JPH04143638A - Time resolving, absorbing and measuring apparatus - Google Patents

Time resolving, absorbing and measuring apparatus

Info

Publication number
JPH04143638A
JPH04143638A JP26788190A JP26788190A JPH04143638A JP H04143638 A JPH04143638 A JP H04143638A JP 26788190 A JP26788190 A JP 26788190A JP 26788190 A JP26788190 A JP 26788190A JP H04143638 A JPH04143638 A JP H04143638A
Authority
JP
Japan
Prior art keywords
light
sample
probe
timewise
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26788190A
Other languages
Japanese (ja)
Other versions
JPH0617866B2 (en
Inventor
Toshiaki Ito
利昭 伊藤
Mitsuo Hiramatsu
光夫 平松
Koji Muraki
村木 広次
Isuke Hirano
平野 伊助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP26788190A priority Critical patent/JPH0617866B2/en
Publication of JPH04143638A publication Critical patent/JPH04143638A/en
Publication of JPH0617866B2 publication Critical patent/JPH0617866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To simultaneously measure sample beam and reference beam by one apparatus by dividing probe beam into the sample beam irradiating a sample exciting beam irradiation part and the reference beam irradiating a nonirradiation part and independently introducing the spectrum data of both of them into one input slit. CONSTITUTION:Laser beam is separated into a fundamental wave omega and secondary and tertiary higher harmonics 2omega, 3omega by a prism 2 and the higher harmonic 3omega is timewise adjusted by a beam delay path 3 as exciting beam 20 to irradiate a sample 11 and the fundamental wave omega becomes white beam of a continuous spectrum by a cathode 10 to be timewise adjusted by a beam delay path 4 to become probe beam which is, in turn, split into sample beam S and reference beam R by a splitting means 22 to be timewise adjusted to simultaneously irradiate the sample 11. The beam S transmits through the irradiation part of the exciting beam 20 and the beam R transmits through a non-irradiation part to obtain respectively independent spectra in the upper and lower output slits of a spectroscope 13 and a slit image is formed on a streak camera 14 to be converted to a streak image polarized at high speed. The higher harmonic 2omega is timewise adjusted so as to synchronize to the exciting beam 20 and the probe beam 21 to trigger the sweep circuit of the camera 14. By this method, spectrum data and the timewise change data of intensity are simultaneously obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はピコ秒(10−128)の時間分解能をもち、
サブナノ秒(10−”s)から30ナノ秒(30X 1
O−9s)程度の領域の光化学反応を追跡するための時
間分解吸収測定装置に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention has a time resolution of picoseconds (10-128),
From sub-nanoseconds (10-”s) to 30 nanoseconds (30× 1
The present invention relates to a time-resolved absorption measuring device for tracking photochemical reactions in a region of about 0-9s).

「従来の技術」 物質による光の吸収測定では、光が試料を透過すること
によってどれだけ減衰するかを測定するものであり、入
射光の強度を工。、透過光の強度を■とすると、物質層
の吸収の強度は次式で示される。
``Conventional technology'' When measuring the absorption of light by a material, the intensity of the incident light is measured to measure how much the light is attenuated as it passes through the sample. , the intensity of the transmitted light is expressed by the following equation.

I/Io=T(!過率)、−uog T=A(吸光度)
試料は固体や気体についても測定されるが、般には第5
図のように、溶液にして測定する。すなわち、同じ入射
光重。で溶液と溶媒についてそれぞれ透過光の強度l5
oln(λ、1)とI 5olv(λ、t)とを求め、
次式から溶質の透過率Tを求める。
I/Io=T (!accuracy), -uog T=A (absorbance)
Samples are also measured for solids and gases, but generally the fifth
Measure as a solution as shown in the figure. i.e. the same incident light weight. The intensity of transmitted light l5 for the solution and solvent respectively is
Find oln(λ, 1) and I5olv(λ, t),
Calculate the solute transmittance T from the following equation.

I 5oln(λ、t)/ I 5olv(λ、t)=
Tこれは光源強度の波長(λ)による違い、また時間(
1)的な変動を補正するためである。
I 5oln(λ, t)/I 5olv(λ, t)=
TThis is due to the difference in light source intensity depending on the wavelength (λ), and also due to the difference in time (
1) This is to correct for fluctuations.

