JPH04143258A - Method for surface reformation of titanium alloy and artificial bone implant made of titanium alloy - Google Patents

Method for surface reformation of titanium alloy and artificial bone implant made of titanium alloy

Info

Publication number
JPH04143258A
JPH04143258A JP26685190A JP26685190A JPH04143258A JP H04143258 A JPH04143258 A JP H04143258A JP 26685190 A JP26685190 A JP 26685190A JP 26685190 A JP26685190 A JP 26685190A JP H04143258 A JPH04143258 A JP H04143258A
Authority
JP
Japan
Prior art keywords
titanium alloy
phase
energy beam
alloy
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26685190A
Other languages
Japanese (ja)
Other versions
JP2852702B2 (en
Inventor
Shigehiko Arita
有田 重彦
Yuji Yasusaka
安坂 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP26685190A priority Critical patent/JP2852702B2/en
Publication of JPH04143258A publication Critical patent/JPH04143258A/en
Application granted granted Critical
Publication of JP2852702B2 publication Critical patent/JP2852702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To reform the surface of an alpha+beta-type Ti alloy obtd. by powder molding to have excellent fatigue strength with fine metal structure by irradiating the surface of the alloy with a high density energy beam to heat the surface to a specified temp. range and to form a fine metal structure. CONSTITUTION:The surface of an alpha+beta-type Ti alloy obtd. by powder molding or further treated with HIP treatment is irradiated with a high density energy beam such as CO2 laser light, electron beam, etc., to heat the surface to the temp. range between the lower limit of alpha' phase generation and the melting point. Then the alloy is rapidly cooled. The structure of beta phase formed during irradiation changes into a single alpha' or alpha'+alpha phase fine needlelike structure, which gives almost equal fatigue strength to a rolled or forged material. By adopting this method for a Ti-alloy artificial bone implant at the position where tensile stress is repeatedly generated, the optimum material as the artificial bone material can be obtained while maintaining the characteristics of Ti alloy such as high fatigue strength and excellent corrosion resistance.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、チタニウム合金において、その表面強度を
改善するための改質方法と表面強度を改善したチタニウ
ム合金製の人工骨インプラントに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for modifying a titanium alloy to improve its surface strength, and to an artificial bone implant made of a titanium alloy with improved surface strength.

