴の電着塗
料に対し両面が非マスク状態にある一枚の箔状導
体をその片面が接触する状態に連続的に導入す
る。その導入方式としては、例えば電着浴より電
着塗料をオーバーフローさせてそのオーバーフロ
ー液に対して導入するオーバーフロー方式(第1
図)、多孔板を介して下方より電着塗料を供給し、
多孔板の上部に電着塗料層を形成させてこの層に
導入する方式、電着浴9としての板21の側方よ
り電着塗料10を供給し、板の上部に電着塗料層
を形成させてこの層に導入する方式(第2図)、
比較的大型のプール状電着浴の電着塗料の表面な
いし表層に導入する方式などをあげることができ
る。もちろん、上記の方式に限定されない。な
お、上記した多孔板又は板を用いる方式において
は当該板を電着浴における電極に兼ねさせてもよ
い。一方、導入する箔状導体の端部を折り曲げて
電着塗料が該導体の電着処理しない面に流入しな
いように対処してもよい。
In the method of the present invention, first, a sheet of foil-like conductor, both surfaces of which are unmasked, is continuously introduced into the electrodeposition bath so that one surface thereof is in contact with the electrodeposition paint. The introduction method includes, for example, an overflow method (the first
Figure), the electrodeposition paint is supplied from below through a perforated plate,
A method in which an electrodeposition paint layer is formed on the upper part of a porous plate and introduced into this layer, and an electrodeposition paint 10 is supplied from the side of the plate 21 serving as an electrodeposition bath 9 to form an electrodeposition paint layer on the upper part of the plate. The method of introducing this layer into this layer (Figure 2)
Examples include a method in which the agent is introduced onto the surface or surface layer of the electrodeposition paint in a relatively large pool-like electrodeposition bath. Of course, the method is not limited to the above method. In addition, in the method using the above-described porous plate or plate, the plate may also serve as an electrode in the electrodeposition bath. On the other hand, the end portion of the foil conductor to be introduced may be bent to prevent the electrodeposition paint from flowing into the surface of the conductor that is not subjected to electrodeposition treatment.

第1図は、上記のオーバーフロー方式を適用し
た本発明の方法を表わしたものである。すなわ
ち、まず電着浴9より電着塗料10をオーバーフ
ローさせてそのオーバーフロー液に対し箔状導体
2をその片面が接触する状態に連続的に導入す
る。これにより、箔状導体の片面と電着塗料との
接触状態が形成されて電着処理が可能となる。な
お、図の実施例では巻取りロール1より送り出さ
れた箔状導体が方向転換ロール3,4を介してオ
ーバーフロー液に対し連続的に導入されるように
なつている。また、オーバーフロー液の過分は、
電着浴の浴槽の外溝部9bに受け入れられ、新た
に供給された電着塗料とともに循環ポンプ7と連
結パイプ8を介して浴槽の本槽9aに戻されるよ
うになつている。こうして、電着塗料のオーバー
フロー状態が維持される。オーバーフロー方式に
おいて電着浴の浴槽の幅―実施例において本槽9
aの幅―は、導入する箔状導体の幅よりも狭くす
ることが箔状導体のオーバーフロー液との接触面
以外の面(実施例では上面)にオーバーフロー液
の及ぶことを防止する点で、ひいては箔状導体の
片面のみに電着層を形成する点で望ましい。狭く
する幅の程度は、電着塗料の粘度、オーバーフロ
ー状態、箔状導体の導入速度などの電着条件に応
じ適宜決定される。通常の場合、その程度は5〜
20mmが適当である。すなわち、浴槽の外側面が箔
状導体の端より2.5〜10mm程度内側に位置する状
態を両側に形成しうる程度が適当である。
FIG. 1 represents the method of the present invention applying the above-mentioned overflow method. That is, first, the electrodeposition paint 10 is caused to overflow from the electrodeposition bath 9, and the foil-like conductor 2 is continuously introduced into the overflow liquid so that one side thereof is in contact with the overflow liquid. This establishes a contact state between one side of the foil-like conductor and the electrodeposition paint, thereby making it possible to carry out the electrodeposition process. In the illustrated embodiment, the foil conductor sent out from the take-up roll 1 is continuously introduced into the overflow liquid via direction change rolls 3 and 4. Also, if there is an excess of overflow liquid,
It is received in the outer groove 9b of the electrodeposition bath and returned to the main tank 9a of the bathtub together with the newly supplied electrodeposition paint via the circulation pump 7 and the connecting pipe 8. In this way, the overflow state of the electrodeposition paint is maintained. Width of the bathtub of the electrodeposition bath in the overflow method - Main tank 9 in the example
The width of a is made narrower than the width of the foil-like conductor to be introduced in order to prevent the overflow liquid from reaching surfaces other than the contact surface with the overflow liquid of the foil-like conductor (in the example, the upper surface). Furthermore, it is preferable that the electrodeposited layer is formed only on one side of the foil-like conductor. The degree to which the width is narrowed is appropriately determined depending on the electrodeposition conditions such as the viscosity of the electrodeposition paint, the overflow state, and the introduction speed of the foil conductor. In normal cases, the degree is 5~
20mm is appropriate. That is, it is appropriate that the outer surface of the bathtub be located on both sides so that the outer surface of the bathtub is located approximately 2.5 to 10 mm inside the end of the foil conductor.

