JPH04143403A - Steam valve - Google Patents

Steam valve

Info

Publication number
JPH04143403A
JPH04143403A JP26509490A JP26509490A JPH04143403A JP H04143403 A JPH04143403 A JP H04143403A JP 26509490 A JP26509490 A JP 26509490A JP 26509490 A JP26509490 A JP 26509490A JP H04143403 A JPH04143403 A JP H04143403A
Authority
JP
Japan
Prior art keywords
valve
steam
thickness
valve body
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26509490A
Other languages
Japanese (ja)
Other versions
JP2777277B2 (en
Inventor
Kura Shindo
蔵 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26509490A priority Critical patent/JP2777277B2/en
Publication of JPH04143403A publication Critical patent/JPH04143403A/en
Application granted granted Critical
Publication of JP2777277B2 publication Critical patent/JP2777277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To thin the thickness of a requisite barrel part and relieve the thermal stress in equalizing the whole thickness by forming a valve body, constituting a pressure vessel, and an inlet member with steel forgings higher in hot strength than that of steel castings of the same chemical composition. CONSTITUTION:A valve body 21 consists of a valve upper-half body 21a, having the same barrel part thickness t1 in every spot and including a main valve 6, and a valve lower-half body 21b having the same barrel part thickness t2 in every spot and being situated downstream of the main valve 6. These valve half bodies 21a, 21b are solidly welded together via a weld zone W3. In addition, these bodies 21a, 21b are both manufactured by means of forging with molybdenum-vanadium steel excellent in material strength, whereas they are of the same thickness. Each inner surface of these bodies 21a, 21b is precisely shaped by means of machining. Thus, it is thinned in thickness as compared with the conventional one and, what is more, the whole thickness can be equalized, thus a thermal stress is made relievable.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば蒸気タービンの主蒸気管や再熱蒸気管
等のような、高温高圧蒸気配管系の流路制御に好適な蒸
気弁に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is applicable to flow path control of high-temperature and high-pressure steam piping systems, such as the main steam pipe of a steam turbine and the reheat steam pipe. Concerning a preferred steam valve.

(従来の技術) 最近の蒸気原動所においてはランキンサイクルを基本と
し、これをモデファイして熱効率を向上させた再熱再生
サイクルの蒸気タービンが多用されている。
(Prior Art) In recent steam power stations, steam turbines based on the Rankine cycle and reheat regeneration cycles, which are modified to improve thermal efficiency, are often used.

この蒸気原動所の熱効率は蒸気タービンの入口蒸気圧力
と蒸気温度および排圧、すなわち復水器の器内圧力に左
右され、入口蒸気圧力または温度が高いほど、また排圧
が低いほど良好な値を示す。
The thermal efficiency of this steam power plant depends on the inlet steam pressure and steam temperature of the steam turbine, and the exhaust pressure, that is, the internal pressure of the condenser.The higher the inlet steam pressure or temperature, and the lower the exhaust pressure, the better the value. shows.

省エネルギー化が強く叫ばれている昨今においては、新
設、既設を問わず、蒸気タービンの入口蒸気圧力や温度
を上昇させ、蒸気原動所の熱効率の上昇を図ることが要
請されているが、従来のプラントは蒸気タービンの構成
材料や主蒸気弁の耐熱性の点から、超臨界圧プラントで
もタービン入口蒸気を246kg/Ci、538℃程度
に制限せざるを得なかった。
Nowadays, there is a strong demand for energy conservation, and there is a need to increase the inlet steam pressure and temperature of steam turbines, whether new or existing, to increase the thermal efficiency of steam power plants. Even in a supercritical pressure plant, the turbine inlet steam had to be limited to about 246 kg/Ci and 538° C. due to the heat resistance of the steam turbine's constituent materials and the main steam valve.