従来の技術 人工骨用のインプラントとして使用される材料は耐食性
と強度を要求され、この点でα+β型チタニウム合金が
最も適している。ただ、チタニウム合金は、切削性や鍛
造性等の加工性が悪いという欠点があり、製造に際して
は、出来るだけ完成品に近い半製品の状態まで成形して
、削り代を極力少なくする方法が取られており、このよ
うな成形法の一つとして、粉末成形法がある。かかる粉
末成形法には、まず常温静水圧ブレス(CI P)又は
金型ブレスで前記のような半製品の形に成形した後、1
300’C前後の温度で焼結し、その後内部の気孔を除
くためHIP処理と称する熱間静水圧ブレスにより、約
950°Cに加熱して加圧した後徐令するS INTE
R&HI P法と呼ばれる方法と、粉末を適当な真空密
閉容器内に充填したのち直ちにHIP処理を行なって焼
結とHIPを同時に行なうCAPSUL法と呼ばれる方
法とがある。α+β型とは、金属組織中にα相とβ相が
混在した状態を言うが、かかる焼結ないしHIP処理を
行なうと徐令中にα組織が拡大して全般に結晶粒が増大
し、引張りその他の疲労強度が低下する欠点を有してい
る。すなわち、チタニウム合金を高温に加 熱していく
と第7図のようにある温度以上からはβ組織となるが、
その後徐令するにしたがってα結晶粒が生成拡大して全
体に粗い組織となり、圧延したものや鍛造したものに比
較して疲労強度が低いという欠点がある。最近の研究で
は、細粒からなる等軸組織のチタニウム合金の疲労強度
が最も高く、同じく細粒からなる針状組織のチタニウム
合金も高い疲労強度が得られることが判っている。
BACKGROUND OF THE INVENTION Materials used as implants for artificial bones are required to have corrosion resistance and strength, and α+β type titanium alloys are most suitable in this respect. However, titanium alloys have the disadvantage of poor machinability such as machinability and forgeability, so when manufacturing, the best method is to form them into a semi-finished product that is as close to the finished product as possible to minimize the machining allowance. One such molding method is the powder molding method. In this powder compacting method, the powder is first shaped into the above-mentioned semi-finished product using a cold isostatic pressure press (CIP) or a mold press, and then 1.
S INTE is sintered at a temperature of around 300'C, then heated and pressurized to about 950°C using a hot isostatic press called HIP treatment to remove internal pores, and then slowly aged.
There is a method called the R&HIP method, and a method called the CAPSUL method, in which powder is filled into a suitable vacuum-sealed container and immediately subjected to HIP treatment, thereby performing sintering and HIP simultaneously. The α+β type refers to a state in which the α phase and β phase coexist in the metal structure, but when such sintering or HIP treatment is performed, the α structure expands during aging and the crystal grains increase in general, resulting in tensile and other It has the disadvantage of reduced fatigue strength. In other words, when a titanium alloy is heated to a high temperature, it becomes a β structure above a certain temperature as shown in Figure 7.
Thereafter, as it ages, α crystal grains form and expand, resulting in an overall coarse structure, which has the disadvantage of lower fatigue strength than rolled or forged materials. Recent research has shown that titanium alloys with an equiaxed structure consisting of fine grains have the highest fatigue strength, and titanium alloys with an acicular structure consisting of fine grains also have high fatigue strength.

そこで、このようなHIP処理の欠点を解消して疲労強
度の改善を図る方法として最近開発されたものに、BU
S法と呼ばれるものがある。これは、HIP処理を行っ
たチタニウム合金をβ単相域から焼き入れしα+β2相
域で加熱することによって、全般に微細な2相部合組織
を得るものである。また、その他TCT処理等の処理法
が開発されている。
Therefore, a method that has recently been developed to eliminate these drawbacks of HIP treatment and improve fatigue strength is BU.
There is something called the S method. In this method, a titanium alloy subjected to HIP treatment is quenched from the β single phase region and then heated to the α+β two phase region, thereby obtaining an overall fine two-phase texture. Other processing methods such as TCT processing have also been developed.

発明が解決しようとする課題 しかしながら、かかるBUS処理その他の方法は、処理
中の酸化を防ぐため高度の真空(10−’〜10−’ 
)−ル以上)中で加熱と焼き入れを行う必要があり、設
備・装置の技術的困難さからコストが高くなるという欠
点を有している。
Problems to be Solved by the Invention However, such BUS processing and other methods require high vacuum (10-' to 10-'
It is necessary to perform heating and hardening in a chamber of 100 mm or more, which has the disadvantage of increasing costs due to the technical difficulties of equipment and equipment.

この発明は、このようにHIP処理を行ったチタニウム
合金において、微細な金属組織を得ることができ、疲労
強度に優れた表面の改質方法と、同じく疲労強度に優れ
た人工骨インプラントを提供することを目的とするもの
である。
The present invention provides a method for modifying the surface of a titanium alloy subjected to HIP treatment, in which a fine metal structure can be obtained and has excellent fatigue strength, and an artificial bone implant that also has excellent fatigue strength. The purpose is to

課題を解決するための手段 上記の課題を解決するため、この発明の方法は粉末成形
されたα+β型チタン合金の表面に高密度エネルギービ
ームを照射し、α′相生成下限温度以上溶融点未満の温
度範囲に加熱することを特徴とする。
Means for Solving the Problems In order to solve the above problems, the method of the present invention irradiates the surface of a powder-formed α+β type titanium alloy with a high-density energy beam, and Characterized by heating to a temperature range.