次に、導入した箔状導体2を電着塗料のオーバ
ーフロー液に接触させたまま電着浴部を通過さ
せ、通過する間に電着処理して箔状導体の片面
(接触面)に電着層を形成する。こうして、片面
に電着層を有する電着層形成導体12が得られ
る。電着処理は、箔状導体と電着塗料との間に電
位差(電着電圧)を与えることにより行われるの
であるが、図では箔状導体にはロール電極5を介
して、電着塗料には板電極6を介して電着電圧を
与えている。図における電極は、電着塗料がアニ
オン系のものであるのでロール電極が陽極とされ
ている。なお、電着塗料中に板電極6を設ける場
合には、板電極をネツトなどの多孔板とすること
が、オーバーフロー液面の乱れなどを防止するう
えで好ましい。また、11は方向転換ロールであ
るがこれは、対向する方向転換ロール4とともに
電着浴に可能なかぎり近接させて設けてある。方
向転換ロール4と11との間隙を可能なかぎり狭
くして、この間における箔状導体の振れを防止な
いし抑制し、箔状導体とオーバーフロー液との平
面的な接触状態を維持して厚さの均一性にすぐれ
る電着層を形成するためである。常温における一
般的な電着処理条件としては、電着電圧1〜
60V、導入通過速度1〜10m/分、電着塗料の固
形分濃度10〜25%、通過(処理)時間1〜60秒間
などが適当である。
Next, the introduced foil-like conductor 2 is passed through an electrodeposition bath section while being in contact with the overflow liquid of the electrodeposition paint, and while passing through, the foil-like conductor 2 is subjected to electrodeposition treatment and electrodeposited on one side (contact surface) of the foil-like conductor. form a layer. In this way, an electrodeposited layer-formed conductor 12 having an electrodeposited layer on one side is obtained. The electrodeposition process is performed by applying a potential difference (electrodeposition voltage) between the foil conductor and the electrodeposition paint. applies an electrodeposition voltage via the plate electrode 6. In the electrode in the figure, since the electrodeposition paint is anionic, the roll electrode is used as the anode. In addition, when the plate electrode 6 is provided in the electrodeposition paint, it is preferable to use a porous plate such as a net for the plate electrode in order to prevent disturbance of the overflow liquid level. Further, reference numeral 11 denotes a direction change roll, which, together with the opposing direction change roll 4, is provided as close as possible to the electrodeposition bath. The gap between the direction change rolls 4 and 11 is made as narrow as possible to prevent or suppress the deflection of the foil conductor between them, and to maintain a planar contact state between the foil conductor and the overflow liquid to reduce the thickness. This is to form an electrodeposited layer with excellent uniformity. General electrodeposition processing conditions at room temperature include an electrodeposition voltage of 1 to
Appropriate values include 60V, an introduction and passage speed of 1 to 10 m/min, a solid content concentration of the electrodeposition paint of 10 to 25%, and a passage (treatment) time of 1 to 60 seconds.