第3図は従来の蒸気弁を例示するもので、この蒸気弁は
、弁本体1に上蓋2をボルト3にて固定して構成される
圧力容器部4と、弁棒5にねじ込まれた主弁6、弁棒5
を保持する案内片7、蒸気中の異物を捕捉するストレー
ナ8、および弁本体1に固着した弁座9より構成される
蒸気通路部10とから構成されており、圧力容器となる
弁本体1には、蒸気管に接続するためのエルボ1aおよ
び短管1bが、溶接部W  SW2を介して一体化され
ている。
FIG. 3 shows an example of a conventional steam valve. This steam valve consists of a pressure vessel section 4 which is constructed by fixing an upper cover 2 to a valve body 1 with bolts 3, and a main body screwed into a valve stem 5. Valve 6, valve stem 5
The steam passage section 10 is composed of a guide piece 7 that holds the steam, a strainer 8 that traps foreign matter in the steam, and a valve seat 9 that is fixed to the valve body 1. In this case, an elbow 1a and a short pipe 1b for connecting to a steam pipe are integrated via a welded part WSW2.

なお、弁棒5を上下方向に作動させるアクチュエータ(
図示せず)は、ブランケット11を介してボルト12に
より弁本体1に固定されており、また案内片7も、ボル
ト13によりブランケット11に固定されている。
Note that an actuator (
(not shown) is fixed to the valve body 1 with bolts 12 via a blanket 11, and the guide piece 7 is also fixed to the blanket 11 with bolts 13.

蒸気管(図示せず)を流れる蒸気は、矢印Aに示すよう
に蒸気弁内に流入し、主弁6と弁座9の間に形成される
流路を通過して矢印Bへと流出する。
Steam flowing through a steam pipe (not shown) flows into the steam valve as shown by arrow A, passes through a flow path formed between the main valve 6 and valve seat 9, and flows out in arrow B. .

前述の如く構成した従来の蒸気弁においては、弁本体1
およびエルボ1aの材料としてクロム、モリブデンを添
加することにより高温強度を増し、さらにこれらの添加
物による材料表面の不安定現象を抑えるためにバナジウ
ムを添加したクロム−モリブデン−バナジウム鋳鋼品が
広く使用されていた。
In the conventional steam valve configured as described above, the valve body 1
Chromium-molybdenum-vanadium cast steel products are widely used as materials for the elbow 1a, with the addition of chromium and molybdenum to increase high-temperature strength, and vanadium added to suppress the instability of the material surface caused by these additives. was.

弁本体1およびエルボ1aは、上述のように複雑な形状
を有しているので、鋳造により製造するのは最適の方法
である。
Since the valve body 1 and the elbow 1a have complicated shapes as described above, the optimal method is to manufacture them by casting.

(発明が解決しようとする課題) しかしながら、従来の弁本体1は複雑な形状なるが故に
、構造上各部分の肉厚が不均一となり、その結果、蒸気
タービンの起動時等においては、厚肉部の内外面の間に
生ずる温度差のため多大な熱応力の発生が避けられない
(Problem to be Solved by the Invention) However, because the conventional valve body 1 has a complicated shape, the wall thickness of each part becomes uneven due to its structure.As a result, when starting a steam turbine, etc. Due to the temperature difference that occurs between the inner and outer surfaces of the part, the generation of large thermal stresses is unavoidable.

まして原動所の熱効率向上のため、蒸気弁の入口蒸気の
圧力や温度を上昇させようとすると、熱応力はますます
増加するという欠点があった。
Furthermore, if an attempt is made to increase the pressure and temperature of the steam at the inlet of the steam valve in order to improve the thermal efficiency of the power plant, there is a drawback that thermal stress increases even more.

また現在の蒸気原動所において使用されている各種材料
の使用限界温度は570℃程度と考えられていてるが、
近い将来さらに高温高圧蒸気に耐え得る材料が開発され
たとしても、その検証には、かなりの時間を要するから
、原動所の熱効率の向上を切望している各ユーザーが高
温強度のすぐれた主要蒸気弁を初めとする各種蒸気ター
ビン機器を実用化できるようになるまでには相当の期間
を必要とするものと予想され、その間は蒸気条件を使用
限界温度を考慮して設定せざるを得ないという欠点があ
った。
Furthermore, the operating temperature limit of various materials used in current steam power plants is thought to be around 570°C.
Even if a material that can withstand even higher temperature and high pressure steam is developed in the near future, it will take a considerable amount of time to verify it, so users who are eager to improve the thermal efficiency of their power plants are looking for main steam that has excellent high temperature strength. It is expected that a considerable period of time will be required before various steam turbine equipment, including valves, can be put into practical use, and in the meantime, steam conditions will have to be set taking into account the operating temperature limit. There were drawbacks.