すなわち、この発明では、粉末成形法で完成品に近い状
態まで成形する方法において、その成形されたチタニウ
ム合金材を、高密度エネルギービームによる急熱急冷効
果を利用し、α′相生成以上の温度で溶体化処理を行っ
て、微細な組織に改質するものである。この場合、具体
的にはα′相生成下限温度は800°Cである。このよ
うな高密度エネルギービームとしては、炭酸ガスレーザ
ー電子ビーム等があげられ、これをチタニウム合金の必
要な部位に照射するものである。高密度エネルギービー
ムであることから、照射された部分が局部的に急熱され
て高温となり、その周辺部との温度差が大きく、このた
めに照射停止後は冷水を用いることなく急冷されること
になる。この急冷により、照射中にβ相となっていた組
織は、単一α′相(これはマルテンサイトである)又は
α′+α相からなる微細な針状組織となって、圧延・鍛
造材とほぼ同等の疲労強度が得られるのである。
That is, in this invention, in a method of forming a titanium alloy material to a state close to a finished product using a powder forming method, the formed titanium alloy material is heated to a temperature higher than the α' phase formation by utilizing the rapid heating and cooling effect of a high-density energy beam. The solution treatment is performed to modify the structure into a fine structure. In this case, specifically, the lower limit temperature for α' phase formation is 800°C. Examples of such a high-density energy beam include a carbon dioxide gas laser electron beam, which is used to irradiate a required portion of the titanium alloy. Since it is a high-density energy beam, the irradiated area is rapidly heated locally and reaches a high temperature, and there is a large temperature difference with the surrounding area, so after the irradiation is stopped, it is rapidly cooled without using cold water. become. As a result of this rapid cooling, the structure that had become a β phase during irradiation becomes a fine acicular structure consisting of a single α′ phase (this is martensite) or an α′+α phase, resulting in a rolled/forged material. Almost the same fatigue strength can be obtained.

また、この高密度エネルギービームの照射は、酸化によ
る表面の汚染を防止するため、アルゴンガスまたはヘリ
ウムガス等の不活性ガス雰囲気中で行うが、BUS処理
のように真空炉中で加熱・冷却を行う必要がないので、
容易に実施することができる。
In addition, this high-density energy beam irradiation is performed in an inert gas atmosphere such as argon gas or helium gas to prevent surface contamination due to oxidation, but unlike BUS processing, heating and cooling in a vacuum furnace is necessary. Since there is no need to do
It can be easily implemented.

更に、上記高密度エネルギービームの照射は、従来と同
じHIP処理を行った後に行われるが、このHIP処理
によって得られたα+β型チタニウム合金は、α′相生
成下限温度以上溶融点未満の温度範囲で急加熱し、前記
のように急冷することによって、針状組織ではあっても
微細な単一α′相からなる組織が得られ、優れた疲労強
度を呈するのである。また、同じく高密度エネルギービ
ームの照射は、繰返し引張応力が発生し、疲労破壊の危
険性のある部位に限定して照射することで、その部位の
疲労強度を向上し、破壊を防止することができる。局部
に限定して処理を行うことは、効率上からも好ましくま
た可能である。
Furthermore, the irradiation with the high-density energy beam is performed after performing the same HIP treatment as in the conventional method, but the α+β type titanium alloy obtained by this HIP treatment has a temperature range above the α' phase formation lower limit temperature and below the melting point. By rapidly heating the material and rapidly cooling it as described above, a fine acicular structure consisting of a single α' phase is obtained, which exhibits excellent fatigue strength. Similarly, high-density energy beam irradiation can be applied to areas where repetitive tensile stress occurs and is at risk of fatigue failure, thereby improving the fatigue strength of those areas and preventing failure. can. From the standpoint of efficiency, it is preferable and possible to perform the treatment locally.

この発明において、HIP処理を行ったものとは、前記
のように焼結した後にかかる処理を行なうS INTE
R&HIF法によって得られるもの、真空容器へ粉末充
填して直ちにHIP処理したもの等を含む。
In this invention, the HIP treatment refers to S
This includes those obtained by the R&HIF method and those obtained by filling powder into a vacuum container and immediately HIPing.