ついで、得られた電着層形成導体12を焼付け
処理するのであるが、本発明においては焼付け処
理に先立つて溶剤処理、予備焼付け処理をするこ
とが好ましい。
Next, the obtained electrodeposited layer-forming conductor 12 is subjected to a baking treatment, but in the present invention, it is preferable to perform a solvent treatment and a prebaking treatment prior to the baking treatment.

図において13は、電着層形成導体12におけ
る電着層を溶剤処理するための溶剤処理室であ
る。電着層を溶剤で処理することにより電着樹脂
粒子間の凝結が促進されてピンホールなどのない
絶縁性にすぐれる電着絶縁層が形成されやすくな
る利点がある。その際、用いる溶剤としては例え
ば、エチレングリコール、グリセリンのようなア
ルコール、エチレングリコールモノメチルエーテ
ル、エチレングリコールジブチルエーテル、エチ
レングリコールモノフエニルエーテルのようなエ
チレングリコールエーテル、N,N−ジメチルホ
ルムアミド、N,N−ジメチルアセトアミド、N
−メチル−2−ピロリドンのような含窒素溶剤、
ジメチルスルホキシドなどの親水性溶剤をあげる
ことができる。また、高温(300〜600℃)水蒸気
で処理してもよい。特に、N,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミドなどが
好ましく用いられる。蒸気状態のこれらの溶剤で
処理することがより好ましい。溶剤処理は、溶剤
の種類や温度などの条件により適宜決定されるが
通常3〜30秒間で十分である。
In the figure, 13 is a solvent treatment chamber for treating the electrodeposition layer in the electrodeposition layer forming conductor 12 with a solvent. Treating the electrodeposited layer with a solvent has the advantage that coagulation between the electrodeposited resin particles is promoted, making it easier to form an electrodeposited insulating layer that is free from pinholes and has excellent insulation properties. In this case, examples of solvents used include alcohols such as ethylene glycol and glycerin, ethylene glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol dibutyl ether, and ethylene glycol monophenyl ether, N,N-dimethylformamide, and N,N-dimethylformamide. -dimethylacetamide, N
- a nitrogen-containing solvent such as methyl-2-pyrrolidone,
Examples include hydrophilic solvents such as dimethyl sulfoxide. Alternatively, it may be treated with high temperature (300 to 600°C) steam. In particular, N,N-dimethylformamide, N,N-dimethylacetamide, etc. are preferably used. It is more preferable to treat with these solvents in vapor state. The solvent treatment is appropriately determined depending on conditions such as the type of solvent and temperature, but usually 3 to 30 seconds is sufficient.

他方、予備焼付け処理は、後続の本焼付け処理
を円滑に行うためのものであり、本焼付け温度の
1/3〜3/5の温度を予する予備処理室14を
5秒〜2分間かけて通過させることにより行われ
る。この処理は、箔状導体の電着層を有しない面
(露出面)の酸化を防止ないし抑制するために非
酸化性雰囲気で行うことが望ましいが、処理温度
が比較的低いので空気雰囲気であつてもよい。
On the other hand, the pre-baking process is to smoothly perform the subsequent main baking process, and is performed in the pre-processing chamber 14 at a temperature of 1/3 to 3/5 of the main baking temperature for 5 seconds to 2 minutes. This is done by passing. This treatment is preferably performed in a non-oxidizing atmosphere in order to prevent or suppress oxidation of the surface of the foil conductor that does not have an electrodeposited layer (exposed surface), but since the treatment temperature is relatively low, it is preferable to perform this treatment in an air atmosphere. It's okay.