本発明は上述の如き不都合を除去し、蒸気条件がより高
温高圧となっても何ら問題のない蒸気弁を提供すること
を目的とする。
An object of the present invention is to eliminate the above-mentioned disadvantages and provide a steam valve that does not cause any problems even when the steam conditions become higher temperature and pressure.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、前記目的を達成する手段として、内部で主弁
が離着圧する弁本体と、この弁本体の入側に溶接され蒸
気管からの蒸気を弁本体内に案内する入口部材とから圧
力容器部を構成した蒸気弁において、前記圧力容器部を
構成する弁本体および入口部材を、鍛鋼品によりそれぞ
れ製作するとともに、前記弁本体を、主弁を内包する弁
上手本体と、主弁下流側の弁下半本体とから構成し、か
つ弁上手本体と弁下半本体とを、同一径のストレート管
部で突合わせて溶接するようにしたことを特徴とする。
(Means for Solving the Problems) As a means for achieving the above object, the present invention provides a valve body in which a main valve is pressurized and released, and a valve body which is welded to the inlet side of the valve body and which directs steam from a steam pipe to the valve body. In a steam valve in which a pressure vessel portion is formed from an inlet member that is guided into the steam valve, the valve body and the inlet member that constitute the pressure vessel portion are each made of forged steel, and the valve body includes a main valve. It consists of a valve upper body and a lower valve half body on the downstream side of the main valve, and is characterized in that the valve upper body and the lower valve half body are butted and welded together using a straight pipe portion of the same diameter. do.

(作用) 本発明に係る蒸気弁においては、圧力容器部を構成する
弁本体および入口部材が、同一化学成分の鋳鋼品よりも
高温強度が大きな鍛鋼品で構成される。このため、従来
に比べて肉厚を薄くすることができるとともに、全体の
肉厚を均一化することができ、熱応力の緩和が可能とな
る。また、鍛造であることから、弁本体の内在欠陥を皆
無にすることができ、信頼性を向上させることが可能と
なる。
(Function) In the steam valve according to the present invention, the valve body and the inlet member constituting the pressure vessel portion are made of a forged steel product that has higher high-temperature strength than a cast steel product of the same chemical composition. Therefore, the wall thickness can be made thinner than in the past, and the overall wall thickness can be made uniform, making it possible to alleviate thermal stress. Furthermore, since it is forged, there are no inherent defects in the valve body, making it possible to improve reliability.

また、前記弁本体は、主弁を内包する弁士竿本体と、主
弁下流側の弁下半本体とから構成されるので、大型の蒸
気弁の場合でも、容易に製作することが可能となる。そ
して、弁上手本体と弁下半本体とは、同一径のストレー
ト管部で突合わせ溶接されるので、放射線検査等の非破
壊検査を容易に実施でき、構造溶接部の健全性を確認で
きる。
Furthermore, since the valve body is composed of a benshi rod body containing the main valve and a lower valve half body on the downstream side of the main valve, it can be easily manufactured even in the case of a large steam valve. . Since the valve upper body and the lower valve half body are butt-welded using straight pipe portions having the same diameter, non-destructive inspection such as radiographic inspection can be easily performed, and the soundness of the structural welded portion can be confirmed.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係る蒸気弁の一例を示すもので、図
中、符号21は弁本体であり、この弁本体21は、上蓋
2およびこの上蓋2を弁本体21に固定するボルト3と
ともに圧力容器部4を構成し、この弁本体21には、図
示しない蒸気管に接続するための入口管22が、溶接部
W1を介して一体化されている。
FIG. 1 shows an example of a steam valve according to the present invention. In the figure, reference numeral 21 is a valve body, and this valve body 21 consists of an upper cover 2 and bolts 3 for fixing the upper cover 2 to the valve body 21. The valve body 21 also constitutes the pressure vessel section 4, and an inlet pipe 22 for connecting to a steam pipe (not shown) is integrated with the valve body 21 via a weld W1.