しかるに、第6図はパルスレーザの励起光(20)を試
料(11)に照射し、試料(11)に生じる励起種、反
応中間体のスペクトルとその強度の変化を、白色プロー
ブ光(21)により追跡する時間分解吸収測定装置であ
り、前記プローブ光(21)はスペクトルが連続的な白
色光を用い、試料透過後、ストリークカメラ(14)の
掃引方向と垂直にストリークカメラ(14)に入射させ
、このプローブ光の強度変化を、このストリークカメラ
(14)で検出することにより、過渡吸収スペクトルと
その強度の変化を、同時に1シヨツトの励起レーザ発振
により観察できる装置が提案されている。
However, in Figure 6, a sample (11) is irradiated with excitation light (20) from a pulsed laser, and the spectra and intensity changes of the excited species and reaction intermediates generated in the sample (11) are measured using white probe light (21). The probe light (21) uses white light with a continuous spectrum, and after passing through the sample, it enters the streak camera (14) perpendicular to the sweep direction of the streak camera (14). An apparatus has been proposed in which the transient absorption spectrum and the change in intensity can be simultaneously observed by one shot of excitation laser oscillation by detecting the change in the intensity of the probe light using the streak camera (14).

以上のような装置を用い、試料を光励起することによっ
て、新たに生じる吸光度の変化ΔAを測定するには、ま
ず第1回目に励起光(20)を照射せずにプローブ光重
。(λ、1)を測定する。以下これをR光(参照光)と
する。そしてこのR光の測定値を一旦2次元メモリに記
憶しておく。ついで、第2回目に励起光(20)を照射
してプローブ光r(λ。
In order to measure the newly generated absorbance change ΔA by optically exciting a sample using the above-described apparatus, first, the probe light weight is measured without irradiating the excitation light (20). (λ, 1) is measured. Hereinafter, this will be referred to as R light (reference light). Then, the measured value of this R light is temporarily stored in a two-dimensional memory. Then, the excitation light (20) is irradiated a second time to produce probe light r(λ.

t)を測定する。以下これをS光(サンプル光)とする
。これも2次元メモリに記憶して、これらのデータから
CPU等でS/R=T(λ、1)の演算をし、その結果
としてΔA(λ、1)が得られる。なお、2次元メモリ
上では、λはX座標、tはX座標とする。
t). Hereinafter, this will be referred to as S light (sample light). This is also stored in a two-dimensional memory, and a CPU or the like calculates S/R=T(λ, 1) from these data, and ΔA(λ, 1) is obtained as a result. Note that on the two-dimensional memory, λ is the X coordinate, and t is the X coordinate.

「発明が解決しようとする課題」 上述のように、透過率Tを求めるためには、2回の測定
が必要である。このとき、プローブ光の発光強度パター
ンは、通常、変動があるので、測定結果に問題が生じる
"Problems to be Solved by the Invention" As described above, two measurements are required to determine the transmittance T. At this time, since the emission intensity pattern of the probe light usually fluctuates, problems arise in the measurement results.

本発明は、プローブ光をハーフミラ−で分離して同時測
定するとともに、1台の装置で同時測定可能なシステム
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a system in which probe light is separated by a half mirror and simultaneously measured, and can be measured simultaneously with one device.

「課題を解決するための手段」 本発明は、パルス光を照射して光励起した試料に、プロ
ーブ光を照射し、前記プローブ光の強度変化をストリー
クカメラで検出することにより、過渡吸収スペクトルま
たはその変化を観察する装置において、前記プローブ光
を分割するためのプローブ光の分割手段と、分割したプ
ローブ光の一方は、試料のうち励起光の照射部分を照射
するサンプル光として、他方は、試料のうち励起光の照
射されない部分を照射する参照光として、それぞれ同時
に照射する照射手段と、前記サンプル光と参照光とを入
力スリットに入射し、それぞれのスペクトル情報を出力
するための、少なくとも1台の分光器と、この分光器の
少なくとも2つのスペクトル情報を、前記ストリークカ
メラの1つの入力スリットに、それぞれ独立して導入す
るための伝導手段とを具備し、1台のストリークカメラ
によりサンプル光と参照光とを同時測定するようにした
ものである。
"Means for Solving the Problems" The present invention irradiates a probe light onto a sample that has been optically excited by irradiating pulsed light, and detects a change in the intensity of the probe light with a streak camera. In an apparatus for observing changes, the probe light splitting means splits the probe light, and one of the split probe lights is used as sample light to irradiate the part of the sample that is irradiated with the excitation light, and the other is used as sample light to irradiate the part of the sample that is irradiated with the excitation light. an irradiation means for simultaneously irradiating the portions of which the excitation light is not irradiated as a reference light, and at least one unit for inputting the sample light and the reference light into the input slit and outputting their respective spectral information. a spectrometer and a conductive means for introducing at least two pieces of spectral information of the spectrometer into one input slit of the streak camera, each independently, the sample light and the reference light by one streak camera; It is designed to measure both light and light at the same time.