焼付け処理は、必要に応じ溶剤処理、予備焼付
け処理された電着層形成導体12を加熱処理して
電着層と箔状導体とを強固に接着させるために行
う。この際、橋かけ構造形成能を有する電着塗料
を用いた場合には、橋かけ構造を形成させるべく
処理される。焼付け処理は、図において焼付け炉
17を通過させることにより行われるが、通常
300〜500℃、10秒〜2分間の加熱処理で十分であ
る。また、焼付け処理は箔状導体の露出面の酸化
を防止ないし抑制するためにアルゴンガスのよう
な希ガス雰囲気、チツ素ガス雰囲気、還元性雰囲
気などの非酸化性雰囲気で行うことが望ましい。
特に、プリント配線用基板としての片面絶縁導体
を得ることを目的とする場合には、焼付け処理を
非酸化性雰囲気で行つて露出面への回路配線の形
成や半田付けなどが容易なものとすることが好ま
しい。こうして通常、厚さ5〜100μmの電着絶縁
層を有する片面絶縁導体18が得られる。
The baking treatment is performed to heat-treat the electrodeposited layer-forming conductor 12, which has been subjected to solvent treatment and prebaking treatment as necessary, to firmly bond the electrodeposition layer and the foil-like conductor. At this time, when an electrodeposition paint having the ability to form a cross-linked structure is used, it is treated to form a cross-linked structure. The baking process is performed by passing through a baking furnace 17 in the figure, but normally
Heat treatment at 300 to 500°C for 10 seconds to 2 minutes is sufficient. Further, in order to prevent or suppress oxidation of the exposed surface of the foil-like conductor, the baking treatment is preferably performed in a non-oxidizing atmosphere such as a rare gas atmosphere such as argon gas, a nitrogen gas atmosphere, or a reducing atmosphere.
In particular, when the purpose is to obtain a single-sided insulated conductor for use as a printed wiring board, the baking process should be performed in a non-oxidizing atmosphere to facilitate the formation and soldering of circuit wiring on the exposed surface. It is preferable. This typically results in a single-sided insulated conductor 18 having an electrodeposited insulating layer with a thickness of 5 to 100 μm.

なお、図において15,16,19は方向転換
ロールであり、20は得られた片面絶縁導体18
の巻取りロールである。一方、場合によつては得
られた片面絶縁導体の両端部を取り除くための、
あるいは用途に応じた幅のものとするための切断
手段、例えばカツタ(図示せず)などを該ロール
19と巻取りロール20との間などに設けてもよ
い。
In the figure, 15, 16, 19 are direction change rolls, and 20 is the obtained single-sided insulated conductor 18.
This is a winding roll. On the other hand, in some cases, for removing both ends of the obtained single-sided insulated conductor,
Alternatively, a cutting means such as a cutter (not shown) may be provided between the roll 19 and the take-up roll 20 to obtain a width suitable for the purpose.

発明の利点 本発明によれば、箔状導体にマスク処理を施さ
ないで簡便な装置により、かつ、簡単な操作、少
ない工程数で片面絶縁導体を連続的に生産効率よ
く得ることができる。また、電着絶縁層の厚さな
どを容易に調節できるとともに、その厚さの均一
性に優れ、薄くても絶縁性にすぐれる電着絶縁層
を実質的に箔状導体の片面のみに直接に、かつ、
強固な接着状態で形成できて、接着剤などの接合
材を要しない利点も有している。
Advantages of the Invention According to the present invention, single-sided insulated conductors can be obtained continuously and efficiently using a simple device without masking the foil-like conductor, simple operations, and a small number of steps. In addition, the thickness of the electrodeposited insulating layer can be easily adjusted, and the electrodeposited insulating layer, which has excellent thickness uniformity and excellent insulating properties even if it is thin, can be applied directly to only one side of the foil conductor. , and
It also has the advantage that it can be formed in a strong adhesive state and does not require a bonding material such as an adhesive.