前記弁本体21の内部には、第1図に示すように、弁棒
5にねじ込まれた主弁6、弁棒5を保持する案内片7、
蒸気中の異物を除去するストレーナ8、および前記主弁
6が離着座する弁座9がそれぞれ組込まれており、これ
らにより、蒸気通路部10が構成されている。
Inside the valve body 21, as shown in FIG. 1, there are a main valve 6 screwed into the valve stem 5, a guide piece 7 for holding the valve stem 5,
A strainer 8 for removing foreign matter from the steam and a valve seat 9 on which the main valve 6 is seated are incorporated, and a steam passage section 10 is constituted by these.

前記弁棒5を上下方向に作動させるアクチュエータ(図
示せず)は、第1図に示すように、ブランケット11を
介しボルト12により弁本体21に固定されており、ま
た案内片7も、ボルト13によりブランケット11に固
定されている。
An actuator (not shown) for vertically operating the valve stem 5 is fixed to the valve body 21 with bolts 12 via a blanket 11, as shown in FIG. It is fixed to the blanket 11 by.

前記弁本体21は、第1図に示すように、各所同一の胴
部肉厚t1を有し前記主弁6を内包する弁上半本体21
aと、各所同一の胴部肉厚t2を有し、主弁6の下流側
に位置する弁下半本体21bとから構成されており、こ
の弁上竿本体21aと弁下半本体21bとは、溶接部W
3を介し一体に溶着されている。
As shown in FIG. 1, the valve body 21 has an upper half body 21 that has the same body wall thickness t1 at each location and encloses the main valve 6.
a, and a lower valve half body 21b, which has the same body wall thickness t2 at each location and is located on the downstream side of the main valve 6, and the valve upper rod body 21a and the lower valve half body 21b are , weld W
3 and are welded together.

また、前記弁上竿本体21aおよび弁下半本体21bは
、同一肉厚でありながら材料強度の優れたクロム−モリ
ブデン−バナジウム鋼の鍛造によりそれぞれ製作されて
いるとともに、各本体21a、21bの内面は、機械加
工により精密に整形されている。また、各本体21a、
21bの溶接部W3近傍位置には、第1図に示すように
、開先中央を中心として軸方向にストレート管部23a
Further, the upper valve rod main body 21a and the lower valve half main body 21b are manufactured by forging chromium-molybdenum-vanadium steel, which has the same wall thickness and excellent material strength, and the inner surfaces of each main body 21a, 21b. is precisely shaped by machining. In addition, each main body 21a,
As shown in FIG. 1, a straight pipe portion 23a is located near the welded portion W3 of 21b in the axial direction around the center of the groove.
.

23bがそれぞれ設けられており、溶接構造部の健全性
を、放射線検査等の非破壊検査により容易に確認できる
ようになっている。
23b, respectively, so that the soundness of the welded structure can be easily confirmed by non-destructive testing such as radiation testing.

一方、前記入口管22は、図示しない蒸気管と同等の材
料のパイプ材を用い、その先端を鍛造による熱間曲げ加
工により概略90度に一体的に整形して構成されており
、この入口管22の溶接開先肉厚はt3に設定されてい
る。そしてこの入口管22は、第1図に示すように、前
記弁上竿本体21aのノズル状突出部24に、溶接部W
1を介し一体に溶着されるようになっている。
On the other hand, the inlet pipe 22 is constructed by using a pipe material made of the same material as a steam pipe (not shown), and having its tip integrally shaped to approximately 90 degrees by hot bending by forging. The welding groove thickness of No. 22 is set to t3. As shown in FIG. 1, this inlet pipe 22 is attached to the nozzle-shaped protrusion 24 of the valve upper rod body 21a at a welded portion W.
1 and are welded together.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

弁本体21を構成する弁上竿本体21aおよび弁下半本
体21bは、クロム−モリブデン−バナジウム鋼の鍛造
により製作され、その内面は、各所同一の胴部肉厚tt
、  t2となるように、機械加工により精密に整形さ
れる。
The valve upper rod body 21a and the lower valve half body 21b that constitute the valve body 21 are manufactured by forging chromium-molybdenum-vanadium steel, and their inner surfaces have the same body wall thickness tt at each location.
, t2, and is precisely shaped by machining.