次に、上記の課題を解決するためのこの発明の人工骨用
のインプラントは、そのインプラントの繰返し引張り応
力の発生する部位に高密度エネルギービームを照射した
ことを特徴とするものである。
Next, the artificial bone implant of the present invention for solving the above-mentioned problems is characterized in that a high-density energy beam is irradiated to a region of the implant where repeated tensile stress occurs.

この繰り返し引張応力の発生する部位としては、例えば
、第1図及び第2図のように、矢印A方向に繰り返し荷
重のかかる大腿骨用のインプラント1では、皮膜間側の
外側面2が挙げられ、この部位の上下方向のある範囲に
わたって高密度エネルギービームを照射し、これによっ
て、引張りに対する疲労強度を必要部位にのみ改善した
インプラント材が得られることになる。
For example, as shown in FIGS. 1 and 2, in the case of a femoral implant 1 that is repeatedly loaded in the direction of arrow A, the site where this repeated tensile stress occurs may be the outer surface 2 on the intercapsular side. By irradiating a high-density energy beam over a certain range in the vertical direction of this region, an implant material with improved tensile fatigue strength only in the necessary region can be obtained.

勿論、このインプラントも前記のように粉末成形した後
又は粉末成形と同時に、HIP処理したものであって、
かかるα+β型の組織を備えたインプラントへ、前記の
温度範囲で高密度エネルギービームを照射して急加熱、
急冷することによって前記と同様に微細な単一α′相又
はα′+α相が、その照射部位に形成されることになる
Of course, this implant was also subjected to HIP treatment after or at the same time as powder molding as described above.
Implants with such α+β type tissue are rapidly heated by irradiating them with a high-density energy beam in the above temperature range,
By rapid cooling, a fine single α' phase or α'+α phase is formed at the irradiated site, as described above.

なお、第1図中3は大腿骨であって、この発明のインプ
ラント1は、その上端に差し込んで取付けられ、更に、
このインプラント1の上端には、腰骨へ取付けるための
骨頭ボール4が取付けられ、この頂部に前記のような繰
り返し荷重が負荷される。
In addition, 3 in FIG. 1 is a femur, and the implant 1 of the present invention is inserted and attached to the upper end of the femur, and furthermore,
A femoral head ball 4 for attachment to the hip bone is attached to the upper end of the implant 1, and the above-mentioned repeated load is applied to the top of the femoral head ball 4.

このようにして得られたインプラント1は、第3図のよ
うに、高密度エネルギービームを照射した部位の表面層
が微細な単一α′相の組織又はα′+α相の組織となり
、母材(α+β相からなる)との中間層はα相が漸増し
たα′+α相の組織が形成される。
As shown in Fig. 3, the implant 1 thus obtained has a surface layer in the area irradiated with the high-density energy beam that has a fine single α' phase structure or an α'+α phase structure, and the base material (consisting of α+β phase), an α′+α phase structure in which α phase gradually increases is formed.

実施例 粉末成形によって、上記第1図と同じ形状のインプラン
トを製作し、これを5INTER&HIP処理を行った
後、高密度エネルギービームとして炭酸ガスレーザを用
いて、前記の部位に、第4図の装置でその部位の上下方
向に走査しながら照射した。同時に、HIP処理をした
だけのもの、溶体化(焼入れ)処理した鍛造材、この発
明の高密度エネルギービームを照射したものの3者の実
物疲労強度を比較したところ、その結果は下表のとおり
であり、本発明のものが最も疲労強度が優れた結果が得
られ、少なくとも鍛造材に匹敵することが判明した。な
お、この場合の疲労強度評価試験は、ISO案(ISO
/TC150/5C4) j:従った。
EXAMPLE An implant having the same shape as shown in Fig. 1 above was manufactured by powder molding, and after being subjected to 5INTER & HIP treatment, it was applied to the above-mentioned region using the apparatus shown in Fig. 4 using a carbon dioxide laser as a high-density energy beam. Irradiation was performed while scanning the area in the vertical direction. At the same time, we compared the actual fatigue strength of three materials: one that had just undergone HIP treatment, a forged material that had been solution-treated (quenched), and one that had been irradiated with the high-density energy beam of this invention.The results are shown in the table below. It was found that the material of the present invention had the best fatigue strength and was at least comparable to forged material. In addition, the fatigue strength evaluation test in this case is based on the ISO proposal (ISO
/TC150/5C4) j: Complied.