加えて、得られた片面絶縁導体は可とう性、絶
縁性、絶縁層の平滑性にすぐれ、かつ、比較的耐
熱性にもすぐれて直接半田付けが可能であり、ま
た箔状導体と絶縁層とが剥離しにくい。その結
果、信頼性、長期安定性にすぐれる利点を有して
おり、可とう性プリント配線用基板、電磁シール
ド材などとして好ましく用いられる。
In addition, the obtained single-sided insulated conductor has excellent flexibility, insulation properties, and smoothness of the insulating layer, and is also relatively heat resistant and can be directly soldered. and are difficult to peel off. As a result, it has advantages of excellent reliability and long-term stability, and is preferably used as flexible printed wiring boards, electromagnetic shielding materials, etc.

実施例 幅150mm、長さ200mm、深さ180mmの本槽9aの
周囲に外槽9bを有する浴槽にアクリル系水分散
型電着塗料(固形分15%、PH4.5、V−551−
20;菱電化成社製)を入れた電着浴9より、循環
ポンプ7、連結パイプ8を介して電着塗料を過剰
ぎみに本槽内に供給することによつて電着塗料を
オーバーフローさせ、この状態を維持させた。オ
ーバーフロー液の高さは、本槽の頂点上方約5mm
であつた。
Example: Acrylic water-dispersed electrodeposition paint (solid content 15%, PH4.5, V-551-
20; manufactured by Ryoden Kasei Co., Ltd.) from the electrodeposition bath 9, the electrodeposition paint is supplied into the main tank through the circulation pump 7 and the connecting pipe 8, causing the electrodeposition paint to overflow. , this state was maintained. The height of the overflow liquid is approximately 5 mm above the top of the main tank.
It was hot.

次に、形成されたオーバーフロー液に対し幅
160mm、厚さ35μmの銅箔を3m/分の速度で連続
的に導入した。銅箔の両端はそれぞれ前記本槽9
aの外側面より5mmはみ出した状態にあつた。ま
た、銅箔の片面と接触したオーバーフロー液は、
銅箔の幅方向の全部に行きわたる状態にあつた。
Next, the width of the overflow liquid that is formed is
A copper foil of 160 mm and 35 μm thick was continuously introduced at a speed of 3 m/min. Both ends of the copper foil are connected to the main tank 9, respectively.
It was in a state where it protruded 5 mm from the outer surface of a. In addition, the overflow liquid that came into contact with one side of the copper foil
It was in such a state that it was spread all over the width of the copper foil.

ついで、上記の状態を維持させたまま銅箔を電
着処理した。すなわち、電着浴部を通過させた。
電着処理条件は、電着電圧15V、温度25℃、通電
時間約4秒間(導入通過速度3m/分)、陽極:
銅箔であつた。
Then, the copper foil was electrodeposited while maintaining the above state. That is, it was passed through an electrodeposition bath section.
Electrodeposition processing conditions were: electrodeposition voltage 15V, temperature 25℃, current application time approximately 4 seconds (introduction passage speed 3m/min), anode:
It was made of copper foil.

続いて、得られた電着層形成導体12をN,N
−ジメチルホルムアミド蒸気雰囲気を形成した溶
剤処理室13に導入し15秒間かけて電着層を溶剤
処理した。
Subsequently, the obtained electrodeposited layer-forming conductor 12 was coated with N,N
- The electrodeposited layer was introduced into the solvent treatment chamber 13 in which a dimethylformamide vapor atmosphere was formed, and the electrodeposited layer was treated with the solvent for 15 seconds.