これら側本体21a、21bは、各ストレート管部23
a、23bに溶接開先を加工した後、突合わせ溶接され
る。これにより、側本体21a。
These side main bodies 21a, 21b each have straight pipe portions 23
After welding grooves are formed in a and 23b, butt welding is performed. Thereby, the side main body 21a.

21bが、溶接部W3を介して一体化される。この際、
溶接部W3の外周部は、両ストレート管部23a、23
bにより直線状になっているので、構造溶接部の健全性
を、放射線検査等の非破壊検査により容易に確認するこ
とができる。
21b are integrated via a weld W3. On this occasion,
The outer periphery of the welded portion W3 includes both straight pipe portions 23a, 23.
Since the weld is straight due to b, the soundness of the structural weld can be easily confirmed by non-destructive inspection such as radiographic inspection.

一方、入口管22は、図示しない蒸気管と同等の材料の
パイプ材が用いられ、その先端は、鍛造による熱間曲げ
加工により、溶接開先肉厚がt3になるように、概略9
0度に一体的に整形される。
On the other hand, the inlet pipe 22 is made of a pipe material similar to that of a steam pipe (not shown), and the tip thereof is formed by hot bending by forging so that the welding groove thickness becomes t3.
It is integrally shaped to 0 degrees.

そしてその後、弁上竿本体21aのノズル状突出部24
に、溶接部W1を介し一体に溶着される。
After that, the nozzle-shaped protrusion 24 of the valve upper rod body 21a
They are welded together through the welded portion W1.

ところで、圧力容器部4を構成する弁本体21の強度は
、作用圧力に対し該当胴部の内径または外径寸法の関数
となっており、大口径になれば、概略比例的にそれに見
合った胴部肉厚が必要となる。
By the way, the strength of the valve body 21 constituting the pressure vessel section 4 is a function of the inner diameter or outer diameter of the relevant body relative to the applied pressure, and as the diameter increases, the strength of the valve body 21 that constitutes the pressure vessel section 4 is approximately proportional to the strength of the body. Part thickness is required.

以下、この肉厚の関係につき、第2図を参照して説明す
る。
This thickness relationship will be explained below with reference to FIG. 2.

第2図において、横軸は胴部肉厚の関数、縦軸は胴部に
発生する応力の関数である。前述のように、弁本体21
の胴部は、内径または外径寸法の関数となっており、図
中、線Cは、弁上半本体21aの作用圧力に対する胴部
肉厚の特性を示し、肉厚が薄いほど、発生応力が高く、
肉厚が厚いほど発生応力が低い特性となっている。同様
に線りは、弁下半本体21bの作用圧力に対する胴部肉
厚の特性を示し、胴部寸法径の小さい分だけ、線りが線
Cの下側(内側)に位置している。
In FIG. 2, the horizontal axis is a function of the body wall thickness, and the vertical axis is a function of stress generated in the body. As mentioned above, the valve body 21
The body of the valve body is a function of the inner diameter or outer diameter. In the figure, line C indicates the characteristic of the body wall thickness with respect to the working pressure of the valve upper half body 21a. The thinner the wall thickness, the greater the generated stress. is high;
The thicker the wall, the lower the generated stress. Similarly, the line indicates the characteristic of the body wall thickness with respect to the applied pressure of the lower valve half body 21b, and the line is located below (inside) the line C by the amount of the smaller body size diameter.

また、第2図の線Eは、胴部に発生する熱応力特性を示
し、胴部の内面と外面との温度差を同一として各胴部肉
厚を変化させた場合の発生応力の変化を表わしたもので
ある。この線Eは、例えば任意の内外面温度差か胴部に
作用した場合に、肉厚か厚くなればなるほど、発生する
熱応力は増加することを表わしている。
Line E in Figure 2 shows the thermal stress characteristics generated in the body, and shows the change in the stress generated when the wall thickness of each body is changed while maintaining the same temperature difference between the inner and outer surfaces of the body. It is expressed. This line E represents that, for example, when an arbitrary temperature difference between the inner and outer surfaces acts on the body, the thicker the wall, the more the generated thermal stress increases.

ところで、弁本体21の耐圧強度および熱応力的強度に
は、許容できる限界線があり、第2図では、作用応力に
対する胴部肉厚の耐圧的限界線を線Fで示し、熱応力的
限界線を線Gで示している。
By the way, there is an allowable limit line for the pressure resistance strength and thermal stress strength of the valve body 21, and in FIG. The line is indicated by line G.