なお、炭酸ガスレーザの照射条件は、次の通りである。Note that the irradiation conditions of the carbon dioxide laser are as follows.

使用光学系二線状ビーム 照射パワー: 690 W (照射位置)走査速度: 
0.15ca+/ s 照射距離: 657mm(第2ミラー)アシストガス:
高純度アルゴン(35J 、/rnin )コーティン
グ材:コロイダルグラファイト照射ビーム形状(幅1x
厚さb) : 18.6mmx 1.6mm第5図は、
上記実施例で得られた高密度エネルギービーム照射後の
該当部位の200倍の顕微鏡写真であり、第6!!Iは
S I NTER&HI P処理後の100倍の顕微鏡
写真である。これらの図で判るように、HIP処理を行
っただけのものでは笹状のα相の間に黒いβ相が介在し
た粗い針状組織となっているが、本発明のものでは、微
細な単一α′相金金属組織なっていることが判る。
Optical system used: Two-line beam irradiation power: 690 W (irradiation position) Scanning speed:
0.15ca+/s Irradiation distance: 657mm (second mirror) Assist gas:
High purity argon (35J,/rnin) coating material: colloidal graphite irradiation beam shape (width 1x
Thickness b): 18.6mm x 1.6mm Figure 5 shows:
This is a 200x microscopic photograph of the relevant part after high-density energy beam irradiation obtained in the above example, and is the 6th! ! I is a 100x micrograph after SINTER&HIP treatment. As can be seen from these figures, the material that has only been subjected to HIP treatment has a coarse acicular structure with black β phase interposed between the bamboo-like α phase, but the material of the present invention has a coarse acicular structure with black β phase interposed between the bamboo-like α phase. It can be seen that the metal structure is one-α′ phase gold.

発明の効果 以上のように、この発明によれば、高密度エネルギービ
ームの照射によって、針状組織であっても、微細な単一
α′相又はα′+α相の組織に改質することが出来、鍛
造材にほぼ匹敵する疲労強度に優れたチタニウム合金材
が得られる効果がある。しかも、BUS処理等と異なっ
て真空焼き入れIIIWlのような高価な大型設備が不
要で、低コストに行うことが出来る。更に、この発明の
インプラントは、疲労強度が高く耐食性に優れたチタニ
ウム合金の特性を生かしながら、人工骨用材料として最
適のものが得られ、しかも、必要な部分にのみ強度改善
を行うことが出来るので、目的に応じて最も好ましい材
質とすることが出来、且つ、全体にわたって処理を行う
必要がないため、照射時間を節約できより低コストに実
施できる。
Effects of the Invention As described above, according to the present invention, even an acicular structure can be modified into a fine single α′ phase or α′+α phase structure by irradiation with a high-density energy beam. This has the effect of producing a titanium alloy material with excellent fatigue strength that is almost comparable to forged material. Moreover, unlike BUS processing, expensive large-scale equipment such as vacuum hardening IIIWl is not required, and the process can be carried out at low cost. Furthermore, the implant of this invention makes use of the characteristics of titanium alloy, which has high fatigue strength and excellent corrosion resistance, and is optimal as an artificial bone material, and furthermore, strength can be improved only in the necessary areas. Therefore, the most preferable material can be selected depending on the purpose, and since there is no need to perform treatment on the entire area, irradiation time can be saved and implementation can be carried out at lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