「作用」 ガス入り密閉容器内の電子の放出し易い金属に、レーザ
などの光を照射すると、高輝度の白色光が発生するので
、この白色光がプローブ光として用いられる。また、レ
ーザ発生源の高調波が、試料に照射するための励起光と
して用いられる。さらに同しく同一レーザ発生源の高調
波が、ストリークカメラの偏向掃引開始のトリガ(以下
ストリークトリガという)として用いられる。前記プロ
ーブ光は分割手段によって2つに分割され、照射手段に
よって試料の励起光が照射された部分にはサンプル光と
して、照射されない部分には参照光として同時に照射さ
れる。これらサンプル光と参照光は分光器の入力スリッ
トに入射する。この2つのスペクトル情報がそれぞれ同
一光路長の伝導手段により1台のストリークカメラの入
力スリットにスペクトル情報をもって相互に重畳しない
ように導入され、この1台のストリークカメラで2つの
スペクトルを同時測定する。
"Operation" When a metal that easily emits electrons in a gas-filled sealed container is irradiated with light such as a laser, high-intensity white light is generated, and this white light is used as probe light. Further, harmonics of the laser source are used as excitation light for irradiating the sample. Furthermore, harmonics from the same laser source are used as a trigger for starting the deflection sweep of the streak camera (hereinafter referred to as a streak trigger). The probe light is split into two by the splitting means, and the irradiating means simultaneously irradiates the part of the sample irradiated with the excitation light as sample light and the part not irradiated as reference light. These sample light and reference light enter the input slit of the spectrometer. These two spectral information are introduced into the input slit of one streak camera by means of transmission means having the same optical path length so as not to overlap with each other, and the two spectra are simultaneously measured with this one streak camera.

「実施例」 以下、本発明の実施例を図面に基き説明する。"Example" Embodiments of the present invention will be described below with reference to the drawings.

(1)はレーザ発生装置で、具体的には基本波(ω==
IQ64nm)を発生するNd:YAGレーザ発生装置
と、KDPなとの非線形光学結晶を用いた2次高調波(
2c、+=532nm)の発生装置(SHG)と、3次
高調波(3ω=355nm)の発生装置(THG)とか
らなるものである。(2)はプリズムで、前記ω、2ω
、3ωを分離する。(3)(4)はそれぞれ光ファイバ
からなる光遅延路、(5)(5)・・・は光コネクタ、
(6)は2ωのレーザを電気信号に変換するPINホト
ダイオード、(7)(8)は集光用レンズである。(9
)は白色光発生装置で、例えばガス人すキセノンランプ
に電圧を印加しない状態で、内部の電子を放出しやすい
金属からなるカソード(10)にωのレーザを照射する
と、高輝度で。
(1) is a laser generator, specifically the fundamental wave (ω==
A Nd:YAG laser generator that generates IQ64nm) and a second harmonic (
2c, +=532 nm) generator (SHG) and a third harmonic (3ω=355 nm) generator (THG). (2) is a prism, and the above ω, 2ω
, 3ω are separated. (3) and (4) are respectively optical delay paths made of optical fibers, (5) and (5)... are optical connectors,
(6) is a PIN photodiode that converts a 2ω laser into an electric signal, and (7) and (8) are condensing lenses. (9
) is a white light generating device. For example, when no voltage is applied to a gas xenon lamp, when the cathode (10), which is made of a metal that easily emits electrons, is irradiated with an ω laser, it produces high brightness.