実設計においては、これら各限界線F、  Gの内側に
なるよう設計しなければならない。換言すれば、点J、
 K、  L、 Mの範囲内にありさえすれば、各本体
21a、21bの胴部肉厚1..1.、は、任意に設定
することができる。
In actual design, it must be designed to be inside each of these limit lines F and G. In other words, point J,
As long as it is within the ranges of K, L, and M, the body wall thickness of each main body 21a, 21b is 1. .. 1. , can be set arbitrarily.

ここで、例えば製造コスト的観点から、作用圧力に対す
る応力を、弁上手本体21a、弁下半本体21bともに
同一の点Hとしたとすると、弁上手本体21aの胴部肉
厚は、線Cとの交点よりtlとなり、また弁下半本体2
1bの胴部肉厚は、線りとの交点よりt2となる。した
がって、弁下半本体21aの胴部肉厚は、弁上手本体2
1aの胴部肉厚よりも薄くすることができる。
Here, for example, from the viewpoint of manufacturing cost, if the stress for the applied pressure is set to the same point H for both the valve upper body 21a and the valve lower half body 21b, the body wall thickness of the valve upper body 21a will be equal to the line C. tl from the intersection of the valve lower half body 2
The body thickness of 1b is t2 from the intersection with the wire. Therefore, the body wall thickness of the lower valve half body 21a is the same as that of the valve upper body 2.
It can be made thinner than the body wall thickness of 1a.

尚、経済的には、側本体21a、21bの胴部肉厚は同
一寸法であることか望ましく、シたがって、通常は、弁
下半本体21bの胴部肉厚もtlに設定される。そして
これにより、溶接部W3を含めた弁下半本体21bの発
生応力を、第2図に示すように、前記点Hよりも低い点
H′とすることができる。しかも、弁下半本体21bの
胴部肉厚をtlとしても、熱応力の限界線0以内にある
ため、熱応力的不安も全くない。
From an economic standpoint, it is desirable that the wall thicknesses of the body parts of the side bodies 21a and 21b be the same, and therefore, the thickness of the body part of the lower valve half body 21b is also normally set to tl. As a result, the stress generated in the lower valve half body 21b including the welded portion W3 can be brought to a point H' lower than the point H, as shown in FIG. Furthermore, even if the thickness of the body of the lower valve half body 21b is tl, it is within the thermal stress limit line 0, so there is no concern about thermal stress.

一方、入口管22については、弁上手本体21aのノズ
ル状突出部24に溶接されるため、異材料の溶接継手と
なり、当該部の溶接開先肉厚t3は、材料強度の低い部
品により決定されるか、圧力容器として計算されるこの
部分の胴寸法は、弁上半本体21aの胴寸法よりも明ら
かに小さいので、弁上半本体21aの胴部肉厚t1を超
えることはない。
On the other hand, since the inlet pipe 22 is welded to the nozzle-shaped protrusion 24 of the valve body 21a, it becomes a welded joint of different materials, and the welding groove thickness t3 of this part is determined by the parts with low material strength. In other words, the body size of this portion calculated as a pressure vessel is clearly smaller than the body size of the valve upper half body 21a, so it does not exceed the body wall thickness t1 of the valve upper half body 21a.

このことは、1つの圧力容器を構成する各要素の部品の
中で、最大外径または内径の胴肉厚計算に用いる寸法が
最大のものについて得られた肉厚を、その弁本体のすべ
ての部品、各構造寸法の基準とすれば、各構成部品にい
かなる材料を採用しても、本発明の目的から逸脱するこ
とがなく、各構成部品の特殊性、用途に応して自由に材
料を組合わせることができることを意味する。
This means that the wall thickness obtained for the largest dimension used in calculating the maximum outer diameter or inner diameter of the body wall thickness among the parts of each element constituting one pressure vessel can be used for all of the valve body parts. No matter what material is used for each component, it will not deviate from the purpose of the present invention, and materials can be used freely according to the special characteristics and usage of each component, if the standards are used for the dimensions of each component and each structure. This means that they can be combined.