1111!Iは、この発明のインプラントの側面図、第
2図は横断面図、第31!Iは、ビーム照射部分の拡大
断面図、第4図は、実施例に使用したレーザ照射装置の
斜視図、第5図は、高密度エネルギービーム照射処理を
行ったインプラントの金属組織を示す200倍の顕微鏡
写真、第6図は、HIP処理後のインプラントの100
倍の顕微鏡写真、第7!!Iは、チタニウム合金の模式
状Ml!Iである。 1・・・インプラント、2・・・引張応力発生部位、3
・・・大腿骨。 特 許出願人 ヤンマーディーゼル株式会社代理人 弁
 理 士 樽 本  久 幸第2図 第3図 −へ−−cX+73 第4図 し−デビーム 第 す 図 第6 図 第7図 ■含臂量 υむ’/、’) 手続補正書 (方式) %式% 発明の名称 事件との関係
1111! I is a side view of the implant of this invention, Fig. 2 is a cross-sectional view, and Fig. 31! I is an enlarged cross-sectional view of the beam irradiation area, FIG. 4 is a perspective view of the laser irradiation device used in the example, and FIG. Micrograph, Figure 6 shows 100% of the implant after HIP treatment.
7th magnification micrograph! ! I is a schematic diagram of titanium alloy Ml! It is I. 1... Implant, 2... Tensile stress generation site, 3
...femur. Patent Applicant Yanmar Diesel Co., Ltd. Agent Patent Attorney Hisashi Tarumoto Figure 2 Figure 3 - c /,') Procedural amendment (method) % formula % Relationship with the title of invention case

Claims (5)

【特許請求の範囲】[Claims] 1.粉末成形されたα+β型チタン合金の表面に高密度
エネルギービームを照射し、α′相生成下限温度以上溶
融点未満の温度範囲に加熱することを特徴とするチタニ
ウム合金の表面改質法。
1. A method for surface modification of a titanium alloy, which comprises irradiating the surface of a powder-molded α+β type titanium alloy with a high-density energy beam and heating it to a temperature range above the α′ phase formation minimum temperature and below the melting point.
2.粉末成形した後又は成形と同時にHIP処理された
α+β型チタニウム合金の表面に高密度エネルギービー
ムを照射して、α′相生成下限温度以上溶融点未満の温
度範囲に加熱し、微細な単一のα′相又はα′+α相を
形成することを特徴とするチタニウム合金の表面改質法
2. A high-density energy beam is irradiated onto the surface of an α+β type titanium alloy that has been HIP-treated after powder compaction or simultaneously with compaction, and is heated to a temperature range above the α′ phase generation lower limit temperature and below the melting point to form fine single particles. A method for surface modification of titanium alloy, characterized by forming an α' phase or an α'+α phase.
3.粉末成形されたα+β型チタニウム合金からなる人
工骨インプラントであって、繰返し引張応力の発生する
部位に高密度エネルギービームを照射したことを特徴と
するチタニウム合金製人工骨インプラント。
3. An artificial bone implant made of a powder-molded α+β type titanium alloy, characterized in that a high-density energy beam is irradiated to a region where repeated tensile stress occurs.
4.粉末成形の後又は成形と同時にHIP処理されたα
+β型チタニウム合金からなる大腿骨用の人工骨インプ
ラントであって、繰返し引張応力の発生する反股間側の
外側面に高密度エネルギービームを照射したことを特徴
とするチタニウム合金製人工骨インプラント。
4. α HIP treated after powder molding or at the same time as molding
A titanium alloy artificial bone implant for a femur made of a +β-type titanium alloy, characterized in that a high-density energy beam is irradiated on the outer surface of the opposite groin side where repeated tensile stress occurs.
5.粉末成形の後HIP処理されたα+β型チタニウム
合金からなる大腿骨用の人工骨インプラントであって、
繰返し引張応力の発生する反股間側の外側面に高密度エ
ネルギービームを照射して、微細な単一のα′相又はα
′+α相を形成したことを特徴とするチタニウム合金製
人工骨インプラント。
5. An artificial bone implant for a femur made of an α+β type titanium alloy subjected to HIP treatment after powder molding,
A high-density energy beam is irradiated on the outer surface of the opposite groin side where repeated tensile stress occurs, and a fine single α′ phase or α
A titanium alloy artificial bone implant characterized by forming a '+α phase.
JP26685190A 1990-10-03 1990-10-03 Surface modification method of titanium alloy and artificial titanium implant made of titanium alloy Expired - Lifetime JP2852702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26685190A JP2852702B2 (en) 1990-10-03 1990-10-03 Surface modification method of titanium alloy and artificial titanium implant made of titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26685190A JP2852702B2 (en) 1990-10-03 1990-10-03 Surface modification method of titanium alloy and artificial titanium implant made of titanium alloy