しかもUV領域から近赤外領域まで連続的な白色光を発
光する。この発光寿命は、約30ns(半値幅)であっ
た。(22)はプローブ光の分割手段で、この分割手段
(22)は、1つのプローブ光を2つに分割するハーフ
ミラ−(23)と、反射ミラー(24)と、時間調整ミ
ラー(25)とからなり、一方のプローブ光は、試料(
11)の励起光照射部分に照射するサンプル光(S光)
となり、他方のプローブ光は、試料の励起光が照射され
ない部分に照射する参照光(R光)となる。(11)は
被測定試料、(12)はストリークトリガ信号の同期を
とるための遅延回路、(13)は2つの過渡吸収スペク
トルを、別個に独立して取り出すための分光器で、この
分光器(13)は、入射側スリットの特定の部分に入射
した光のスペクトルを、出射側の特定の部分から出射せ
しめる。
Moreover, it emits continuous white light from the UV region to the near-infrared region. This luminescence lifetime was about 30 ns (half width). (22) is a probe light splitting means, and this splitting means (22) includes a half mirror (23) that splits one probe light into two, a reflection mirror (24), and a time adjustment mirror (25). One probe light beam is focused on the sample (
11) Sample light (S light) irradiated to the excitation light irradiation part
The other probe light serves as a reference light (R light) that irradiates the part of the sample that is not irradiated with the excitation light. (11) is the sample to be measured, (12) is a delay circuit for synchronizing the streak trigger signal, and (13) is a spectrometer for extracting two transient absorption spectra separately. (13) causes the spectrum of light that has entered a specific portion of the slit on the entrance side to be emitted from a specific portion on the exit side.

1台の分光器でこの作用をするものとしては、光収差型
が用いられ、第1図と第2図に示される。
An optical aberration type spectrometer is used as a spectrometer that performs this function, as shown in FIGS. 1 and 2.

なお、2台の分光器を用いた例は第3図に基づき後述す
る。(14)はピコ秒域における光現象のリアムタイム
測定をするためのストリークカメラで、前記分光器(1
3)と第2図に示すようなフレキシブルファイバアレイ
(26) (27)からなる同一光路長の伝導手段(2
8)によって結合される。この伝導手段(28)はミラ
ー、プリズム等の光学系を用いることもできる。また、
前記ストリークカメラ(14)は、第2図に示すように
、前記2つのスペクトルを入射する入力スリット(32
)、リレーレンズ(40)、結像されたスリット像を光
電変換する光電面(41)、加速用メツシュ電極(42
)、前記入力スリット(32)の長さ方向(スペクトル
の入射方向)と垂直な方向に高速偏向掃引する偏向電極
(43)、増倍用のマイクロチャンネルプレート(44
)、光学像(ストリーク像)に変換する蛍光面(45)
、出力リレーレンズ(46)からなる。このストリーク
カメラ(14)は1画像信号に変換するためのCCDカ
メラ(15)に結合されている。(16)は画像信号処
理をするアナライザ、(17)は画像映写用モニタTV
、(18)は外部機器制御用のコンピュータ、(19)
は記録紙用プロッタである。
Note that an example using two spectrometers will be described later based on FIG. 3. (14) is a streak camera for measuring the real time of optical phenomena in the picosecond range, and the spectrometer (14)
3) and a conducting means (2) with the same optical path length consisting of flexible fiber arrays (26) (27) as shown in Fig.
8). This transmission means (28) can also use an optical system such as a mirror or a prism. Also,
As shown in FIG. 2, the streak camera (14) has an input slit (32) that receives the two spectra.
), a relay lens (40), a photocathode (41) for photoelectrically converting the formed slit image, and an acceleration mesh electrode (42).
), a deflection electrode (43) that performs a high-speed deflection sweep in a direction perpendicular to the length direction (spectral incident direction) of the input slit (32), and a multiplication microchannel plate (44).
), a fluorescent screen (45) that converts into an optical image (streak image)
, an output relay lens (46). This streak camera (14) is coupled to a CCD camera (15) for conversion into one image signal. (16) is an analyzer that processes image signals, and (17) is a monitor TV for image projection.
, (18) is a computer for controlling external equipment, (19)
is a plotter for recording paper.