そののち、溶剤処理した該導体12を温度180
℃、空気雰囲気の予備処理室14に導入し30秒間
かけて予備焼付け処理して電着層を乾燥させた。
最後に、予備焼付け処理した該導体12を温度
360℃、チツ素雰囲気の焼付け炉17に導入し30
秒間かけて加熱処理し、電着層が橋かけ構造を形
成した目的物の片面絶縁導体18を得た。その電
着絶縁層の厚さは40μmであつた。また、片面絶
縁導体より電着絶縁層を剥ぎとることはできなか
つた。
Thereafter, the solvent-treated conductor 12 was heated to 180°C.
The electrodeposited layer was dried by introducing it into a pretreatment chamber 14 in an air atmosphere at a temperature of 0.degree. C. and performing a prebaking process for 30 seconds.
Finally, the prebaked conductor 12 is heated to
Introduced into baking furnace 17 at 360℃ and nitrogen atmosphere.
The single-sided insulated conductor 18 having the electrodeposited layer forming a bridged structure was obtained by heat treatment for several seconds. The thickness of the electrodeposited insulating layer was 40 μm. Further, it was not possible to peel off the electrodeposited insulating layer from the single-sided insulated conductor.

得られた該導体の特性を次の方法によつて評価
した。
The properties of the obtained conductor were evaluated by the following method.

(1) 絶縁破壊電圧 長さ10cmの試料の電着絶縁面上に幅5mm、長
さ80mm、厚み4mmの銅板をのせ、試料の絶縁さ
れていない面と銅板との間に電圧を500V/秒
の昇圧速度で印加することにより行つた。
(1) Dielectric breakdown voltage A copper plate with a width of 5 mm, a length of 80 mm, and a thickness of 4 mm is placed on the electrodeposited insulating surface of a 10 cm long sample, and a voltage of 500 V/sec is applied between the non-insulated surface of the sample and the copper plate. This was done by applying pressure at a pressure increase rate of .

(2) 半田耐熱性 JIS C 6481に従い、温度300℃、30秒間の
条件で行つた。
(2) Soldering heat resistance According to JIS C 6481, soldering was conducted at a temperature of 300°C for 30 seconds.

(3) 耐熱性 JIS C 6481に従い、温度260℃、1時間の
条件で行つた。
(3) Heat resistance Testing was conducted in accordance with JIS C 6481 at a temperature of 260°C for 1 hour.

結果は、絶縁破壊電圧が6.0KVであり、半田耐
熱性及び耐熱性のいずれの試験にも合格した。
As a result, the dielectric breakdown voltage was 6.0KV, and it passed both the soldering heat resistance and heat resistance tests.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、オーバーフロー方式を適用した実施
例のフローチヤート、第2図は板を用いて形成し
た電着浴の例を表わした説明断面図である。 2:箔状導体、5:ロール電極、6:多孔板電
極、9:電着浴、10:電着塗料、12:電着層
形成導体、13:溶剤処理室、14:予備処理
室、17:焼付け炉、18:片面絶縁導体、2
1:板。
FIG. 1 is a flowchart of an embodiment in which an overflow method is applied, and FIG. 2 is an explanatory sectional view showing an example of an electrodeposition bath formed using a plate. 2: Foil conductor, 5: Roll electrode, 6: Perforated plate electrode, 9: Electrodeposition bath, 10: Electrodeposition paint, 12: Electrodeposition layer forming conductor, 13: Solvent treatment chamber, 14: Pretreatment chamber, 17 : Baking furnace, 18: Single-sided insulated conductor, 2
1: Board.

Claims (1)

【特許請求の範囲】 1 両面が非マスク状態にある一枚の箔状導体を
その片面のみが電着浴の電着塗料に接触する状態
に連続的に導入し、箔状導体が前記電着浴部を通
過する間に電着処理して箔状導体の片面に電着層
を形成し、得られた電着層形成導体を焼付け処理
することを特徴とする片面絶縁導体の製造方法。 2 電着層形成導体を溶剤処理したのちに焼付け
処理する特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A sheet of foil-like conductor with both sides unmasked is continuously introduced into a state in which only one side is in contact with the electrodeposition paint in the electrodeposition bath, and the foil-like conductor is exposed to the electrodeposition paint in the electrodeposition bath. 1. A method for manufacturing a single-sided insulated conductor, which comprises performing electrodeposition treatment to form an electrodeposition layer on one side of a foil-like conductor while passing through a bath, and baking the obtained electrodeposition layer-formed conductor. 2. The method according to claim 1, wherein the electrodeposited layer-forming conductor is treated with a solvent and then subjected to a baking treatment.
JP12961484A 1984-06-21 1984-06-21 Method of producing one side insulated conductor Granted JPS617509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12961484A JPS617509A (en) 1984-06-21 1984-06-21 Method of producing one side insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12961484A JPS617509A (en) 1984-06-21 1984-06-21 Method of producing one side insulated conductor