Publications (2)

Publication Number Publication Date
JPH04143258A true JPH04143258A (en) 1992-05-18
JP2852702B2 JP2852702B2 (en) 1999-02-03

Family

ID=17436547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26685190A Expired - Lifetime JP2852702B2 (en) 1990-10-03 1990-10-03 Surface modification method of titanium alloy and artificial titanium implant made of titanium alloy

Country Status (1)

Country Link
JP (1) JP2852702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177479A (en) * 2015-07-31 2015-12-23 辽宁工业大学 Photoelectric pulse composite processing method of novel composite microstructure of Ti-6Al-4V alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177479A (en) * 2015-07-31 2015-12-23 辽宁工业大学 Photoelectric pulse composite processing method of novel composite microstructure of Ti-6Al-4V alloy

Also Published As

Publication number Publication date
JP2852702B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US6395327B1 (en) Enhanced fatigue strength orthopaedic implant with porous coating and method of making same
Elahinia et al. Fabrication of NiTi through additive manufacturing: A review
Murr et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications
EP2330227B1 (en) METHOD OF FORMING FINE CRYSTAL GRAINS IN NITROGEN-DOPED Co-Cr-Mo ALLOY AND NITROGEN-DOPED Co-Cr-Mo ALLOY
US20170314109A1 (en) Additively manufactured high-strength aluminum via powder bed laser processes
US4505764A (en) Microstructural refinement of cast titanium
Disegi et al. Cobalt-base alloys for biomedical applications
JPH0413416B2 (en)
US4631082A (en) Cobalt-chromium superalloy
Akgun et al. Laser surface modification of Ti-6Al-4V alloy
US4624714A (en) Microstructural refinement of cast metal
Kiel-Jamrozik et al. The heat treatment influence on the structure and mechanical properties of Ti6Al4V alloy manufactured by SLM technology
JPH04143258A (en) Method for surface reformation of titanium alloy and artificial bone implant made of titanium alloy
Savalani et al. Selective laser melting of magnesium for future applications in medicine
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
Fousova et al. Thermal treatment of 3D-printed Titanium alloy
Santecchia et al. Laser powder bed fusion: Tailoring the microstructure of alloys for biomedical applications
JPH03226504A (en) Manufacture of high density titanium alloy powder sintered product
CN115595510B (en) Iron-manganese alloy with high work hardening capacity, and preparation method and application thereof
Fousová et al. Metallographic and fractographic evaluation of 3D-printed titanium samples to eliminate unsatisfactory mechanical properties
Cruz et al. Microstructure evolution in laser powder bed fusion-built Fe-Mn-Si shape memory alloy
Tosi et al. Hybrid electron beam powder bed fusion additive manufacturing of Ti–6Al–4V
Kumar et al. Influence of heat treatment on welding process of electron beam welded joint of Ti6Al4V parts manufactured via laser powder bed fusion
Kayacan et al. Effects of Positioning Conditions on Material Properties In Powder bed Fusion Additive Manufacturing