以上の構成において、レーザ発生装W(1)で発生した
レーザ光はプリズム(2)で基本波ω(1064r+n
+)2次高調波2 (、+ (532nm) 、 3次
高調波3 ω(355nm)に分離される。このうち、
3次高調波3ωは光遅延路(3)で所定の時間調整をし
て、試料(11)に励起光(20)として照射する。ま
た、基本波ωは白色光発生装置としてのキセノンランプ
(9)のカソード(10)に集光する。すると、このカ
ソード(io)からスペクトルの連続した白色光を発生
し、この白色光がレンズ(7)で集光され、光遅延路(
4)で所定の時間調整をして、試料(11)に照射され
るプローブ光(21)となる。このプローブ光(21)
は分割手段(22)で2つに分割して、一方はS光(サ
ンプル光)とし、他方はR光(参照光)として、かつ時
間調整をして両者同時に試料(11)に照射する。この
ときS光は前記励起光(20)の照射部分に照射され、
R光はその他の部分に照射される。これら試料(11)
を透過したS光とR光は、レンズ(8)を介してそれぞ
れ分光器(13)の入力スリット(29)の特定点(2
9a) (29b)に入射され、それぞれ分光器(13
)の上下の呂カスリット(30)(31)に独立した状
態で、S光とR光の2つのスペクトルが得られる。この
上下の出力スリット(30) (31)の2つのスペク
トル像は、同一長のフレキシブルファイバアレイ(26
) (27)を介してストリークカメラ(14)の大刀
スリット(32)に、入射方向に並べて導入される。ス
トリークカメラ(14)の入力スリット(32)に入射
すると、リレーレンズ(40)で内部の光電面(41)
にスリット像を結像させる。光電面(41)で変換され
た光電子は。
In the above configuration, the laser beam generated by the laser generator W (1) passes through the prism (2) as the fundamental wave ω(1064r+n
+) 2nd harmonic 2 (, + (532 nm), 3rd harmonic 3 ω (355 nm). Among these,
The third harmonic 3ω is adjusted for a predetermined time in an optical delay path (3), and is irradiated onto the sample (11) as excitation light (20). Further, the fundamental wave ω is focused on the cathode (10) of a xenon lamp (9) serving as a white light generator. Then, white light with a continuous spectrum is generated from this cathode (io), and this white light is focused by a lens (7) and passes through an optical delay path (
After adjusting the predetermined time in step 4), the probe light (21) is irradiated onto the sample (11). This probe light (21)
is divided into two by a dividing means (22), one as S light (sample light) and the other as R light (reference light), and both are irradiated onto the sample (11) at the same time by adjusting the time. At this time, the S light is irradiated to the irradiated part of the excitation light (20),
The R light is applied to other parts. These samples (11)
The S light and R light transmitted through the lens (8) are respectively directed to a specific point (2) of the input slit (29) of the spectrometer (13).
9a) (29b), and the spectrometer (13
), two spectra of S light and R light can be obtained independently from the upper and lower slits (30) and (31). The two spectral images of the upper and lower output slits (30) (31) are the same length flexible fiber array (26
) (27) and are introduced into the long sword slit (32) of the streak camera (14) side by side in the incident direction. When it enters the input slit (32) of the streak camera (14), the relay lens (40) activates the internal photocathode (41).
A slit image is formed. The photoelectrons converted at the photocathode (41) are:

加速用メツシュ電極(42)で加速され、偏向電極(4
3)に挟まれた偏向場に入り、スリット長さ方向(スリ
ットの入射方向)と垂直な方向に高速偏向された後、マ
イクロチャンネルプレート(44)で増倍され、蛍光面
(45)で光学像(ストリーク像)に変換される。この
とき、前記高速偏向は光電子の通過時刻と同期させる必
要があり、そのため、前記2次高調波2ωがPINホト
ダイオード(6)で電気信号に変換され、遅延回路(1
2)で励起光(20)とプローブ光(21)と同期する
ように時間調整された後、ストリークカメラ(14)の
内部の掃引回路をトリガする。
It is accelerated by the accelerating mesh electrode (42) and deflected by the deflection electrode (4).
3) and is deflected at high speed in a direction perpendicular to the slit length direction (slit incidence direction), then multiplied by the microchannel plate (44) and optically transmitted by the fluorescent screen (45). It is converted into an image (streak image). At this time, the high-speed deflection needs to be synchronized with the passage time of photoelectrons, so the second harmonic 2ω is converted into an electrical signal by the PIN photodiode (6), and the delay circuit (1
After the time is adjusted to synchronize the excitation light (20) and probe light (21) in step 2), the internal sweep circuit of the streak camera (14) is triggered.