しかして、圧力容器部4を構成する弁本体21および入
口管22を鍛鋼品で製作するようにしているので、鋳鋼
品で製作される従来品に比べ、必要胴部肉厚を薄くでき
、また全体の肉厚の均一化により、熱応力を緩和できる
。また、鍛造であるので、弁本体21の内在欠陥を皆無
にでき、信頼性を向上させることができる。
Since the valve body 21 and the inlet pipe 22 constituting the pressure vessel section 4 are made of forged steel, the required body wall thickness can be made thinner than conventional products made of cast steel. By making the entire wall thickness uniform, thermal stress can be alleviated. Further, since it is forged, there are no inherent defects in the valve body 21, and reliability can be improved.

また、弁本体21は、弁上手本体21aと弁下半本体2
1bとから構成されているので、再熱蒸気弁等のように
、外径が3000mm、全長が3500−にも達する超
重量物となる弁本体21の場合にも、単一本体(インゴ
ット)で弁本体21を製作する場合と異なり、設備上の
制限を受けることなく製作することができる。
The valve body 21 also includes a valve upper body 21a and a lower valve half body 2.
1b, even when the valve body 21 is extremely heavy, such as a reheat steam valve, with an outer diameter of 3000 mm and a total length of 3500 mm, a single body (ingot) can be used. Unlike the case of manufacturing the valve body 21, the valve body 21 can be manufactured without being subject to equipment restrictions.

また、入口管22が鍛鋼品であるので、蒸気管側から繰
返し外力荷重が作用しても応力集中がなく、エルボ1a
と短管1bとの溶接部W2に応力が集中がなく、エルボ
1aと短管1bとの溶接部W2に応力が集中し易い従来
品と異なり、形状変化がない。
In addition, since the inlet pipe 22 is made of forged steel, there is no stress concentration even if repeated external force loads are applied from the steam pipe side, and the elbow 1a
There is no stress concentration at the weld W2 between the elbow 1a and the short pipe 1b, and there is no change in shape, unlike conventional products where stress tends to concentrate at the weld W2 between the elbow 1a and the short pipe 1b.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、弁本体および入口部材を
、同一化学成分の鋳鋼品よりも高温強度が高い鍛鋼品で
形成しているので、必要胴部肉厚を薄くできるとともに
、全体の肉厚を均一化して熱応力を緩和することができ
る。また、鍛造であることから、弁本体の内在欠陥を皆
無にでき、蒸気弁の信頼性を向上させることができると
もに、保守点検を容易なものとすることができる。
As explained above, in the present invention, the valve body and the inlet member are made of forged steel products that have higher high temperature strength than cast steel products with the same chemical composition, so the required body wall thickness can be reduced and the overall wall thickness can be reduced. Thermal stress can be alleviated by making the thickness uniform. Furthermore, since it is forged, there are no inherent defects in the valve body, improving the reliability of the steam valve and making maintenance and inspection easier.

また、たとえ蒸気弁の入口蒸気圧力や温度が上昇したと
しても、現用の組成材料で十分に対応することが可能で
ある。
Further, even if the inlet steam pressure or temperature of the steam valve increases, it is possible to sufficiently cope with the increase using the currently used composition materials.

そして、今後の材料開発によって、高温強度のより優れ
た材料が出現した場合にも本発明を適用することによっ
て一段と優れた蒸気弁を得ることができる。
Even if materials with better high-temperature strength appear as a result of future material development, an even more excellent steam valve can be obtained by applying the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る蒸気弁を示す断面図、
第2図は胴部肉厚と応力との関係を示すグラフ、第3図
は従来の蒸気弁を示す断面図である。 4・・・圧力容器部、6・・・主弁、21・・・弁本体
、21a・・・弁上竿本体、21b・・・弁下半本体、
22・・・入口管、23 a、  23 b・・・スト
レート管部、Wl、W3・・・溶接部。
FIG. 1 is a sectional view showing a steam valve according to an embodiment of the present invention;
FIG. 2 is a graph showing the relationship between body wall thickness and stress, and FIG. 3 is a sectional view showing a conventional steam valve. 4... Pressure vessel part, 6... Main valve, 21... Valve body, 21a... Valve upper rod body, 21b... Valve lower half body,
22... Inlet pipe, 23 a, 23 b... Straight pipe section, Wl, W3... Welded section.