Publications (2)

Publication Number Publication Date
JPS617509A JPS617509A (en) 1986-01-14
JPH0414448B2 true JPH0414448B2 (en) 1992-03-12

Family

ID=15013817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12961484A Granted JPS617509A (en) 1984-06-21 1984-06-21 Method of producing one side insulated conductor

Country Status (1)

Country Link
JP (1) JPS617509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692442B2 (en) 2012-02-14 2014-04-08 Danfoss Polypower A/S Polymer transducer and a connector for a transducer
US8891222B2 (en) 2012-02-14 2014-11-18 Danfoss A/S Capacitive transducer and a method for manufacturing a transducer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547594Y2 (en) * 1987-10-19 1997-09-10 株式会社吉野工業所 Liquid ejector
DE602007005767D1 (en) * 2007-03-08 2010-05-20 Special Coating Lab Internat S Device for controlling the concentration of a component in a liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174271A (en) * 1982-04-05 1983-10-13 Showa Electric Wire & Cable Co Ltd Manufacture of single-side insulator coated metallic tape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174271A (en) * 1982-04-05 1983-10-13 Showa Electric Wire & Cable Co Ltd Manufacture of single-side insulator coated metallic tape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692442B2 (en) 2012-02-14 2014-04-08 Danfoss Polypower A/S Polymer transducer and a connector for a transducer
US8891222B2 (en) 2012-02-14 2014-11-18 Danfoss A/S Capacitive transducer and a method for manufacturing a transducer

Also Published As

Publication number Publication date
JPS617509A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
US3981691A (en) Metal-clad dielectric sheeting having an improved bond between the metal and dielectric layers
US4053370A (en) Process for the fabrication of printed circuits
DE1078197B (en) Printed circuit
KR880701066A (en) Method of manufacturing a conductor circuit board.
US4767674A (en) Metal cored board and method for manufacturing same
US4783247A (en) Method and manufacture for electrically insulating base material used in plated-through printed circuit panels
KR930008926B1 (en) Copper stainproofing technique and solution therefor
DE2847070C2 (en) Process for the treatment of multilayer inner layers with additively plated conductor tracks
US4551210A (en) Dendritic treatment of metallic surfaces for improving adhesive bonding
JPH0414448B2 (en)
JPS58204176A (en) Chemical etching method
JPH09272994A (en) Electrolytic copper foil for fine pattern
JPS60258492A (en) Manufacture of tin plated wire
GB2123616A (en) Circuit boards and method of manufacture thereof
JPH09233780A (en) Method for coating surface of laminated motor core with electrically insulating film
JPH0573359B2 (en)
JPS6248089A (en) Metal core circuit board and manufacture thereof
US3455021A (en) Method of making electrically insulated copper strip conductors
CN110582166B (en) Ceramic plate processing method combining DBC and DPC and ceramic substrate
JP2004152622A (en) Coil with insulating layer formed by electrophoretic coating
JPH06310828A (en) Preparation of printed circuit based on electrophoretic deposited organic resist
JPS62226695A (en) Manufacture of circuit board
JPS5954027B2 (en) Laminated board for printed wiring board
JPS5814759B2 (en) Method for coating and forming a resin layer on a metal material substrate for printed wiring boards having through holes
JPS6248088A (en) Metal core circuit board and manufacture thereof