以上のようにして、被測定光のスペクトル情報と強度の
時間的変化の情報が同時に得られる。このストリーク像
はCCDカメラ(15)で画像信号に変換され、アナラ
イザ(16)で信号処理をしてモニタT V (17)
には第4図に示すように、S光とR光のスペクトルが独
立して映し出される。同時にコンピュータ(18)によ
り、T(λ+1)、ΔA(λ1t)等の演算が行なわれ
、プロッタ(19)へ信号が送られ、記録紙上に印刷さ
れる。
In the manner described above, spectral information of the light to be measured and information on temporal changes in intensity can be obtained simultaneously. This streak image is converted into an image signal by a CCD camera (15), processed by an analyzer (16), and sent to a monitor TV (17).
As shown in FIG. 4, the spectra of S light and R light are displayed independently. At the same time, the computer (18) performs calculations such as T (λ+1), ΔA (λ1t), etc., and signals are sent to the plotter (19) and printed on recording paper.

前記実施例では1台の光収差型分光器(13)を用いた
が、R光とS光のスペクトルがそれぞれ独立して出力さ
れるものであればよいので、第3図に示すように全く同
一特性の2台の分光器(13a) (13b)を用いる
こともできる。すなわち、試料(11)を透過したS光
とR光はそれぞれ光ファイバ(33a)(33b)を介
して、分光器(13a) (13b)の入射スリット(
29a) (29b)に導入される。これらの分光器(
13a)(13b)はミラー(34a) (35a)、
(36a)(37aL (34b)(3sb)、(36
b) (37b)、回折格子(38a) (38b)か
らなり。
In the above embodiment, one optical aberration type spectrometer (13) was used, but since it is sufficient that the spectra of R light and S light are output independently, it is possible to It is also possible to use two spectrometers (13a) (13b) with the same characteristics. That is, the S light and R light that have passed through the sample (11) are transmitted through the optical fibers (33a) and (33b), respectively, to the entrance slits (13b) of the spectrometers (13a) and (13b).
29a) Introduced in (29b). These spectrometers (
13a) (13b) are mirrors (34a) (35a),
(36a) (37aL (34b) (3sb), (36
b) (37b), diffraction grating (38a) (38b).

各分光器(13a) (13b)の出力はプリズム(3
9)で同一出力スリットに並べて、ストリークカメラ(
14)のスリット(32)にS光とR光のスペクトル情
報を図示矢印方向に入射する。以下の動作は前述と同様
である。
The output of each spectrometer (13a) (13b) is the prism (3
9) to the same output slit, and connect the streak camera (
Spectral information of S light and R light is input into the slit (32) of 14) in the direction of the arrow shown in the figure. The following operations are similar to those described above.

前記実施例において、励起光(20)とプローブ光(2
1)は、それぞれ光遅延路(3)(4)で時間調整後に
、試料(11)に照射するようにしたが、試料(11)
に照射後で分光器(13)への入射前に時間調整を行う
ようにしてもよい。この場合、励起光をミラー、プリズ
ムなどにより所定時間遅延をかけ、励起光とプローブ光
のタイミングを合せる。
In the above embodiment, the excitation light (20) and the probe light (2
In 1), the sample (11) was irradiated after time adjustment using the optical delay paths (3) and (4), but the sample (11)
The time may be adjusted after irradiation and before entering the spectrometer (13). In this case, the excitation light is delayed by a predetermined time using a mirror, a prism, etc., and the timings of the excitation light and probe light are matched.

前記実施例では、試料(11)の透過スペクトルを測定
するようにしたが、反射スペクトルを測定するようにし
てもよい。
In the above embodiment, the transmission spectrum of the sample (11) was measured, but the reflection spectrum may also be measured.