Claims (1)

【特許請求の範囲】[Claims] 内部で主弁が離着座する弁本体と、この弁本体の入側に
溶接され蒸気管からの蒸気を弁本体内に案内する入口部
材とから圧力容器部を構成した蒸気弁において、前記圧
力容器部を構成する弁本体および入口部材を、鍛鋼品に
よりそれぞれ製作するとともに、前記弁本体を、主弁を
内包する弁上半本体と、主弁下流側の弁下半本体とから
構成し、かつ弁上半本体と弁下半本体とを、同一径のス
トレート管部で突合わせて溶接したことを特徴とする蒸
気弁。
A steam valve in which a pressure vessel portion is constituted by a valve body in which a main valve is seated and seated, and an inlet member welded to the inlet side of the valve body to guide steam from a steam pipe into the valve body. The valve body and the inlet member constituting the part are each manufactured from forged steel products, and the valve body is composed of an upper valve half body containing the main valve, and a lower valve half body on the downstream side of the main valve, and A steam valve characterized in that an upper valve half body and a lower valve half body are butted and welded together using straight pipe portions of the same diameter.
JP26509490A 1990-10-04 1990-10-04 Steam valve Expired - Lifetime JP2777277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26509490A JP2777277B2 (en) 1990-10-04 1990-10-04 Steam valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26509490A JP2777277B2 (en) 1990-10-04 1990-10-04 Steam valve

Publications (2)

Publication Number Publication Date
JPH04143403A true JPH04143403A (en) 1992-05-18
JP2777277B2 JP2777277B2 (en) 1998-07-16

Family

ID=17412522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26509490A Expired - Lifetime JP2777277B2 (en) 1990-10-04 1990-10-04 Steam valve

Country Status (1)

Country Link
JP (1) JP2777277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090861A1 (en) * 2007-01-25 2008-07-31 Keihin Corporation Pressure reducing valve for gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090861A1 (en) * 2007-01-25 2008-07-31 Keihin Corporation Pressure reducing valve for gas
JP2008180312A (en) * 2007-01-25 2008-08-07 Keihin Corp Pressure-reducing valve for gas
US8181668B2 (en) 2007-01-25 2012-05-22 Keihin Corporation Pressure reducing valve for gas

Also Published As

Publication number Publication date
JP2777277B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US7389669B2 (en) Mechanical stress improvement process
US4333671A (en) Friction welded transition joint
JP4520481B2 (en) High temperature steam turbine plant
KR101233555B1 (en) Welded header/nozzle structure
KR101207147B1 (en) Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE AND PROCESS FOR PRODUCING THE Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE
CN101040347B (en) T-shaped pipework element for an auxiliary circuit of a nuclear reactor, connection piece and method for producing and assembling the pipework element
JP4792355B2 (en) Yokoyose / stub tube welded structure and boiler apparatus including the same
JP5304392B2 (en) Dissimilar joint structure and manufacturing method thereof
JPH04143403A (en) Steam valve
JP6743005B2 (en) Fluid conduit element and method for manufacturing a fluid conduit element
JP2008080347A (en) Tube welded structure, tube welding method, and boiler equipment provided with tube welded structure
US11298774B2 (en) Method to eliminate dissimilar metal welds
US4209123A (en) Prevention of sensitization of welded-heat affected zones in structures primarily made from austenitic stainless steel
EP2698215A1 (en) Method for manufacturing high temperature steam pipes
JP2019113166A (en) Pipeline welding part reinforcement structure and boiler plant including the same and pipeline welding part reinforcement method
KR100216867B1 (en) Butt-welding joint
JP5579950B2 (en) Steam piping
CN208225528U (en) Connecting pin box based on composite plate
JP5579910B1 (en) Temperature reducing tube
CN209587489U (en) A kind of bracing means of high temperature and high pressure steam pipeline weak location
Shyju et al. Static Analysis of Tube to Header Weld Joint Configurations
Fragetta et al. The Welding of Inconel for Nuclear-Power Applications
JPH0979776A (en) Heat exchanger and its assembling method
JPH03134202A (en) Nozzle box of steam turbine
Leich et al. Properties, processing of and experience with the steel X20 CrMo (W) V 12 1

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 13