「発明の効果」 本発明は上述のように、サンプル光と参照光を同時に測
定することができるので、従来のような時間的な変動を
キャンセルすることができ、正確なスペクトル情報が得
られる。また、1台のストリークカメラでサンプル光と
参照光を同時測定できるので、装置が簡単で、しかもト
リガの不一致ということもない。したがって、ピコ秒の
時間分解能をもち、かつサブナノ秒から30ナノ秒領域
での光化学反応の測定に好適である。
"Effects of the Invention" As described above, the present invention can measure the sample light and the reference light simultaneously, so the temporal fluctuations that occur in the conventional method can be canceled and accurate spectral information can be obtained. Furthermore, since the sample light and reference light can be measured simultaneously with one streak camera, the equipment is simple and there is no possibility of mismatched triggers. Therefore, it has picosecond time resolution and is suitable for measuring photochemical reactions in the subnanosecond to 30 nanosecond range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による時間分解吸収測定装置の一実施例
を示すブロック図、第2図は分光器とストリークカメラ
の結合状態を示す斜視図、第3図は分光器の他の例の説
明図、第4図はモニタTVの映像例を示す図、第5図は
溶液の測定の説明図、第6図はストリークカメラによる
測定装置の説明図である。 (1)・・・レーザ発生装置、(2)・・・プリズム、
(3)(4)・・・光遅延路、(5)・・・光コネクタ
、(6)・・・PINダイオード、(7)(8)・・・
レンズ、(9)・・・白色光発生装置、(10)・・・
カソード、(11)・・・試料、(12)・・・遅延回
路、(13) (13a) (13b) ・−分光器、
(]、4)−=ストリークカメラ、(15)・・・CC
Dカメラ、(16)・・・アナライザ、(17)・・・
モニタTV、(18)・・・コンピュータ、(19)・
・プロッタ、(20)・・・励起光、(21)・・プロ
ーブ光、(22)・・・分割手段、(23)・・・ハー
フミラ−1(24)・・・反射ミラー、(25)・・・
時間調整ミラー、(26) (27)・・・フレキシブ
ルファイバアレイ、 (28)・・・伝導手段、 (2
9)・・・入力スリット、(29a) (29b)−特
定点、(30) (31) ”’出力スリット、(32
)=−人力スリット、(33a) (33b)・・・光
ファイバ、(34a) (34b) (35a) (3
5b) (36a) (36b)(37a) (37b
)−ミラー、(38a) (38b) ・・’回折格子
、(39)・・・プリズム、(40)・・・リレーレン
ズ、(41)・・・光電面、(42)・・・加速用メツ
シュ電極、(43)・・・偏向電極、(44)・・・マ
イクロチャンネルプレート、 (45)・・・蛍光面、 (46)・ リレーレンズ。 出 願 人 浜松ホトニクス株式会社 −二一−l
Fig. 1 is a block diagram showing an embodiment of the time-resolved absorption measuring device according to the present invention, Fig. 2 is a perspective view showing a coupled state of a spectrometer and a streak camera, and Fig. 3 is an explanation of another example of the spectrometer. 4 is a diagram showing an example of a video of a monitor TV, FIG. 5 is an explanatory diagram of solution measurement, and FIG. 6 is an explanatory diagram of a measuring device using a streak camera. (1)... Laser generator, (2)... Prism,
(3) (4)... Optical delay path, (5)... Optical connector, (6)... PIN diode, (7) (8)...
Lens, (9)... White light generator, (10)...
Cathode, (11) Sample, (12) Delay circuit, (13) (13a) (13b) - Spectrometer,
(], 4)-=streak camera, (15)...CC
D camera, (16)...analyzer, (17)...
Monitor TV, (18)...Computer, (19)...
- Plotter, (20)...Excitation light, (21)...Probe light, (22)...Dividing means, (23)...Half mirror 1 (24)...Reflection mirror, (25) ...
Time adjustment mirror, (26) (27)...Flexible fiber array, (28)...Transmission means, (2
9)...Input slit, (29a) (29b) -Specific point, (30) (31) ''Output slit, (32
)=-Manual slit, (33a) (33b)...Optical fiber, (34a) (34b) (35a) (3
5b) (36a) (36b) (37a) (37b
)-mirror, (38a) (38b)...'diffraction grating, (39)...prism, (40)...relay lens, (41)...photocathode, (42)...for acceleration Mesh electrode, (43)... Deflection electrode, (44)... Micro channel plate, (45)... Fluorescent screen, (46) Relay lens. Applicant Hamamatsu Photonics Co., Ltd.-21-l

Claims (1)

【特許請求の範囲】[Claims] (1)パルス光を照射して光励起した試料に、プローブ
光を照射し、前記プローブ光の強度変化をストリークカ
メラで検出することにより、過渡吸収スペクトルまたは
その変化を観察する装置において、前記プローブ光を分
割するためのプローブ光の分割手段と、分割したプロー
ブ光の一方は、試料のうち励起光の照射部分を照射する
サンプル光として、他方は、試料のうち励起光の照射さ
れない部分を照射する参照光として、それぞれ同時に照
射する照射手段と、前記サンプル光と参照光とを入力ス
リットに入射し、それぞれのスペクトル情報を出力する
ための、少なくとも1台の分光器と、この分光器の少な
くとも2つのスペクトル情報を、前記ストリークカメラ
の1つの入力スリットに、それぞれ独立して導入するた
めの伝導手段とを具備し、1台のストリークカメラによ
りサンプル光と参照光とを同時測定するようにしたこと
を特徴とする時間分解吸収測定装置。
(1) In an apparatus for observing a transient absorption spectrum or a change thereof by irradiating probe light onto a sample that has been photoexcited by irradiating pulsed light and detecting changes in the intensity of the probe light with a streak camera, the probe light one of the divided probe lights serves as a sample light that irradiates a portion of the sample irradiated with the excitation light, and the other irradiates a portion of the sample that is not irradiated with the excitation light; an irradiation means for simultaneously irradiating each as a reference light; at least one spectrometer for inputting the sample light and the reference light into an input slit and outputting their respective spectral information; and at least two of the spectrometers. and a conduction means for independently introducing two pieces of spectral information into one input slit of the streak camera, so that the sample light and the reference light can be simultaneously measured by one streak camera. A time-resolved absorption measurement device featuring:
JP26788190A 1990-10-05 1990-10-05 Time-resolved absorption measuring device Expired - Fee Related JPH0617866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26788190A JPH0617866B2 (en) 1990-10-05 1990-10-05 Time-resolved absorption measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26788190A JPH0617866B2 (en) 1990-10-05 1990-10-05 Time-resolved absorption measuring device

Publications (2)

Publication Number Publication Date
JPH04143638A true JPH04143638A (en) 1992-05-18
JPH0617866B2 JPH0617866B2 (en) 1994-03-09

Family

ID=17450929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26788190A Expired - Fee Related JPH0617866B2 (en) 1990-10-05 1990-10-05 Time-resolved absorption measuring device

Country Status (1)

Country Link
JP (1) JPH0617866B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010519A1 (en) * 2001-07-24 2003-02-06 Hamamatsu Photonics K.K. Time resolution transient absorption measuring device
WO2004053466A1 (en) * 2002-12-06 2004-06-24 Kenji Katayama Spectrochemical analysis method and spectrochemical analysis instrument
EP1698726A1 (en) 2005-03-01 2006-09-06 Kao Corporation Fiber product treating agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010519A1 (en) * 2001-07-24 2003-02-06 Hamamatsu Photonics K.K. Time resolution transient absorption measuring device
WO2004053466A1 (en) * 2002-12-06 2004-06-24 Kenji Katayama Spectrochemical analysis method and spectrochemical analysis instrument
EP1698726A1 (en) 2005-03-01 2006-09-06 Kao Corporation Fiber product treating agent

Also Published As

Publication number Publication date
JPH0617866B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US6008899A (en) Apparatus and method for optical pulse measurement
JPH07306140A (en) Optical array detector and ccd camera which are disassembledin time for frequency-region fluorescence measurement and/orphosphorescence measurement
JP5628256B2 (en) Flash photolysis system
US4958231A (en) Electro-optical streak camera
US7817270B2 (en) Nanosecond flash photolysis system
GB2158231A (en) Laser spectral fluorometer
JPS61182534A (en) Multi-channel simultaneous measuring device of very high speed optical phenomenon
US4801796A (en) Streak camera unit with elliptical deflection
WO2003010519A1 (en) Time resolution transient absorption measuring device
JPS5811567B2 (en) Back ground
JPH02262038A (en) Optical-waveform measuring apparatus
JPH01287424A (en) Light waveform measuring instrument
JPH04143638A (en) Time resolving, absorbing and measuring apparatus
US5071249A (en) Light waveform measuring apparatus
JP2709135B2 (en) Optical signal detector
JPS62204130A (en) Streak camera device
JPH04143637A (en) Time resolving absorbing and measuring apparatus
US4909628A (en) Optical heterodyne detector
JP2002228521A (en) Spectroscope and method of spectroscopy
JP2991260B2 (en) Time-resolved luminescence measurement device
JPH09218155A (en) Two-dimensional fluorescence lifetime measuring method and device
JPH0262806B2 (en)
KR20030054084A (en) Method of laser-induced plasma atomic emission spectroscopy and apparatus thereof
JPH02234051A (en) Light wave measuring device
US4958124A (en) Multi-channel voltage detector

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees